首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In pea (Pisum sativum), normal fruit growth requires the presence of the seeds. The coordination of growth between the seed and ovary tissues involves phytohormones; however, the specific mechanisms remain speculative. This study further explores the roles of the gibberellin (GA) biosynthesis and catabolism genes during pollination and fruit development and in seed and auxin regulation of pericarp growth. Pollination and fertilization events not only increase pericarp PsGA3ox1 message levels (codes for GA 3-oxidase that converts GA20 to bioactive GA1) but also reduce pericarp PsGA2ox1 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA20 to GA29), suggesting a concerted regulation to increase levels of bioactive GA1 following these events. 4-Chloroindole-3-acetic acid (4-Cl-IAA) was found to mimic the seeds in the stimulation of PsGA3ox1 and the repression of PsGA2ox1 mRNA levels as well as the stimulation of PsGA2ox2 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA1 to GA8) in pericarp at 2 to 3 d after anthesis, while the other endogenous pea auxin, IAA, did not. This GA gene expression profile suggests that both seeds and 4-Cl-IAA can stimulate the production, as well as modulate the half-life, of bioactive GA1, leading to initial fruit set and subsequent growth and development of the ovary. Consistent with these gene expression profiles, deseeded pericarps converted [14C]GA12 to [14C]GA1 only if treated with 4-Cl-IAA. These data further support the hypothesis that 4-Cl-IAA produced in the seeds is transported to the pericarp, where it differentially regulates the expression of pericarp GA biosynthesis and catabolism genes to modulate the level of bioactive GA1 required for initial fruit set and growth.  相似文献   

2.
The role of gibberellins (GAs) during germination and early seedling growth is examined by following the metabolism and transport of radiolabeled GAs in cotyledon, shoot, and root tissues of pea (Pisum sativum L.) using an aseptic culture system. Mature pea seeds have significant endogenous GA20 levels that fall during germination and early seedling growth, a period when the seedling develops the capacity to transport GA20 from the cotyledon to the shoot and root of the seedling. Even though cotyledons at 0–2 days after imbibition have appreciable amounts of GA20, the cotyledons retain the ability to metabolize labeled GA19 to GA20 and express significant levels of PsGA20ox2 message (which encodes a GA biosynthesis enzyme, GA 20-oxidase). The large pool of cotyledonary GA20 likely provides substrate for GA1 synthesis in the cotyledons during germination, as well as for shoots and roots during early seedling growth. The shoots and roots express GA metabolism genes (PsGA3ox genes which encode GA 3-oxidases for synthesis of bioactive GA1, and PsGA2ox genes which encode GA 2-oxidases for deactivation of GAs to GA29 and GA8), and they develop the capacity to metabolize GAs as necessary for seedling establishment. Auxins also show an interesting pattern during early seedling growth, with higher levels of 4-chloro-indole-3-acetic acid (4-Cl-IAA) in mature seeds and higher levels of indole-3-acetic acid (IAA) in young root and shoot tissues. This suggests a changing role for auxins during early seedling development.  相似文献   

3.
The levels of gibberellin A1 (GA1), GA8, GA19, GA20, GA29, and GA44 in the short Pisum sativum L. mutants lk, lka, and lkb, and comparable wild-type plants, were determined by gas chromatography-selected ion monitoring (GC-SIM) using 2H or 13C internal standards. The mutants possessed similar GA1 levels to wild-type plants, consistent with their classification as GA-sensitivity rather than GA-synthesis mutants. However, these mutants differ from certain sensitivity mutants in other species, in which substantial accumulation of GA1 occurs. The results suggest that if the proposed feedback model for the regulation of GA synthesis occurs in peas it is not the reduced growth per se that is the trigger for elevated levels of C19 GAs. The results are also consistent with the hypothesis that in those GA-sensitivity mutants which do not accumulate C19 GAs, the biochemical lesion may be well down the transduction pathway which leads from GA1 reception to stem elongation.  相似文献   

4.
5.
The dwarf pea (Pisum sativum) mutants lka and lkb are brassinosteroid (BR) insensitive and deficient, respectively. The dwarf phenotype of the lkb mutant was rescued to wild type by exogenous application of brassinolide and its biosynthetic precursors. Gas chromatography-mass spectrometry analysis of the endogenous sterols in this mutant revealed that it accumulates 24-methylenecholesterol and isofucosterol but is deficient in their hydrogenated products, campesterol and sitosterol. Feeding experiments using 2H-labeled 24-methylenecholesterol indicated that the lkb mutant is unable to isomerize and/or reduce the Δ24(28) double bond. Dwarfism of the lkb mutant is, therefore, due to BR deficiency caused by blocked synthesis of campesterol from 24-methylenecholesterol. The lkb mutation also disrupted sterol composition of the membranes, which, in contrast to those of the wild type, contained isofucosterol as the major sterol and lacked stigmasterol. The lka mutant was not BR deficient, because it accumulated castasterone. Like some gibberellin-insensitive dwarf mutants, overproduction of castasterone in the lka mutant may be ascribed to the lack of a feedback control mechanism due to impaired perception/signal transduction of BRs. The possibility that castasterone is a biologically active BR is discussed.  相似文献   

6.
7.
We examined the physiological effects of brassinosteroids (BRs) on early growth of Arabidopsis. Brassinazole (Brz), a BR biosynthesis inhibitor, was used to elucidate the significance of endogenous BRs. It inhibited growth of roots, hypocotyls, and cotyledonous leaf blades dose-dependently and independent of light conditions. This fact suggests that endogenous BRs are necessary for normal growth of individual organs of Arabidopsis in both photomorphogenetic and skotomorphogenetic programs. Exogenous brassinolide (BL) promoted hypocotyl elongation remarkably in light-grown seedlings. Cytological observation disclosed that BL-induced hypocotyl elongation was achieved through cell enlargement rather than cell division. Furthermore, a serial experiment with hormone inhibitors showed that BL induced hypocotyl elongation not through gibberellin and auxin actions. However, a synergistic relationship of BL with gibberellin A3 (GA3) and indole-3-acetic acid (IAA) was observed on elongation growth in light-grown hypocotyls, even though gibberellins have been reported to be additive to BR action in other plants. Taken together, our results show that BRs play an important role in the juvenile growth of Arabidopsis; moreover, BRs act on light-grown hypocotyl elongation independent of, but cooperatively with, gibberellins and auxin.  相似文献   

8.
Gibberellin (GA) is believed to be involved in thermoperiodic stem elongation. With this in mind, we studied the correlation between gibberellin A1 (GA1) levels and stem elongation affected by alternating day (DT) and night temperature (NT) in 5 genotypes of Pisum sativum differing in their degree of dwarfism. The endogenous GA content in the tissue of two of the genotypes was determined by combined gas chromatography and mass spectrometry. The wild genotype developed 40 to 50% shorter stems and internodes under a low DT and high NT combination (negative difference [DIF] between DT and NT, DT/NT 15.5/21.5 or 14/24°C) than under the opposite regime of high DT and low NT (positive DIF, DT/NT 22.5/16.5 or 24/14°C). The GA biosynthetic mutants ls and le, and the auxin and brassinosteroid mutant lkb responded in a similar way, but not as strongly as the wild type. The stem length of the GA-insensitive slender mutant (la crys) was reduced by only 8% under negative compared to positive DIF. In the wild type endogenous GA levels decreased by 60% from positive to negative DIF in the upper part of the stem. Further, there was a corresponding decrease in the levels of precursors to GA1, i.e. GA53, GA44, GA19 and GA20, while 2β-hydroxylated GA20 and GA1, GA29 and GA8, respectively, were unaffected by DIF. A similar increase in the ratios of GA29 to GA20 and GA8 to GA1 from positive to negative DIF was seen in the stem tissue of the le mutant as in the wild type. The temperature regimes affected the levels of GA1 and its precursors in combined leaf and petiole samples and in the shoot tip in a similar manner as in the stem tissue. However, the different temperature regimes did not affect the ratio of GA8/GA1 in the shoot tip. The results indicate that altered stem elongation of the pea plants in response to diurnal temperature alternations may be mediated by changes in endogenous levels of GA1. The GA1 levels may be controlled by an effect of DIF on both biosynthetic and inactivation steps.  相似文献   

9.
Smith VA 《Plant physiology》1992,99(2):372-377
A comparative study of the metabolism of radiolabeled gibberellin (GA) 1, 19, and 20 in isolated vegetative tissues of isogenic Le and le pea (Pisum sativum) plants incubated in vitro with the appropriate GA substrate is described. The results of this study provide evidence that the enzymes involved in the latter stages of GA biosynthesis are spatially separated within the growing pea plant. Apical buds were not apparently involved in the production of bioactive GA1 or its immediate precursors. The primary site of synthesis of GA20 from GA19 was immature leaflets and tendrils, and the synthesis of bioactive GA1 and its inactive catabolite GA8 occurred predominantly in stem tissue. GA29, the inactive catabolite of GA20, was produced to varying extents in all the tissues examined. Little or no difference was observed in the ability of corresponding Le and le tissues to metabolize radiolabeled GA1, GA19, or even GA20. During a fixed period of 24 hours, stems of plants carrying the le mutation produced slightly more [3H]GA1 (and [3H]GA29) than those of Le plants. It has been concluded that the le mutation does not lie within the gene encoding the GA20 3β-hydroxylase protein.  相似文献   

10.
Phytoplasmas are phloem‐inhabiting, cell wall‐less bacteria that cause numerous plant diseases worldwide. Plants infected by phytoplasmas often exhibit various symptoms indicative of hormonal imbalance. In this study, we investigated the effects of potato purple top (PPT) phytoplasma infection on gibberellin homeostasis in tomato plants. We found that PPT phytoplasma infection caused a significant reduction in endogenous levels of gibberellic acid (GA3). The decrease in GA3 content in diseased plants was correlated with down regulation of genes responsible for biosynthesis of bioactive GAs ( GA20ox1 and GA3ox1) and genes involved in formation of GA precursors [geranyl diphosphate synthase (GPS) and copalyldiphosphate synthase (CPS)]. Exogenous application of GA3 at 200 µmol L?1 was able to restore the GA content in infected plants to levels comparable to those in healthy controls, and to attenuate the characteristic ‘big bud’ symptoms induced by the phytoplasma. The interesting observation that PPT phytoplasma‐infected plants had prolonged low expression of key GA biosynthesis genes GA20ox1 and GA3ox1 under GA deficiency conditions led us to hypothesise that there was a diminished sensitivity of the GA metabolism feedback regulation, especially GA biosynthesis negative feedback regulation, in those affected plants, and such diminished sensitization in early stages of infection may represent a central element of the phytoplasma‐induced disruption of GA homeostasis and pathogenesis.  相似文献   

11.
The role of strigolactones as plant growth regulators has been demonstrated through research on biosynthesis and signaling mutant plants and through the use of GR24, a synthetic analog of this class of molecules. Strigolactone mutants show a bushy phenotype and GR24 application inhibits the growth of axillary buds in these mutants, thus restoring the phenotype of a wild plant, which is characterized by a stronger apical dominance. In this work, we tested the effectiveness of this chemical on pea (Pisum sativum) plants following apex removal, which disrupts apical dominance and leads to axillary bud outgrowth. Moreover, we searched for relationships between the response to the strigolactone and gibberellin metabolism by applying GR24 to both climbing and dwarf peas, the latters being mutants for gibberellin biosynthesis. The results suggest that the endogenous level of the bioactive gibberellin GA1 might modulate the response of decapitated pea plants to GR24, by changing bud sensitivity to the applied strigolactone.  相似文献   

12.
The levels of gibberellin A1 (GA1), GA20, GA19, GA8, GA29 and GA81 (2-epiGA29) were measured in tall (L-) and dwarf (ll) sweet-pea plants grown in darkness and in light. In both environments the apical portions of dwarf plants contained less GA1; GA8 and GA19, but more GA20, GA29, and GA81 than did those of tall plants. It is concluded that the partial block in 3β-hydroxylation of GA20 to GA1 is imposed by allele l in darkness as well as in the light. Furthermore, darkness does not appear to enhance elongation in sweet pea by increasing GA1 levels. The reduction of the pool size of GA19 in dwarf plants supports recent theories on the regulation of GA biosynthesis, formulated on the basis of observations in monocotyledonous species. Darkness results in decreased GA20, GA29, and GA81 levels in the apical portions of tall and dwarf plants and possible reasons for this are discussed.  相似文献   

13.
The gibberellin (GA) economy of young pea (Pisum sativum L.) fruits was investigated using a range of mutants with altered GA biosynthesis or deactivation. The synthesis mutation lh-2 substantially reduced the content of both GA4 and GA1 in young seeds. Among the other synthesis mutations, ls-1, le-1 and le-3, the largest reduction in seed GA1 content was only 1.7-fold (le-1), while GA4 was not reduced in these mutants, and in fact accumulated in some experiments (compared with the wild type). Mutation sln appeared to block the step GA20 to GA29 in young pods and seeds, but not as strongly as in older seeds. Mutations ls-1, le-1 and le-3 markedly reduced pod GA1 levels, but pod elongation was not affected. After feeds of [13C,3H]GA20 to leaves, the pods contained 13C,3H-labelled GA20, GA1, GA29 and GA81, and the seeds, [13C,3H]GA20 and [13C,3H]GA29. These findings are discussed in relation to recent suggestions regarding the role and origin of GA1 in pea fruits. Received: 6 June 1997 / Accepted: 15 July 1997  相似文献   

14.
Short brassinosteroid (BR) mutants lk, lka and lkb of pea (Pisum sativum L.) were investigated by immunofluorescence microscopy to elucidate the role of brassinosteroids in cell elongation via an effect on the microtubules (MTs). This study adds to our knowledge the fact that brassinolide (BL) can cause MT realignment in azuki bean and rescue the MT organization of BR mutants in Arabidopsis. It provides novel information on both cortical and epidermal cells and presents detailed information about the ratios of all MT orientations present, ranging from transverse (perpendicular to the elongating axis) to longitudinal (parallel to the elongating axis). Experiments were conducted in vivo using intact plants with direct application of a small amount of brassinolide (BL) to the internode. Employing a BR-receptor mutant, lka, and the BR-synthesis mutants, lk and lkb, allowed the identification and isolation of any BR-induced responses in the MT cytoskeleton following BL application. Increases in growth rate were noted in all pea lines including WT following BL application. These increases were strong in the BR-synthesis mutants, but weak in the BR-receptor mutant. Immunofluorescence revealed significant differences in the average MT orientation of cortical cells of mutants versus WTs. Importantly, these mutants possessed abundant MTs, unlike the BR-deficient bul1-1 mutant in Arabidopsis. Following BL application, the epidermal and cortical cells of lk and lkb plants showed a large and significant shift in MT orientation towards more transverse, whereas lka plants showed a small and nonsignificant response in these cells. These results suggest that the BR response pathway is linked to the regulation of MT orientation.  相似文献   

15.
Recent advances in brassinosteroid molecular genetics   总被引:8,自引:0,他引:8  
The importance of brassinosteroids (BRs, a specific class of ecdysone-like plant steroids) as essential endogenous regulators of growth and development is demonstrated through a growing number of well characterised Arabidopsis, pea, and tomato mutants deficient in BR biosynthesis or BR response. Thus, a rapid advancement in understanding the molecular genetics of BR biosynthesis and mode of action can be witnessed, which will be further enhanced through the availability of a set of extremely valuable molecular tools for the analysis of the biological function of BRs.  相似文献   

16.
Gibberellin mutants   总被引:4,自引:0,他引:4  
Research on gibberellin (GA) mutants is reviewed, focusing on reports, published since 1993. The mutants have usually been identified via a shoot elongation screen. This screen exposes mutations influencing GA synthesis, deactivation and reception, and also those acting further down the elongation pathway. Mutations blocking synthesis lead to a dwarf. GA-responsive phenotype. Numerous such mutations are now known. For some steps homologous mutations are known across 4 to 6 model species. Examples include the early step, geranylgeranyl diphosphate to copalyl diphosphate, and the activation step, GA26to GA1. Several GA-synthesis mutations have now been characterised at the molecular level and all are in structural genes. It is now clear some steps are controlled by gene families with distinct tissue specificity. Further, some enzymes control more than one step in the biosynthetic pathway. The only mutation known to block deactivation. sin in pea, leads to an elongated phenotype. The GA response mutants are less well understood and are a more diverse group. They include elongated mutants with a constitutive GA response (spy in arabidopsis. la cry-s in pea and sln in barley) or an enhanced GA response (phyB in arabidopsis. lv in pea and Ih in cucumber). Short response mutants include at least three types. One group accumulates GAs and are mostly unresponsive to applied GA (gai in arabidopsis. D8 in maize. Rht3 in wheat). A recently identified group, exemplified by Igr in pea and gas in barley, have a short stature and reduced response but attain full responses with very high doses of exogenous GA. How close these mutations act to GA reception remains to be determined. Lastly, a number of mutants with short stature and reduced GA response differ in overall phenotype from GA-deficient plants and cannot be made to mimic wild type even at high GA application rates. These mutations act beyond GA reception and some have already proved useful in elucidating other pathways that affect shoot elongation. For example, the lk and lkb mutations in pea appear to block brassinolide synthesis and this in turn prevents normal GA-mediated elongation responses.  相似文献   

17.
Biosynthesis of gibberellins in Gibberella fujikuroi: biomolecular aspects   总被引:9,自引:0,他引:9  
Gibberellins (GAs) are a large family of isoprenoid plant hormones, some of which are bioactive growth regulators, controlling seed germination, stem elongation, and flowering. The rice pathogen Gibberella fujikuroi (mating population C) is able to produce large amounts of GAs, especially the bioactive compounds gibberellic acid (GA3) and its precursors, GA4 and GA7. The main steps of the biosynthetic pathway have long been established from the identification of intermediates in wild-type G. fujikuroi and mutant strains. However, the genetics of the fungus have been rather under-developed, and molecular genetic studies of the GA pathway started just recently. The progress in researching GA biosynthesis in the last 2 years resulted primarily from development of the molecular tools, e.g. transformation systems for the fungus, and cloning the genes encoding GA biosynthesis enzymes, such as the bifunctional ent-copalyl diphosphate/kaurene synthase and several cytochrome P450 monooxygenases. The availability of these genes opened new horizons both for detailed study of the pathway and the regulation mechanisms at the molecular level, and for modern strain improvement programs. This review gives a short overview of the well-known physiological and biochemical studies and concentrates mainly on the new molecular genetic data from GA research, including new information on the regulation of GA biosynthesis. Received: 15 February 1999 / Received revision: 16 April 1999 / Accepted: 16 April 1999  相似文献   

18.
There are two stages in photomorphogenesis. First, seedlings detect light and open their cotyledons. Second, seedlings optimize their light environment by controlled elongation of the seedling stem or hypocotyl. In this study, we used time‐lapse imaging to investigate the relationship between the brassinosteroid (BR) and gibberellin (GA) hormones across both stages of photomorphogenesis. During the transition between one stage and the other, growth promotion by BRs and GAs switched from an additive to a synergistic relationship. Molecular genetic analysis revealed unexpected roles for known participants in the GA pathway during this period. Members of the DELLA family could either repress or enhance BR growth responses, depending on developmental stage. At the transition point for seedling growth dynamics, the BR and GA pathways had opposite effects on DELLA protein levels. In contrast to GA‐induced DELLA degradation, BR treatments increased the levels of REPRESSOR of ga1‐3 (RGA) and mimicked the molecular effects of stabilizing DELLAs. In addition, DELLAs showed complex regulation of genes involved in BR biosynthesis, implicating them in BR homeostasis. Growth promotion by GA alone depended on the PHYTOCHROME INTERACTING FACTOR (PIF) family of master growth regulators. The effects of BR, including the synergistic effects with GA, were largely independent of PIFs. These results point to a multi‐level, dynamic relationship between the BR and GA pathways.  相似文献   

19.
Brassinosteroids (BRs) are phytohormones that control several important agronomic traits, such as flowering, plant architecture, seed yield, and stress tolerance. To manipulate the BR levels in plant tissues using specific inhibitors of BR biosynthesis, a series of novel azole derivatives were synthesized and their inhibitory activity on BR biosynthesis was investigated. Structure–activity relationship studies revealed that 2RS, 4RS-1-[4-(2-allyloxyphenoxymethyl)-2-(4-chlorophenyl)-[1,3]dioxolan-2-ylmethyl]-1H-[1,2,4]triazole (G2) is a highly selective inhibitor of BR biosynthesis, with an IC50 value of approximately 46 ± 2 nM, which is the most potent BR biosynthesis inhibitor observed to date. Use of gibberellin (GA) biosynthesis mutants and BR signaling mutants to analyze the mechanism of action of this synthetic series indicated that the primary site of action is BR biosynthesis. Experiments feeding BR biosynthesis intermediates to chemically treated Arabidopsis seedlings suggested that the target sites of this synthetic series are CYP90s, which are responsible for the C-22 and/or C-23 hydroxylation of campesterol.  相似文献   

20.
Genetic regulation of gibberellin deactivation in Pisum   总被引:2,自引:0,他引:2  
The regulation of gibberellin (GA) deactivation was examined using the sin (slender) mutation in the garden pea (Pisum sativum L.). This mutation blocks the deactivation of GA20, the precursor of the bioactive GA1. Firstly, crosses were made to combine sin with the GA biosynthesis mutations na, lhi and le-3. The combination sin na produced a novel phenotype, with long (‘slender’) basal internodes and extremely short (‘nana’) upper internodes. In contrast, the double mutant sin lhi was phenotypically dwarf. The mutation sin causes an accumulation of GA20 in maturing seeds, and this was unaffected by na, since the na mutation is not expressed in seeds. In contrast, lhi seeds did not accumulate GA20, since lhi imposes an early block on GA biosynthesis. Secondly, the effects of sin on several steps in GA deactivation were investigated. In maturing seeds, the mutation sin blocks two steps in GA20 metabolism, namely, GA20 to GA29, and GA29 to GA29-catabolite. In the vegetative plant, on the other hand, sin blocked the step GA20 to GA29, but not GA29 to GA29-catabolite; the steps GA20 to GA81 and GA20 to GA1 were also not impaired in this mutant. It is clear that the effects of sin, like those of na, are strongly organ-specific. The presence of separate enzymes for the steps GA20 to GA29 and GA29 to GA29-catabolite was suggested by the observation that GA8 inhibited the latter step, but not the former, and by the inability of GA20 and GA29 to inhibit each other's metabolism. It is suggested that the Sin gene may be a regulatory gene controlling the expression of two structural genes involved in GA deactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号