首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T cells play a central role in many inflammatory diseases, hence the identification and validation of T cell-specific target genes will increase the understanding of T cell function in pathologic inflammatory situations. RNA interference (RNAi), with its ability to induce specific gene silencing in mammalian cells, represents a powerful technology to investigate and validate the function of pharmaceutical target genes in vitro and in vivo. The aim of the present study was to systematically explore RNAi-mediated gene-silencing of known T cell-specific model signaling molecules in primary murine T cells in vitro and in vivo. We demonstrate that siRNA delivery and subsequent silencing of T cell specific genes is substantially increased, if murine T cells were activated prior siRNA transfection. Silencing of ZAP70, p56Lck as well as PLC-γ1 protein expression resulted in impaired function of T cells in vitro. Furthermore, delayed type hypersensitivity (DTH) was ameliorated in vivo after adoptive transfer of ZAP70-silenced T cells. The combination of RNAi-mediated gene silencing and adoptive transfer of gene-silenced T cells, thus, may allow the identification and analysis of T cell-specific targets for therapeutic intervention. Additionally, this model system may represent an alternative to conventional time consuming and cost intensive gene targeting approaches.  相似文献   

2.
RNAi (RNA interference) has been widely used to silence specific genes. However, RNAi may also cause off-target silencing and elicit non-specific side effects. To achieve cell-specific gene silencing, a cell-selective promoter has to be used to drive RNAi expression. Furthermore, different terminators of cell-selective promoters may cause different silencing efficacies. In order to explore the best promoter and terminator combination and prove the cell-selective gene silencing effect of PSMAe/p (prostate-specific membrane antigen enhancer/promoter), we first constructed three plasmids by using PSMAe/p and three different terminators [poly(A), minipoly(A) and poly(U)] to explore the cell-selective driving ability of PSMAe/p by targeting EGFP (enhanced green fluorescent protein) in LNCaP, PC-3, EJ and HEK-293 (human embryonic kidney) cells. Then we chose NS (nucleostemin), an important endogenous gene of prostate cancer, and constructed the NS-targeting shRNA (small-hairpin RNA) expression plasmid by using PSMAe/p-poly(A) combination. Cell proliferation, cell cycle and early apoptosis in vitro and xenograft tumour growth in BALB/c nude mice in vivo were detected after NS knockdown. Results showed that PSMAe/p can drive EGFP silencing in LNCaP, not in PC-3, EJ and HEK-293 cells and PSMAe/p-poly(A) combination achieved the best silencing efficacy. Then PSMAe/p-shNS-poly(A) drives NS knockdown in LNCaP cells, not in PC-3, EJ and HEK-293 cells. Furthermore, RNAi-mediated NS knockdown not only reduces cell proliferation rate, reduces the percentage of S-stage cells and increases the percentage of G1-stage cells and increases the early apoptosis ratio in LNCaP cells in vitro, but also inhibited the LNCaP xenograft tumour growth in BALB/c nude mice in vivo by intratumoural injection. In conclusion, we have demonstrated that PSMAe/p-poly(A) combination is a promising delivery system for targeted RNAi gene therapy of prostate cancer. We showed one effective antitumour strategy by targeting NS protein, an important target in prostate cancer, with PSMAe/p-shNS-poly(A). These results serve as an important step for developing novel strategies to treat prostate cancer.  相似文献   

3.
4.
5.
6.
7.
Homeobox (Hox)-containing factors have been shown to play regulatory roles on lung development. Although HoxB3 gene expression is detected in the prenatal lung during development, its function has not been clarified precisely. We constructed an expression vector of a hamster HoxB3 coding region, which was cloned from hamster fetal lung cell line M3E3/C3. Sixteen-base deletion was found in the hamster HoxB3 coding sequence when compared with the mouse sequence. Under conditions of differentiation, cells transfected transiently with HoxB3 augmented the retinol-induced gene expression of Clara cell-specific secretory protein, whereas the cells showed reduced expression of surfactant-associated protein C. These alterations were attenuated by the transfection with HoxB3 antisense nucleotide. The results show that the cells with overexpressed HoxB3 were reinforced to have characteristics of Clara cells but did not have the characteristics of alveolar type II cells, and that HoxB3 played a stimulatory role on Clara cell differentiation in M3E3/C3 cells. In addition, the expression of Clara cell-specific secretory protein and surfactant-associated protein C genes was enhanced upon transfer of cells to collagen substrate, suggesting that collagen substrate has some regulatory functions on lung cell differentiation through cell adhesion.  相似文献   

8.
9.
10.
RNA interference (RNAi) mediates gene silencing in many eukaryotes and has been widely used to investigate gene functions. A common method to induce sustained RNAi is introducing plasmids that synthesize short hairpin RNAs (shRNAs) using Pol III promoters. While these promoters synthesize shRNAs and elicit RNAi efficiently, they lack cell specificity. Monitoring shRNA expression levels in individual cells by Pol III promoters is also difficult. An alternative way to deliver RNAi is to use Pol II-directed synthesis of shRNA. Previous efforts in developing a Pol II system have been sparse and the results were conflicting, and the usefulness of those Pol II vectors has been limited due to low efficacy. Here we demonstrate a new Pol II system that directs efficient shRNA synthesis and mediates strong RNAi at levels that are comparable with the commonly used Pol III systems. In addition, this system synthesizes a marker protein under control of the same promoter as the shRNA, thus providing an unequivocal indicator, not only to the cells that express the shRNA, but also to the levels of the shRNA expression. This system may be adapted for in vivo shRNA expression and gene silencing.  相似文献   

11.
Alveolar epithelial apoptosis is an important feature of hyperoxia-induced lung injury in vivo and has been described in the early stages of bronchopulmonary dysplasia (chronic lung disease of preterm newborn). Molecular regulation of hyperoxia-induced alveolar epithelial cell death remains incompletely understood. In view of functional involvement of Fas/FasL system in physiological postcanalicular type II cell apoptosis, we speculated this system may also be a critical regulator of hyperoxia-induced apoptosis. The aim of this study was to investigate the effects of hyperoxia on apoptosis and apoptotic gene expression in alveolar epithelial cells. Apoptosis was studied by TUNEL, electron microscopy, DNA size analysis, and caspase assays. Fas/FasL expression was determined by Western blot analysis and RPA. We determined that in MLE-12 cells exposed to hyperoxia, caspase-mediated apoptosis was the first morphologically and biochemically recognizable mode of cell death, followed by necrosis of residual adherent cells. The apoptotic stage was associated with a threefold upregulation of Fas mRNA and protein expression and increased susceptibility to direct Fas receptor activation, concomitant with a threefold increase of FasL protein levels. Fas gene silencing by siRNAs significantly reduced hyperoxia-induced apoptosis. In murine fetal type II cells, hyperoxia similarly induced markedly increased Fas/FasL protein expression, confirming validity of results obtained in transformed MLE-12 cells. Our findings implicate the Fas/FasL system as an important regulator of hyperoxia-induced type II cell apoptosis. Elucidation of regulation of hyperoxia-induced lung apoptosis may lead to alternative therapeutic strategies for perinatal or adult pulmonary diseases characterized by dysregulated type II cell apoptosis.  相似文献   

12.
Apoptotic cells in tissue sections can be localized by in situ labelling of partly degraded DNA. In a heterogeneous population of cells, however, the specific identity of cell types undergoing apoptosis often cannot be reliably achieved at the light microscope level because of the marked alterations in cellular morphology that characterize apoptosis. In order to clearly specify cell types undergoing apoptosis, in situ end labelling has been coupled to immunohistochemistry. This method is limited by the availability of antibodies that bind to cell-specific protein markers in tissue sections. In contrast, we describe a method that combines in situ end labelling with in situ hybridization, a technique that specifies cell types based on mRNA expression. Taking advantage of the specific expression of surfactant protein C mRNA in type II alveolar epithelial cells, we demonstrate that this technique has the ability to localize alveolar type II cells undergoing apoptosis in vivo after the intratracheal instillation of an antibody that activates the cell surface Fas protein. The wide availability of cell-specific gene markers suggests that this method can be adapted to define cell types that undergo apoptosis during various physiological and pathological states in vivo. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

13.
Exogenous application of keratinocyte growth factor protects the lung against a variety of injurious stimuli. KGF-treatment leads to pronounced hyperplasia of alveolar epithelial type II cells and to stabilization of surfactant homeostasis after lung injury. Epidermal fatty acid-binding protein is involved in the synthesis of surfactant phospholipids and acts as an antioxidant scavenging reactive lipids. We treated adult rats with recombinant human keratinocyte growth factor (Palifermin) via intratracheal instillation and analyzed the expression of epidermal fatty acid-binding protein mRNA and protein by quantitative RT-PCR, immunoblotting as well as immunohistochemistry. Keratinocyte growth factor-treatment in vivo leads to an increased expression of epidermal fatty acid-binding protein mRNA and protein in the total lung. Epidermal fatty acid-binding protein mRNA expression per alveolar epithelial type II cell remains constant as shown in isolated type II cells. Epidermal fatty acid-binding protein immunoreactivity is seen in most if not all hyperplastic alveolar epithelial type II cells, and is mainly localized to the cytoplasm. The increase in epidermal fatty acid-binding protein gene expression associated with type II cell hyperplasia might contribute to the molecular mechanisms mediating lung protection by keratinocyte growth factor.  相似文献   

14.
15.
An improved method for the isolation of type II and clara cells from mice   总被引:4,自引:0,他引:4  
Identifying the causal events and temporal aspects of lung cancer development requires the ability to isolate target and nontarget cells for comparative analyses. Current methodology can either isolate only one pure specific cell population from a lung or multiple cell types at lower purity. Previous studies in our laboratory have identified the alveolar type II cell as the progenitor cell for tumor development in the A/J mouse. The purpose of this study was to develop new protocols for the isolation and culture of type II and Clara cells from the mouse lung. Both type II and Clara cells were obtained in high purity using a sequential centrifugal elutriation protocol. In the first elutriation, cell fractions were collected using a Standard chamber. The type II and Clara cell fractions were then elutriated separately (two different separations) using a Sanderson chamber. The final purity of the type II and Clara cell preparations was 73% and 76%, respectively. Colonies of 4 to 20 Clara cells exhibiting epithelial morphology were evident 1 wk after plating in low serum medium. The growth of type II cells required the addition of bronchioalveolar lavage fluid and acidic fibroblast growth factor to the medium. The isolation of viable mouse type II and Clara cells in high purity should facilitate the identification of cell-specific changes in gene expressions or in enzymatic pathways following in vivo or in vitro exposure to environmental carcinogens.  相似文献   

16.
A major challenge to the development of therapeutic small interfering RNAs (siRNAs) is specific and efficient in vivo delivery to target cells. Recent studies suggest that cell type-specific gene silencing in vivo can be achieved by combining siRNAs with cell type-specific affinity ligands such as monoclonal antibodies. The antibody-directed siRNA complex enters target cells through receptor endocytosis and is subsequently released to the cytosol to specifically silence target gene expression through biologically conserved RNA interference (RNAi) pathways. Antibody fragments fused with a small basic nucleic-acid-binding protein and antibody fragment-directed nanoimmunoliposomes are two examples of effective delivery vehicles in vivo. The demonstrated specificity of in vivo gene silencing and the lack of nonspecific immune activation and systemic toxicity encourage further development of therapies based on cell type-specific delivery of siRNA.  相似文献   

17.
The purpose of this study is to clarify the involvement of protein kinase C in pulmonary surfactant secretion from adult rat alveolar type II cells in primary culture. Surfactant secretion in vitro is stimulated by at least two classes of compounds. One class, (e.g. terbutaline) increases intracellular cyclic AMP, whereas the other class (e.g. 12-O-tetradecanoylphorbol 13-acetate (TPA] does not. TPA has been shown to activate protein kinase C in other cell systems. In our studies, 1-oleoyl-2-acetyl-sn-glycerol (OAG), which is a direct activator of protein kinase C, stimulated [3H] phosphatidylcholine secretion by alveolar type II cells in a dose- and time-dependent manner. Tetracaine, which is an inhibitor of protein kinase C, inhibited the TPA-induced secretion of [3H]phosphatidylcholine from alveolar type II cells in a dose-dependent manner. However, tetracaine had no effect on terbutaline-induced secretion. The effects of terbutaline and OAG upon surfactant secretion were significantly more than additive, but those of TPA and OAG were less than additive. The specific activity of protein kinase C was 6-fold higher than cyclic AMP-dependent protein kinase found in type II cells when both kinases were assayed using lysine-rich histone as a common phosphate acceptor. Ninety-four per cent of protein kinase C activity was recovered in the cytosolic fraction of unstimulated type II cells, and 40% of activity in cytosolic fraction was translocated to particulate fraction upon treatment with TPA. As observed in other tissues, protein kinase C of alveolar type II cells was highly activated by 1,2-dioleoyl-sn-glycerol or TPA in the presence of Ca2+ and phosphatidylserine. These results suggest that pulmonary surfactant secretion in vitro is stimulated by both protein kinase C and cyclic AMP-dependent protein kinase.  相似文献   

18.
Somatic cell gene transfer is a potentially useful strategy to alter lung function. However, achieving efficient transfer to the alveolar epithelium, especially in smaller animals, has not been demonstrated. In this study, the rat heme oxygenase-1 (HO-1) gene was delivered to the lungs of neonatal mice via transpulmonary injection. A bidirectional promoter construct coexpressing both HO-1 and a luciferase reporter gene was used so that in vivo gene expression patterns could be monitored in real time. HO-1 expression levels were also modulated with doxycycline and assessed in vivo with bioluminescent light transmitted through the tissues from the coregulated luciferase reporter. As a model of oxidative stress and HO-1-mediated protection, groups of animals were exposed to hyperoxia. After gene transfer, elevated levels of HO-1 were detected predominantly in alveolar type II cells by immunocytochemistry. With overexpression of HO-1, increased oxidative injury was observed. Furthermore, this model demonstrated a cell-specific effect of lung HO-1 overexpression in oxidative stress. Specific control of expression for therapeutic genes is possible in vivo. The transpulmonary approach may prove useful in targeting gene expression to cells of the alveolar epithelium or to circumscribed areas of the lung.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号