首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
p53 and its homolog p73 are responsible for guarding the genome and regulating cellular responses to genotoxic damage. However, life is never simple and in fact multiple isoforms of each gene exist which may have opposing functions. ΔNp73 is a truncated isoform of p73 which lacks the N-terminal transactivation domain and is up-regulated in a number of diverse primary tumour types. Although its exact cellular function is unclear, upregulation of ΔNp73 has been linked to various pro-tumour activities. Here we review the current literature surrounding this mysterious protein and reveal its potentially important functions in tumourigenesis and treatment resistance.  相似文献   

3.
4.
Growing evidence suggests the Δ133p53α isoform may function as an oncogene. It is overexpressed in many tumors, stimulates pathways involved in tumor progression, and inhibits some activities of wild-type p53, including transactivation and apoptosis. We hypothesized that Δ133p53α would have an even more profound effect on p53 variants with weaker tumor-suppressor capability. We tested this using a mouse model heterozygous for a Δ133p53α-like isoform (Δ122p53) and a p53 mutant with weak tumor-suppressor function (mΔpro). The Δ122p53/mΔpro mice showed a unique survival curve with a wide range of survival times (92–495 days) which was much greater than mΔpro/- mice (range 120–250 days) and mice heterozygous for the Δ122p53 and p53 null alleles (Δ122p53/-, range 78–150 days), suggesting Δ122p53 increased the tumor-suppressor activity of mΔpro. Moreover, some of the mice that survived longest only developed benign tumors. In vitro analyses to investigate why some Δ122p53/mΔpro mice were protected from aggressive tumors revealed that Δ122p53 stabilized mΔpro and prolonged the response to DNA damage. Similar effects of Δ122p53 and Δ133p53α were observed on wild-type of full-length p53, but these did not result in improved biological responses. The data suggest that Δ122p53 (and Δ133p53α) could offer some protection against tumors by enhancing the p53 response to stress.The p53 tumor suppressor is most important for preventing cancers. p53 controls cell fate in response to stress by inducing apoptosis, cell cycle arrest/senescence, DNA repair (reviewed in Braithwaite et al.,1, 2 Oren,3 and Speidel4) or possibly restricting supply of basic substrates for metabolism.5, 6, 7 The regulation of p53 function has recently become more complex with the discovery of 13 isoforms, which may interfere with the normal functioning of full-length (FL) p53.8, 9, 10, 11, 12, 13, 14 An alternative promoter in intron 4 generates the Δ133p53 isoforms (Δ133p53α, and with additional alternative splicing in intron 9, Δ133p53β, and Δ133p53γ11).The Δ133p53α isoform is expressed in many tissues, but elevated levels have been found in several cancers.11, 15, 16 Although the function(s) of Δ133p53α are not fully understood, growing evidence suggests it may have tumor-promoting capacities. Reducing Δ133p53α levels in the U87MG glioblastoma cell line reduced its ability to migrate and stimulate angiogenesis.17 Δ133p53α may also interfere with the tumor-suppressor functions of FLp53. The zebrafish ortholog of Δ133p53α, Δ113p53, inhibited p53-mediated apoptosis,18 and overexpression of Δ133p53α inhibited p53-directed G1 cell cycle arrest.16Previously, we reported the construction and characterization of a mouse expressing an N-terminal truncation mutant of p53 (designated Δ122p53) that is very similar to Δ133p53α, providing the first mouse model of the Δ133p53α isoform.19, 20 Δ122p53 was found to increase cell proliferation and in p53 null cells transduced with a Δ122p53 expressing retrovirus, inhibited the transactivation of CDKN1a (encoding) p21CIP1 and MDM2 by FLp53.19, 20 As well as elevating cell proliferation, homozygote Δ122p53 mice exhibited a profound pro-inflammatory phenotype, including increased serum interleukin-6 (IL-6) and γ-interferon (γ-IFN), and features of autoimmune disease.19, 20 The mice were tumor-prone displaying a complex tumor spectrum, but predominantly B-cell lymphomas and osteosarcomas. Thus, most evidence supports a role for the Δ133p53α isoform as a dominant oncogene that may interfere with normal FLp53 tumor-suppressor functions, but also has additional ''gain-of-function'' properties to promote tumor progression, probably through inflammatory mechanisms.21Given the above data, we reasoned that in an environment where p53 tumor-suppression capacity is compromised, such as in the context of the R72P allele22, 23, 24 or where p53 levels are reduced,25, 26, 27 the influence of Δ133p53α isoform on FLp53 function would be greater, leading to rapid tumor formation with a phenotype that would resemble that of the isoform alone. To test this, we generated mice heterozygous for Δ122p53 and a p53 mutant (mΔpro) that we previously described, that has attenuated tumor-suppressor activity.28, 29 The mΔpro mouse model is missing part of the p53 proline rich domain (PRD, amino acids 58–88). These mice are defective for DNA damage-induced apoptosis, and show a delayed and impaired cell cycle arrest response. Homozygous mΔpro mice develop late onset follicular B-cell tumors, while mΔpro heterozygotes developed few tumors in the presence of a wild-type p53 allele, or an early onset T-cell lymphoma in a p53-null background. In the latter case, the onset and tumor spectrum are indistinguishable from p53-null mice.28In the current study, we found that, in contrast to our hypothesis, many Δ122p53/mΔpro mice showed extended survival compared with Δ122p53 homozygotes. In vitro analyses to explain this phenomenon suggested that Δ122p53 allele can enhance mΔpro tumor-suppressor functions, in particular cell cycle arrest.  相似文献   

5.
6.
7.
8.
The tumor suppressor p53 is pivotal in cell growth arrest and apoptosis upon cellular stresses including DNA damage. Mounting evidence indicates that p63 proteins, which are homologs of p53, are also involved in apoptosis under certain circumstances. In this study, we found that treatment with DNA damage agents leads to down-regulation of ΔNp63α and induces apoptosis in FaDu and HaCat cells carrying mutant p53. Further study shows that DNA damage reduces steady-state mRNA level of ΔNp63α, but has little effect on its protein stability. In addition, knockdown of endogenous ΔNp63α directly induces apoptosis and sensitizes cells to DNA damage, while exogenous expression of ΔNp63α partially confers cellular resistance to DNA damage. Together, these data suggest that DNA damage down-regulates ΔNp63α, which may directly contribute to DNA damage-induced apoptosis.  相似文献   

9.
p53是一种重要的肿瘤抑制因子,是迄今发现与人类肿瘤相关性最高的分子之一。超过50%的人类肿瘤含有p53基因突变。因此,p53是肿瘤治疗中的重要分子靶点。p53依赖的细胞凋亡是其抑制肿瘤的重要机制之一。然而,最近研究发现,p53不仅参与细胞凋亡,还与程序性细胞坏死、细胞自噬以及铁诱导的细胞死亡等细胞死亡途径相关。促使肿瘤细胞死亡是肿瘤治疗的重要目标。因此,进一步了解p53与细胞死亡之间的关系,将有助于探索以p53为靶点的肿瘤治疗和p53相关肿瘤细胞耐药机制。  相似文献   

10.
突变体p53研究进展   总被引:4,自引:0,他引:4  
李大虎  张令强  贺福初 《遗传》2008,30(6):697-703
抑癌基因突变是癌症发生过程中一个极为关键的事件。p53作为体内最重要的抑癌基因之一, 在人类癌症中发生突变的频率高达50%。同时, p53突变也是人类遗传病Li-Fraumeni综合征的主要病因。p53最常见的突变形式是错义突变, 所形成的突变体p53不但失去了野生型p53的抑癌功能, 而且还获得了一系列类似于癌基因的功能, 促进了肿瘤的进程。文章拟对突变体p53的结构功能改变, 获得癌基因活性的分子机制, 以及近年来对封闭突变体p53活性所进行的探索等研究方向所取得的进展做一综述。  相似文献   

11.
p53是一种广谱的肿瘤抑制基因,其新家族成员p51具有同p53相似的DNA结合特笥和相似的功能,同样可以转录激活p53基因的内源性靶分子,如细胞周期抑制基因p21、导致细胞凋亡和生长受抑。本文阐述了它的研究进展。  相似文献   

12.
Chae YS  Kim H  Kim D  Lee H  Lee HO 《FEBS letters》2012,586(8):1128-1134
ΔNp63α is a p63 isoform that is predominantly expressed in the epidermal stem cells and in cancer. To find the regulatory pathways of ΔNp63α, we assessed whether ΔNp63α is acetylated and determined the functional implications of acetylation. First, the hinge region of p63 was shown to be acetylated by PCAF, similarly to other p53 family members. Second, acetylation synergistically induced cytoplasmic localization of ΔNp63α. Finally, acetyl-ΔNp63α was induced during high-density culture, suggesting that acetylation of ΔNp63α may reinforce cell cycle arrest upon cell contact. Altogether, these findings suggest that acetylation of ΔNp63α contributes to the epidermal homeostasis.  相似文献   

13.
14.
甲状腺肿瘤p53mRNA及p53蛋白表达的研究   总被引:2,自引:0,他引:2  
本文采用原位杂交法、免疫组织化学方法分别检测了甲状腺癌p53mRNA、p53蛋白的表达,结果显示:20例甲状腺癌p53mRNA、p53蛋白均呈阳性反应,8例甲状腺瘤仅1例呈弱阳性反应,8例Graves病全部呈阴性反应。细胞质和细胞核mRNA、p53蛋白灰度检测发现,甲状腺瘤细胞质、核p53mRNA灰度值和p53蛋白灰度值均明显高于Graves病,而甲状腺癌其细胞质、核p53mRNA灰度值和p53蛋白灰度值又明显高于良性甲状腺瘤,提示甲状腺癌p53mRNA和p53蛋白的高表达可能与甲状腺肿瘤细胞分化程度有关  相似文献   

15.
Previous studies have described the role of p53 isoforms, including p53β and Δ133p53α, in the modulation of the activity of full-length p53, which regulates cell fate. In the context of influenza virus infection, an interplay between influenza viruses and p53 has been described, with p53 being involved in the antiviral response. However, the role of physiological p53 isoforms has never been explored in this context. Here, we demonstrate that p53 isoforms play a role in influenza A virus infection by using silencing and transient expression strategies in human lung epithelial cells. In addition, with the help of a panel of different influenza viruses from different subtypes, we also show that infection differentially regulates the expressions of p53β and Δ133p53α. Altogether, our results highlight the role of p53 isoforms in the viral cycle of influenza A viruses, with p53β and Δ133p53α acting as regulators of viral production in a p53-dependent manner.  相似文献   

16.
p53与细胞周期调控   总被引:2,自引:0,他引:2  
p53蛋白首先在SV-40转染的小鼠细胞中发现,继之在不同类型的转化细胞系中也被检测到。进一步研究证明它还存在于正常细胞和组织中,但与转化细胞相比其含量要低得多。 1988年Levine和Oren等报道了第一个被鉴定的p53突变型p53 Vall 35。以后,人们在转化细胞中检测到各种类型的p53突变型。为了有效地研究p53蛋白,已发展了很多识别p53蛋白的单克隆抗体,其中有的具有种  相似文献   

17.
p53与癌症治疗   总被引:1,自引:0,他引:1  
p53蛋白是一种重要的肿瘤抑制蛋白,它可以诱导肿瘤细胞生长停滞、衰老以及程序化死亡.由于它在癌细胞抑制中的至关重要作用,因而目前关于癌症的治疗大多数都是直接或间接通过调控p53蛋白来实现的.文中主要介绍了近几年来p53蛋白在理论和临床上最新的研究进展.  相似文献   

18.
Zebrafish △113p53, an N-terminal truncated p53 isoform, is a p53-target gene that antagonises p53-mediated apoptotic activity.Interestingly, △113p53 does not act on p53 in a dominant-negative manner, but rather interferes with the p53 function by differentially modulating p53-target gene expression to protect cells from apoptosis. Previous studies showed that over-expressed △113p53 and p53proteins formed a complex. However, it is not known whether endogenous p53 and △113p53 proteins also interact with each other, and if this interaction is required for △113p53 to inhibit the apoptotic activity of full-length p53. In this study, we used two available zebrafish p53 antibodies to address these questions. One, Zfp53-N, only recognises full-length p53, whereas the other, Zfp53-A7C10, detects both full-length p53 and △113p53. Using Zfp53-N for immunoprecipitation and Zfp53-A7C10 for detection, we demonstrated that endogenous △113p53 and full-length p53 induced by a DNA-damaging drug formed a complex in vivo. Furthermore, of the six △113p53 mutants we generated with different point mutations in the oligomerisation domain, two failed to interact with p53 and lost the ability to modulate p53-target gene expression and inhibit p53-induced cell apoptosis. However, those △113p53 mutants that could interact with p53 retained the ability to antagonise the apoptotic activity of p53. Therefore, our data demonstrated that proteineprotein interaction between △113p53and p53 is essential for the anti-apoptotic function of △113p53. In addition, the two △113p53 mutants that failed to interact with p53 are also useful for the study of the mechanisms of other functions of △113p53.  相似文献   

19.
Zebrafish △113p53, an N-terminal truncated p53 isoform, is a p53-target gene that antagonises p53-mediated apoptotic activity. Interestingly, △113p53 does not act on p53 in a dominant-negative manner, but rather interferes with the p53 function by differentially modulating p53-target gene expression to protect cells from apoptosis. Previous studies showed that over-expressed △113p53 and p53 proteins formed a complex. However, it is not known whether endogenous p53 and △113p53 proteins also interact with each other, and if this interaction is required for △113p53 to inhibit the apoptotic activity of full-length p53. In this study, we used two available zebrafish p53 antibodies to address these questions. One, Zfp53-N, only recognises full-length p53, whereas the other, Zfp53-A7C10, detects both full-length p53 and △113p53. Using Zfp53-N for immunoprecipitation and Zfp53-A7C 10 for detection, we demonstrated that endogenous △113p53 and full-length p53 induced by a DNA-damaging drug formed a complex in vivo. Furthermore, of the six △113p53 mutants we generated with different point mutations in the oligomerisation domain, two failed to interact with p53 and lost the ability to modulate p53-target gene expression and inhibit p53-induced cell apoptosis. However, those △113p53 mutants that could interact with p53 retained the ability to antagonise the apoptotic activity of p53. Therefore, our data demonstrated that protein--protein interaction between △113p53 and p53 is essential for the anti-apoptotic function of △113p53. In addition, the two △113p53 mutants that failed to interact with p53 are also useful for the study of the mechanisms of other functions of △113p53.  相似文献   

20.
p53是目前发现的与人类肿瘤发病相关性最大的抑癌基因之一。野生型p53参与DNA损伤修复、细胞周期调控、细胞凋亡及抑制血管生成等。p53基因的突变会使上述功能丧失,从而导致肿瘤的形成。随着分子生物学技术的发展,对肿瘤抑制基因p53的研究越来越深入。本文综合近年来国内外的研究进展,就p53与肿瘤形成的关系及其在肿瘤治疗中的应用等作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号