首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polypyrimidine tract binding protein (PTB), an RNA binding protein containing four RNA recognition motifs (RRMs), is involved in both pre-mRNA splicing and translation initiation directed by picornaviral internal ribosome entry sites. Sequence comparisons previously indicated that PTB is a non-canonical RRM protein. The solution structure of a PTB fragment containing RRMs 3 and 4 shows that the protein consists of two domains connected by a long, flexible linker. The two domains tumble independently in solution, having no fixed relative orientation. In addition to the betaalphabetabetaalphabeta topology, which is characteristic of RRM domains, the C-terminal extension of PTB RRM-3 incorporates an unanticipated fifth beta-strand, which extends the RNA binding surface. The long, disordered polypeptide connecting beta4 and beta5 in RRM-3 is poised above the RNA binding surface and is likely to contribute to RNA recognition. Mutational analyses show that both RRM-3 and RRM-4 contribute to RNA binding specificity and that, despite its unusual sequence, PTB binds RNA in a manner akin to that of other RRM proteins.  相似文献   

2.
The La protein is a multifunctional RNA-binding protein and has also been suggested to be involved in the stabilization of hepatitis B virus (HBV) RNA. Here we demonstrate that antibodies against the human La protein specifically precipitate HBV RNA from HBV ribonucleoprotein-containing mammalian cell extracts, providing evidence for the association between human La and HBV RNA. Moreover, we report that the turnover of HBV RNA depends on structural features and less on the primary sequence of the La-binding site on the viral RNA. In addition we show that the interaction between human La and HBV RNA in vitro is modulated by accessory factor(s) in a phosphorylation-dependent manner. Taken together these data indicate that both structural features, the composition of La/HBV ribonucleoprotein particles as well as interacting cellular factors, are critical determinants in the regulation of the stability of the HBV RNA.  相似文献   

3.
The human La autoantigen (hLa) protein is a predominantly nuclear phosphoprotein that contains three potential RNA binding domains referred to as the La motif and the RNA recognition motifs RRMs 1 and 2. With this report, we differentiated the contribution of its three RNA binding domains to RNA binding by combining in vitro and in vivo assays. Also, surface plasmon resonance technology was used to generate a model for the sequential contribution of the RNA binding domains to RNA binding. The results indicated that the La motif may contribute to specificity rather than affinity, whereas RRM1 is indispensable for association with pre-tRNA and hY1 RNA. Furthermore, RRM2 was not crucial for the interaction with various RNAs in vivo, although needed for full-affinity binding in vitro. Moreover, earlier studies suggest that RNA binding by hLa may direct its subcellular localization. As shown previously for RRM1, deletion of RNP2 sequence in RRM1 alters nucleolar distribution of hLa, not observed after deletion of the La motif. Here we discuss a model for precursor RNA binding based on a sequential association process mediated by RRM1 and the La motif.  相似文献   

4.
The chloroplast 24 kDa RNA binding protein (24RNP) from Spinacea oleracea is a nuclear encoded protein that binds the 3' untranslated region (3'UTR) of some chloroplast mRNAs and seems to be involved in some processes of mRNA metabolism, such as 3'UTR processing, maturation and stabilization. The 24RNP is similar to the 28RNP which is involved in the correct maturation of petD and psbA 3'UTRs, and when phosphorylated, decreases its binding affinity for RNA. In the present work, we determined that the recombinant 24RNP was phosphorylated in vitro either by an animal protein kinase C, a plant Ca(2+)-dependent protein kinase, or a chloroplastic kinase activity present in a protein extract with 3'-end processing activity in which the 24RNP is also present. Phosphorylation of 24RNP increased the binding capacity (B(max)) 0.25 time for petD 3'UTR, and three times for psbA 3'UTR; the affinity for P-24RNP only increased when the interaction with petD was tested. Competition experiments suggested that B(max), not K(d), might be a more important factor in the P-24RNP-3'UTR interaction. The data suggested that the 24RNP role in chloroplast mRNA metabolism may be regulated in vivo by changes in its phosphorylation status carried out by a chloroplastic kinase.  相似文献   

5.
6.
The C-to-U editing of apolipoprotein-B (apo-B) mRNA is catalyzed by an enzyme complex that recognizes an 11-nt mooring sequence downstream of the editing site. A minimal holoenzyme that edits apo-B mRNA in vitro has been defined. This complex contains apobec-1, the catalytic subunit, and apobec-1 complementation factor (ACF), the RNA-binding subunit that binds to the mooring sequence. Here, we show that ACF binds with high affinity to single-stranded but not double-stranded apo-B mRNA. ACF contains three nonidentical RNA recognition motifs (RRM) and a unique C-terminal auxiliary domain. In many multi-RRM proteins, the RRMs mediate RNA binding and an auxiliary domain functions in protein-protein interactions. Here we show that ACF does not fit this simple model. Based on deletion mutagenesis, the RRMs in ACF are necessary but not sufficient for binding to apo-B mRNA. Amino acids in the pre-RRM region are required for complementing activity and RNA binding, but not for interaction with apobec-1. The C-terminal 196 amino acids are not absolutely essential for function. However, further deletion of an RG-rich region from the auxiliary domain abolished complementing activity, RNA binding, and apobec-1 interaction. The auxiliary domain alone did not bind apobec-1. Although all three RRMs are required for complementing activity and apobec-1 interaction, the individual motifs contribute differently to RNA binding. Point mutations in RRM1 or RRM2 decreased the Kd for apo-B mRNA by two orders of magnitude whereas mutations in RRM3 reduced binding affinity 13-fold. The pairwise expression of RRM1 with RRM2 or RRM3 resulted in moderate affinity binding.  相似文献   

7.
8.
RNA recognition motifs (RRMs) constitute versatile macromolecular interaction platforms. They are found in many components of spliceosomes, in which they mediate RNA and protein interactions by diverse molecular strategies. The human U11/U12-65K protein of the minor spliceosome employs a C-terminal RRM to bind hairpin III of the U12 small nuclear RNA (snRNA). This interaction comprises one side of a molecular bridge between the U11 and U12 small nuclear ribonucleoprotein particles (snRNPs) and is reminiscent of the binding of the N-terminal RRMs in the major spliceosomal U1A and U2B″ proteins to hairpins in their cognate snRNAs. Here we show by mutagenesis and electrophoretic mobility shift assays that the β-sheet surface and a neighboring loop of 65K C-terminal RRM are involved in RNA binding, as previously seen in canonical RRMs like the N-terminal RRMs of the U1A and U2B″ proteins. However, unlike U1A and U2B″, some 30 residues N-terminal of the 65K C-terminal RRM core are additionally required for stable U12 snRNA binding. The crystal structure of the expanded 65K C-terminal RRM revealed that the N-terminal tail adopts an α-helical conformation and wraps around the protein toward the face opposite the RNA-binding platform. Point mutations in this part of the protein had only minor effects on RNA affinity. Removal of the N-terminal extension significantly decreased the thermal stability of the 65K C-terminal RRM. These results demonstrate that the 65K C-terminal RRM is augmented by an N-terminal element that confers stability to the domain, and thereby facilitates stable RNA binding.  相似文献   

9.
Prp24 is an essential yeast U6 snRNP protein with four RNA recognition motifs (RRMs) that facilitates the association of U4 and U6 snRNPs during spliceosome assembly. Genetic interactions led to the proposal that RRMs 2 and 3 of Prp24 bind U6 RNA, while RRMs 1 and 4 bind U4 RNA. However, the function of each RRM has yet to be established through biochemical means. We compared the binding of recombinant full-length Prp24 and truncated forms lacking RRM 1 or RRM 4 with U6 RNA. Contrary to expectations, we found that the N-terminal segment containing RRM 1 is important for high-affinity binding to U6 RNA and for discrimination between wild-type U6 RNA and U6 with point mutations in the 3' intramolecular stem-loop. In contrast, deletion of RRM 4 and the C terminus did not significantly alter the affinity for U6 RNA, but resulted in the formation of higher order Prp24.U6 complexes. Truncation and internal deletion of U6 RNA mapped three Prp24-binding sites, with the central site providing most of the affinity for Prp24. A newly identified temperature-sensitive lethal point mutation in RRM 1 is exacerbated by mutations in the U6 RNA telestem, as is a mutation in RRM 2, but not one in RRM 3. We propose that RRMs 1 and 2 of yeast Prp24 bind the same central site in U6 RNA that is bound by the two RRMs of human Prp24, and that RRMs 3 and 4 bind lower affinity flanking sites, thereby restricting the stoichiometry of Prp24 binding.  相似文献   

10.
11.
We recently identified three nuclear proteins (p45, p39, and p26) that bind to a 91-nucleotide (nt) RNA element between nt 1243 and 1333 in hepatitis B virus (HBV) RNA, and we showed that these proteins and HBV RNA are regulated coordinately by gamma interferon and tumor necrosis factor alpha. Purification and sequence analysis of tryptic peptides obtained from p39 revealed sequence homology to the mouse La protein. Immunoprecipitation experiments showed that p45, p39, and p26 were recognized by anti-La-specific antiserum, indicating that p45 is the full-length La protein and that p39 and p26 are likely to be proteolytic La cleavage products. Furthermore, in competition experiments we found that all three La proteins bind, in a phosphorylation-dependent manner, to the same predicted stem-loop structure located between nt 1275 and 1291 of HBV, with Kds of approximately 1.0 nM. Collectively, these results support the notion that the La protein may contribute to HBV RNA stability, constitutively and in response to inflammatory cytokines.  相似文献   

12.
Vasopressin (VP) mRNA and the non-coding BC200 RNA are sorted to neuronal dendrites. Among proteins interacting specifically with both RNAs is the multifunctional poly(A)-binding protein (PABP) consisting of four RNA recognition motifs (RRMs) and a C-terminal auxiliary domain. The protein/RNA interaction studies presented here reveal that PABPs association with VP- and BC200 RNA is exclusively mediated by RRMs 3+4. Quantitative binding studies with PABP deletion mutants demonstrate preferential binding of RRMs 3+4 even to poly(A)-homopolymers, while RRMs 1+2 exhibit a lower affinity for those sequences. An optimal interaction with both poly(A)- and non-poly(A) sequences is only achieved by full-size PABP.  相似文献   

13.
14.
15.
T-cell intracellular antigen-1 (TIA-1) regulates developmental and stress-responsive pathways through distinct activities at the levels of alternative pre-mRNA splicing and mRNA translation. The TIA-1 polypeptide contains three RNA recognition motifs (RRMs). The central RRM2 and C-terminal RRM3 associate with cellular mRNAs. The N-terminal RRM1 enhances interactions of a C-terminal Q-rich domain of TIA-1 with the U1-C splicing factor, despite linear separation of the domains in the TIA-1 sequence. Given the expanded functional repertoire of the RRM family, it was unknown whether TIA-1 RRM1 contributes to RNA binding as well as documented protein interactions. To address this question, we used isothermal titration calorimetry and small-angle X-ray scattering to dissect the roles of the TIA-1 RRMs in RNA recognition. Notably, the fas RNA exhibited two binding sites with indistinguishable affinities for TIA-1. Analyses of TIA-1 variants established that RRM1 was dispensable for binding AU-rich fas sites, yet all three RRMs were required to bind a polyU RNA with high affinity. Small-angle X-ray scattering analyses demonstrated a "V" shape for a TIA-1 construct comprising the three RRMs and revealed that its dimensions became more compact in the RNA-bound state. The sequence-selective involvement of TIA-1 RRM1 in RNA recognition suggests a possible role for RNA sequences in regulating the distinct functions of TIA-1. Further implications for U1-C recruitment by the adjacent TIA-1 binding sites of the fas pre-mRNA and the bent TIA-1 shape, which organizes the N- and C-termini on the same side of the protein, are discussed.  相似文献   

16.
17.
18.
Heterogeneous ribonucleoprotein A1 (hnRNP A1) is a prototype for the family of eukaryotic RNA processing proteins containing the common RNA recognition motif (RRM). The region consisting of residues 1-195 of hnRNP A1 is referred to as UP1. This region has two RRMs and has a high affinity for both single-stranded RNA and the human telomeric repeat sequence d(TTAGGG)(n). We have used UP1's novel DNA binding to investigate how RRMs bind nucleic acid bases through their highly conserved RNP consensus sequences. Nine complexes of UP1 bound to modified telomeric repeats were investigated using equilibrium fluorescence binding and X-ray crystallography. In two of the complexes, alteration of a guanine to either 2-aminopurine or nebularine resulted in an increase in K(d) from 88nM to 209nM and 316nM, respectively. The loss of these orienting interactions between UP1 and the substituted base allows it to flip between syn and anti conformations. Substitution of the same base with 7-deaza-guanine preserves the O6/N1 contacts but still increases the K(d) to 296nM and suggests that it is not simply the loss of affinity that gives rise to the base mobility, but also the stereochemistry of the specific contact to O6. Although these studies provide details of UP1 interactions to nucleic acids, three general observations about RRMs are also evident: (1) as suggested by informatic studies, main-chain to base hydrogen bonding makes up an important aspect of ligand recognition (2) steric clashes generated by modification of a hydrogen bond donor-acceptor pair to a donor-donor pair are poorly tolerated and (3) a conserved lysine position proximal to RNP-2 (K(106)-IFVGGI) orients the purine to allow stereochemical discrimination between adenine and guanine based on the 6-position. This single interaction is well-conserved in known RRM structures and appears to be a broad indicator for purine preference in the larger family of RRM proteins.  相似文献   

19.
hnRNP A1 is a pre-mRNA binding protein that antagonizes the alternative splicing activity of splicing factors SF2/ASF or SC35, causing activation of distal 5' splice sites. The structural requirements for hnRNP A1 function were determined by mutagenesis of recombinant human hnRNP A1. Two conserved Phe residues in the RNP-1 submotif of each of two RNA recognition motifs appear to be involved in specific RNA-protein interactions and are essential for modulating alternative splicing. These residues are not required for general pre-mRNA binding or RNA annealing activity. The C-terminal Gly-rich domain is necessary for alternative splicing activity, for stable RNA binding and for optimal RNA annealing activity. hnRNP A1B, which is an alternatively spliced isoform of hnRNP A1 with a longer Gly-rich domain, binds more strongly to pre-mRNA but has only limited alternative splicing activity. In contrast, hnRNP A2 and B1, which have 68% amino acid identity with hnRNP A1, bind more weakly to pre-mRNA and have stronger splice site switching activities than hnRNP A1. We propose that specific combinations of antagonistic hnRNP A/B and SR proteins are involved in regulating alternative splicing of distinct subsets of cellular premRNAs.  相似文献   

20.
Hepatitis B virus (HBV) genome replication requires the packaging of viral factors (pregenomic RNA and polymerase) as well as host factors, including heat shock proteins and protein kinase C. Previous reports have suggested that there are several unidentified host factors that affect this encapsidation step. In this study, we identified a new host factor, nucleophosmin (B23) that interacts with the HBV core protein 149 (Cpl49). We analyzed this factor using NHS-activated sepharose resin and MALDI-TOF MS. Using the BIAcore analysis system, we were also able to deduce that the B23.1 residues 259–294 were required for the interaction between Cpl49 and B23.1 in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号