首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 633 毫秒
1.
The nucleotide sequence of the biotin (bio) biosynthetic operon of Escherichia coli has been determined. The 5.8-kilobase region contains the five biotin operon genes, bioA, B, F, C, and D. and an open reading frame of unknown function. The operon is negatively regulated and divergently transcribed from a control region between the bioA and bioB genes. The product of the bioA gene, 7,8-diaminopelargonic acid aminotransferase, was discovered to be related to ornithine aminotransferase. The product of the bioF gene, 7-keto-8-aminopelargonic acid synthetase, was found to be similar to 5-aminolevulinic acid synthetase.  相似文献   

2.
3.
4.
5.
6.
7.
We describe the genetic analysis of the bio operon of the biotin auxotrophic Bacillus subtilis natto OK2 strain. The OK2 strain would only cross-feed with the Escherichia coli bioB mutant and also grew well in medium containing dethiobiotin. Sequencing analysis revealed two significant genetic alterations in the bioW and bioF genes within the bio operon of the OK2 strain. Complementation analysis with B. subtilis 168 bio mutants demonstrated that only the bioB gene could complement, but other bio operon genes could not. A bio(+) transformant, isolated from an OK2 strain, has biotin autotrophy.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
A 10-kb region of the Bacillus subtilis genome that contains genes involved in biotin-biosynthesis was cloned and sequenced. DNA sequence analysis indicated that B. subtilis contains homologs of the Escherichia coli and Bacillus sphaericus bioA, bioB, bioD, and bioF genes. These four genes and a homolog of the B. sphaericus bioW gene are arranged in a single operon in the order bioWAFDR and are followed by two additional genes, bioI and orf2. bioI and orf2 show no similarity to any other known biotin biosynthetic genes. The bioI gene encodes a protein with similarity to cytochrome P-450s and was able to complement mutations in either bioC or bioH of E. coli. Mutations in bioI caused B. subtilis to grow poorly in the absence of biotin. The bradytroph phenotype of bioI mutants was overcome by pimelic acid, suggesting that the product of bioI functions at a step prior to pimelic acid synthesis. The B. subtilis bio operon is preceded by a putative vegetative promoter sequence and contains just downstream a region of dyad symmetry with homology to the bio regulatory region of B. sphaericus. Analysis of a bioW-lacZ translational fusion indicated that expression of the biotin operon is regulated by biotin and the B. subtilis birA gene.  相似文献   

17.
Analysis of the nucleotide sequence of the P1 operon of Mycoplasma pneumoniae   总被引:22,自引:0,他引:22  
J M Inamine  S Loechel  P C Hu 《Gene》1988,73(1):175-183
  相似文献   

18.
External biotin greatly stimulates bacterial growth and alfalfa root colonization by Sinorhizobium meliloti strain 1021. Several genes involved in responses to plant-derived biotin have been identified in this bacterium, but no genes required for biotin transport are known, and not all loci required for biotin synthesis have been assigned. Searches of the S. meliloti genome database in combination with complementation tests of Escherichia coli biotin auxotrophs indicate that biotin synthesis probably is limited in S. meliloti 1021 by the poor functioning or complete absence of several key genes. Although several open reading frames with significant similarities to genes required for synthesis of biotin in gram-positive and gram-negative bacteria were found, only bioB, bioF, and bioH were demonstrably functional in complementation tests with known E. coli mutants. No sequence or complementation evidence was found for bioA, bioC, bioD, or bioZ. In contrast to other microorganisms, the S. meliloti bioB and bioF genes are not localized in a biotin synthesis operon, but bioB is cotranscribed with two genes coding for ABC transporter-like proteins, designated here bioM and bioN. Mutations in bioM and bioN eliminated growth on alfalfa roots and reduced bacterial capacity to maintain normal intracellular levels of biotin. Taken together, these data suggest that S. meliloti normally grows on exogenous biotin using bioM and bioN to conserve biotin assimilated from external sources.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号