首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 509 毫秒
1.
Summary A set of nine polymorphic loci defined by DNA probes was studied for linkage with the disease locus in ten families with a history of Duchenne muscular dystrophy (DMD), and three families with a history of Becker muscular dystrophy (BMD). The results confirm DMD and BMD linkage to all marker loci and suggest closer linkage of several probes than hitherto detected. This will be of practical interest for risk calculations in affected families.  相似文献   

2.
DNA deletions in mild and severe Becker muscular dystrophy   总被引:6,自引:0,他引:6  
Summary The DNA of 33 patients diagnosed as suffering from Becker muscular dystrophy (BMD) has been probed with cloned DNA sequences from Xp21, known to reveal DNA deletions in patients suffering from the more severe Duchenne muscular dystrophy (DMD). Two BMD cases showed clear deletions. A third case gave aberrant band sizes, which further analysis showed to be caused by a small deletion. This suggests that deletions in DXS164 occur approximately as frequently in BMD as they do in DMD. Of the two cases showing large deletions, one is at the severe end of the Becker clinical spectrum, whilst the other is a classical Becker-type dystrophy. The fact that loci defined by probes commonly deleted in classical DMD patients are also deleted in BMD patients of varying severity is strong additional evidence that these disorders are allelic, and further justifies the use of probes with defined linkage relationships to DMD also being used for counselling in BMD families.  相似文献   

3.
The existence of linkage has been investigated between the Xg blood group system, two DNA restriction fragment length polymorphisms (RFLPs) located on the short arm of the X chromosome, Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). No linkage was found between the Xg locus and the more proximal RFLP (L 1.28); close linkage between Xg and the more distal RFLP (lambda RC8) was also excluded. Both RFLPs show linkage with DMD but are not closely linked with each other. Analyses of 11 families with DMD and ten with BMD, informative for the Xg blood group, reinforce the conclusions of others that there is no measurable linkage between the loci for Xg and for the X-linked forms of muscular dystrophy.  相似文献   

4.
Since the complete cDNA for the gene that causes X-linked recessive Duchenne/Becker muscular dystrophy (DMD/BMD) when mutated or deleted has recently been cloned and made generally available, DNA-based diagnostic studies of affected males and their families have entered into a new era. This communication sets forth the standard patterns of restriction fragments that are detected when normal human DNA cleaved with either HindIII or BglII is hybridized with seven contiguous segments comprising the entire 14-kb cDNA. Collectively, the more than 60 restriction fragments allow visualization of approximately 350 (HindIII) to 400 (BglII) kbp. This corresponds to the exon-containing one-fifth of the total genomic length of this gene, including the 3' untranslated region. Twelve two-allele restriction-site polymorphisms that span the entire length of the gene were detected with the cDNA probes and allele frequencies determined. A diagnostic approach is proposed that starts with deletion screening of DNA from male probands, includes carrier detection based on relative fragment intensities, and extends to RFLP detection using the same autoradiographs prepared for deletion screening. Our results on deletion analysis of 32 DMD/BMD families are presented in an accompanying paper.  相似文献   

5.
We have isolated overlapping human fetal muscle cDNAs encompassing 2.6kb which are localised very close to the 5' end of the Duchenne muscular dystrophy (DMD) gene. Using DNA from patients with deletions of previously reported genomic probes, we have mapped the exons across the region. Investigation of deletions in both DMD and Becker muscular dystrophy (BMD) patients shows the deletions to be present in 10% of cases and heterogeneous.  相似文献   

6.
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive genetic disorders resulting from mutations in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5' and central region of the gene. The remaining DMD/BMD cases show no deletions, so they cannot be easily identified by current strategies. In these DMD/BMD families, a linkage analysis that involves DNA markers of the flanking and intragenic dystrophin gene are necessary for carrier and prenatal diagnosis. We analyzed eighteen deletion-prone exons of the gene by a polymerase chain reaction (PCR) in order to characterize the molecular defects of the dystrophin gene in Korean DMD/BMD families. We also performed a linkage analysis to assess the usefulness and application of six short tandem repeat markers for molecular diagnosis in the families. We observed a deletion that eliminated the exon 50. Also, a linkage analysis in the families with six short tandem repeat (STR) markers showed heterozygosity at most of the STR markers. The haplotype analysis was useful for detecting the carrier status. This study will be helpful for a molecular diagnosis of DMD/BMD families in the Korean population.  相似文献   

7.
Patterns of exon deletions in Duchenne and Becker muscular dystrophy   总被引:11,自引:0,他引:11  
Summary A panel of patients with Duchenne and Becker muscular dystrophy (DMD and BMD) has been screened with the cDNA probes Cf56a and Cf23a, which detect exons in the central part of the DMD gene. One or more exons were deleted in 60% of patients. The deletions were mapped and prove to be heterogeneous in size and extent, particularly in DMD. Deletions specific to DMD and to BMD are described. Half of all BMD patients have a deletion of one particular small group of exons; smaller deletions within this same group produce the more severe DMD.  相似文献   

8.
Summary A DNA deletion in a patient with Becker muscular dystrophy (BMD) has been delineated by restriction endonuclease mapping. The deletion is unusually small, removing six kilobases (kb) of DNA distal to pERT 87-1 (DXS164). This region has previously been shown to contain an exon of a candidate gene which, when defective, causes Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy. Removal of this exon and surrounding DNA is apparently sufficient, in this case, to cause a BMD phenotype. The occurrence of this deletion in DXS164 would appear to confirm that this region is part of the BMD locus. Many DMD patients have deletions in and around this region, adding further evidence for the allelic nature of the two disorders. This fortuitous deletion may identify a functionally important domain of the protein product in terms of the severity of phenotype manifested.  相似文献   

9.
The results of the analysis of exon deletions and duplications in the dystrophin gene sequences from 121 Duchenne and Becker muscular dystrophy patients from Ukraine are presented. It is shown that the level of de novo deletions in these families reaches 53%, and most of the deletions are localized in the distal part of the gene. It is important to take into account these data in genetic counseling to assess the risk of birth of patients with DMD/BMD, including in prenatal diagnostics, in families with Duchenne and Becker muscular dystrophy patients.  相似文献   

10.
Fetal muscle cDNA clones covering at least 11.4 kb of the Duchenne muscular dystrophy (DMD) gene sequence were used to identify a deletion-prone region in DNA from DMD and Becker muscular dystrophy (BMD) patients. Of 36 BMD cases, 17 (47%) had deletions and all of the deletions began in the same intron of the gene. Of 107 DMD patients, 27 (25%) were deleted for this region, and 19 deletions originate in the same intron. Using a cDNA probe for an adjacent region of the gene, 32 new deletions were detected in DMD patients (total 44%). No new BMD deletions were detected. The DMD deletions were very heterogeneous. Thus two cDNA probes covering 2.4 kb could detect 53% of these deletions. Considering the whole locus, DMD and BMD are caused by a deletion of the gene sequence in at least 67% of cases.  相似文献   

11.
Polymorphic loci that lie at the two extremities of the Duchenne/Becker muscular dystrophy (DMD/BMD) gene have been used to estimate intragenic recombination rates. Multipoint linkage analysis of the CEPH panel of families suggests a total intragenic recombination frequency of nearly 0.12 (confidence intervals 0.041-0.226) over the genomic length of approximately 2 Mb.  相似文献   

12.
Duchenne and Becker muscular dystrophy (DMD, BMD) have both been clinically recognized for over 100 years, yet throughout much of that time nothing beyond clinical evaluation and supportive care during the disease course was available to patients. The identification of the molecular basis of DMD/BMD in 1986 paved the way for extensive progress toward the understanding, diagnosis and treatment of this disease.  相似文献   

13.
Summary We have analyzed patient DNA samples in 77 unrelated Duchenne (DMD) and Becker (BMD) muscular dystrophy families, 73 of which were of French Canadian origin. We show that the frequency (68%) and distribution of deletions within the dystrophin gene was neither random nor unique in this population. We localized 33% of the deletions to the proximal portion of the dystrophin gene while 63% involved the exons spanning introns 43 through 55 with breakpoint clusters occurring within introns 44 and 50. Whether the dystrophin open reading frame (ORF) is maintained constrains the distribution of DMD/BMD deletions such that BMD deletions tend to be strikingly homogeneous. Finally, the conservation of the dystrophin ORF and the severity of the clinical phenotype were concordant in 95% of the DMD/BMD deletions documented by this work.  相似文献   

14.
Most known mutations in the gene region responsible for Duchenne or Becker muscular dystrophy are deletions of varying extent. Here we describe a 220-kb insertion within the DMD/BMD gene that cosegregates with a somewhat atypical course of muscular dystrophy in a pedigree. The insertion is demonstrated by field-inversion gel electrophoresis as an enlarged SfiI fragment hybridizing to probe J-Bir, while neighboring SfiI fragments (detected by probes PERT 87 and J-66) are unchanged. Hybridization with DMD c-DNA probes did not reveal alterations in coding sequences. In this pedigree, the altered SfiI fragments provide convenient markers for carrier identification.  相似文献   

15.
Summary A linkage study in 30 Becker muscular dystrophy (BMD) kindreds using three cloned DNA sequences from the X chromosome which demonstrate restriction fragment length polymorphisms (RFLPs), suggests that the BMD gene is located on the short arm of the X chromosome, in the p21 region. The genes for Becker and Duchenne dystrophies must therefore be closely linked, if not allelic, and any future DNA probes found to be of practical use in one disorder should be equally applicable to the other. The linkage analysis also provides data on the frequency of recombination along the short arm of the X chromosome, and across the centromeric region.  相似文献   

16.
Xiao Y  Jiang X  Wang R 《Genetic testing》2003,7(3):195-201
Fluorescence in situ hybridization (FISH) serves as an excellent alternative for direct detection of heterozygous deletions. Using a set of exon-specific cosmid DNA probes representing 18 exons, one-color FISH on metaphase and interphase preparations was performed to identify Duchenne/Becker muscular dystrophy (DMD/BMD) deletion carriers. The peripheral blood samples from 9 normal male or female controls and 5 females of independent DMD/BMD families, as well as 2 amniotic fluid specimens and 2 chorionic villus samples (CVS) from normal pregnant females, were analyzed. Expected signals were displayed in 72-100% of peripheral blood lymphocyte metaphases or interphases, 60-70% of amniocyte interphases, and 95-99% of chorionic villus cell interphases. One suspected female was identified as a deletion carrier and two were excluded. The results indicated that metaphase and interphase FISH were both useful for detection of heterozygous deletions. FISH, in combination with other available techniques, allowed efficient screening of DMD/BMD deletion carriers. The study also offered preliminary results in support of an approach to prenatal diagnosis of potential fetal carriers.  相似文献   

17.
The complete 14-kb cDNA for the gene causing the X-linked recessive muscular dystrophy (MD) type Duchenne (DMD) and Becker (BMD) has recently been cloned and made available for deletion/duplication screening in patients. It detects 65 exon-containing nonpolymorphic HindIII fragments spread over a gene locus of about 2,000 kb. When the entire DMD cDNA is used, deletions/duplications can be found in about 65%-70% of affected patients, permitting direct carrier detection by densitometric scanning. But in cases where no deletion/duplication is detectable, RFLP analysis, specially favored within the gene, will be the method for carrier-status determination. Clones 9 and 10-1.2-kb and 0.7-kb fragments, respectively, of the 14-kb DMD cDNA--have been hybridized with human genomic DNA digested by nine different restriction enzymes. Five RFLPs, involving Asp700, PvuII, XbaI, and EcoRV sites, were detected, and Mendelian inheritance could be demonstrated. Since clones 9 and 10 are localized telomeric to the mutation-hot-spot region, their polymorphisms are thought to be very helpful as flanking markers for indirect carrier detection in families with a family history of DMD/BMD. Moreover, these RFLPs can be used for direct carrier detection or exclusion in families with patients showing a deletion/duplication in the region of p9 or p10.  相似文献   

18.
In order to verify the possibility of nonrandom X-inactivation in females heterozygous for Duchenne (DMD) and Becker (BMD) muscular dystrophies, intrafamilial correlations and the heritabilities for serum creatine kinase (CK) and pyruvate kinase (PK) were estimated in a large sample of females belonging to families with affected patients. The results of the present investigation suggest that the apparent intrafamilial correlations for serum CK reported in previous studies in DMD families are not related with the presence of the DMD/BMD gene. Our data do not seem to support the hypothesis of a gene leading to a preferential inactivation of the X-chromosome in females at risk for the dystrophin gene.  相似文献   

19.
Population-based variations in frequency and distribution of dystrophin gene deletions have been recognized in Duchenne/Becker (DMD/BMD) muscular dystrophy patients. In the present study, DNA samples from 121 unrelated DMD/BMD patients from North India were analyzed for deletional studies with multiplex PCR and Southern hybridization. A total of 88 (73%) patients showed intragenic deletions in the dystrophin gene. The observed proportion of gene deletions is relatively high, particularly compared with that of Asian counterparts. However, the distribution of breakpoints across the gene does not show significant variations. Received: 5 June 1996 / Revised: 4 September 1996  相似文献   

20.
Transcription of the dystrophin gene in Duchenne muscular dystrophy muscle   总被引:5,自引:0,他引:5  
F Muntoni  P N Strong 《FEBS letters》1989,252(1-2):95-98
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号