首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Andersson LI 《Bioseparation》2001,10(6):353-364
Of the many applications of molecular imprinting in analytical separation science, the one with highest potential of soon being used in routine analysis is that of solid-phase extraction. Already several examples of selective pre-concentration of biological and environmental samples have been reported. The interest in imprinted extraction sorbents originates from the high selectivities and affinities obtainable, properties which can be qualitatively and quantitatively pre-determined for a particular analyte and separation by the imprinting process. This review summarises work published on molecular imprinted solid-phase extraction and discusses some imprinted-sorbent specific method development issues.  相似文献   

2.
This work describes the development of a competitive flow-through FIA assay for digoxin using a molecularly imprinted polymer (MIP) as the recognition phase. In previous work, a number of non-covalent imprinted polymers were synthesised by “bulk” polymerisation. The digoxin binding and elution characteristics of these MIPs were then evaluated to obtain a highly selective material for integration into a sensor. The optimum MIP was synthesised by photo-initiated polymerisation of a mixture containing digoxin, MAA, EDGMA and AIBN in acetonitrile. The bulk polymer was ground and sieved and the template removed by Soxhlet extraction in MeOH/ACN. The MIP was packed into a flow cell and placed in a spectrofluorimeter to integrate the reaction and detection systems. The physical and chemical variables involved in digoxin determination by the sensor (nature and concentration of solution, flow rates, etc.) were optimised. Binding with the non-imprinted polymer (NIP) was also analysed. The new fluorosensor showed high selectivity and sensitivity, a detection limit of 1.7 × 10−2 μg l−1, and high reproducibility (R.S.D. of 1.03% and 1.77% for concentrations of 1.0 × 10−3 and 4.0 × 10−3 mg l−1, respectively). Selectivity was tested by determining the cross-reactivity of several compounds with structures analogous to digoxin. Under the assay conditions used, in which the potential interfering compounds were in concentrations 100 times higher than that of the analyte, no interference was recorded. The proposed fluorosensor was successfully used to determine digoxin concentration of human serum samples.  相似文献   

3.
Molecular recognition-based separation and sensing systems have received much attention in various fields because of their high selectivity for target molecules. Molecular imprinting has been recognized as a promising technique for the development of such systems, where the molecule to be recognized is added to a reaction mixture of a cross-linker(s), a solvent(s), and a functional monomer(s) that possesses a functional groups(s) capable of interacting with the target molecule. Binding sites in the resultant polymers involve functional groups originating from the added functional monomer(s), which can be constructed according to the shape and chemical properties of the target molecules. After removal of the target molecules, these molecularly imprinted complementary binding sites exhibit high selectivity and affinity for the template molecule. In this article, recent developments in molecularly imprinted polymers are described with their applications as separation media in liquid chromatography, capillary electrophoresis, solid-phase extraction, and membranes. Examples of binding assays and sensing systems using molecularly imprinted polymers are also presented.  相似文献   

4.
A review is presented of recent developments in the use of molecularly imprinted polymers (MIPs) as selective materials for solid-phase extraction. Compared with traditional sorbents, MIPs can not only concentrate but also selectively separate the target analytes from real samples, which is crucial for the quantitatively determination of analytes in complex samples. Consequently, as one of the most effective sorbents, MIPs have been successfully applied to the pretreatment of analytes in foods, drugs, and biological and environmental samples in the past five years.  相似文献   

5.
A review is presented of recent developments in the use of molecularly imprinted polymers (MIPs) as selective materials for solid-phase extraction. Compared with traditional sorbents, MIPs can not only concentrate but also selectively separate the target analytes from real samples, which is crucial for the quantitatively determination of analytes in complex samples. Consequently, as one of the most effective sorbents, MIPs have been successfully applied to the pretreatment of analytes in foods, drugs, and biological and environmental samples in the past five years.  相似文献   

6.
Feng L  Liu Y  Tan Y  Hu J 《Biosensors & bioelectronics》2004,19(11):1513-1519
Despite the increasing number of applications of biosensors in many fields, the construction of a steady biosensor remains still challenging. The high selectivity and stability of molecularly imprinted polymers for the template molecule make them ideal alternatives as recognition elements for sensors. In this work, the fabrication and characterization of biosensor based on molecularly imprinted electrosynthesized polymers is reported as the first case of imprinting sorbitol. A relevant molecularly imprinted film is prepared by o-phenylenediamine (o-PD) using the electrochemical method. Quartz crystal microbalance is employed as a sensitive apparatus of biosensor for the determination of sorbitol. An equation is deduced to characterize the interaction between molecularly imprinted films and the template. A linear relationship between the frequency shift and the concentration of analyte in the range of 1-15 mM was found. The detection limit is about 1mM.  相似文献   

7.
The molecular imprinting technique has been used to create sensors with a predetermined selectivity for molecules in the gas phase. Based on previous results, piezoelectric quartz crystals were first coated with a layer of nylon, to provide increased sensitivity, and then a layer of a polymer imprinted with 2-methylisoborneol (MIB) was applied to endow the device with selectivity. The response of the 'imprinted' sensor was significantly higher than the response of the 'non-imprinted' sensor at MIB concentrations above 10 ppb. Our new sensor is thus 20 times more sensitive than our previous device. At concentrations greater than 10 ppb, the response of the 'non-imprinted' sensor to geosmin, another odorant often accompanying MIB, was significantly higher than the response of the 'imprinted' sensor. A number of other odorants were examined and, as in our previous work, the responses of the 'non-imprinted' sensors were found to be to greater than the responses of the 'imprinted' sensors.  相似文献   

8.
Molecularly imprinted polymers (MIPs) were grafted on iniferter-modified carbon nanotube (CNT). Tween 20 was first immobilized on CNT by hydrophobic interactions. The hydroxyl-functionalized CNT was modified by silanisation with 3-chloropropyl trimethoxysilane. The iniferter groups were then introduced by reacting the CNT-bound chloropropyl groups with sodium N,N-diethyldithiocarbamate. UV light-initiated copolymerization of ethylene glycol dimethacrylate (crosslinking agent) and methacrylic acid (functional monomer) resulted in grafting of MIP on CNT for theophylline as a model template. MIPs grafted on CNT were characterized with elemental analysis, scanning electron microscopy, and thermogravimetric analysis. The theophylline-imprinted polymer on CNT showed higher binding capacity for theophylline than non-imprinted polymer on CNT and selectivity for theophylline over caffeine and theobromine (similar structure molecules). The data of theophylline and caffeine binding into the theophylline-imprinted polymer correlated well with the Scatchard plot. These MIPs on CNT can potentially be applied to probe materials in biosensor system based on CNT field effect transistor.  相似文献   

9.
A potential problem associated with molecularly imprinted polymer (MIP) sorbents is that of cross-reactivity. In this study three MIPs (imprinted with Boc-L-phenylalanine, Boc-L-alanine, Boc-L-glutamic acid) plus a non-imprinted control were prepared and examined for their ability to bind differentially the enantiomers of boc-protected phenylalanine in an effort to quantify cross-reactivity and to develop a predictive model. Batch rebinding studies showed a degree of predictability for a number of MIP-ligand pairs, but other combinations showed unexpectedly high levels of cross-reactivity. Despite the general acceptance of heterogeneity of MIP binding sites, many previous studies report linear Scatchard plots, which is indicative of binding site homogeneity. The data from this study produced curves, clearly demonstrating heterogeneity. The theoretical and practical implications of this heterogeneity are discussed. Chirality 9:233–237, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
A molecularly imprinted polymers (MIPs) microsensor was presented as a carbon fiber microelectrode (CFME) coating for specifically recognizing xanthine (Xan). The polymeric film was obtained based on the imprinted procedure of electropolymerization of pyrrole in the presence of the template molecule Xan by cyclic voltammetry, and template was removed by magnetic stirring. Under the optimum conditions, a satisfactory molecularly binding selectivity of Xan was obtained from the MIPs microsensor with an imprinting factor (IF) of 6.63 and a linear response to concentration in certain ranges. The ranges are from 4.0 × 10−6 to 6.0 × 10−5 M and from 8.0 × 10−5 to 2.0 × 10−3 M with a detection limit of 2.5 × 10−7 M. Meanwhile, good stability (relative standard deviation [RSD] = 3.2%, n = 10) and reproducibility (RSD = 2.0%, n = 10) were observed, and recoveries ranging from 96.9 to 102.5% were calculated when applied to Xan determination in real blood serum samples.  相似文献   

11.
Artemisinin is an effective antimalarial drug isolated from the herbal medicine Artemisia annua L. Molecular imprinting is a technique of preparing molecularly imprinted polymers (MIPs) which can specifically recognize the imprinted template molecules. In this work, silica gel were used as supporting matrix, and vinyltriethoxysilane (VTES) was grafted onto its surface. The preparation of MIPs for artemisinin was performed on the surfaces of the modified silica gel using artemisinin as the template, acrylamide (AM) and methacrylic acid (MAA) as the functional monomers, ethylene glycol dimethacrylate (EGDMA) as the cross-linker and 2,2'-azo-bis-isobutyronitrile (AIBN) as the initiator. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and pore size analysis were used to characterize the prepared MIPs. The adsorption kinetic curve, adsorption isotherm and selective adsorption were measured by static method. The adsorption reached equilibrium at about 10 h, while fast adsorption took place during the first 2-3 h. The maximum adsorption capacity has been found to be 37.13 mg/g according to calculation with Langmuir-Freundlich isotherm. The electivity coefficients of MIPs for artemisinin with respect to artemether and arteether were 2.88 and 3.38, respectively. The results showed that the MIPs possessed good specific adsorption capacity and selectivity for artemisinin.  相似文献   

12.
Molecularly imprinted polymers are highly stable and can be sterilised, making them ideal for use in biotransformation process. In this communication, we describe a novel application of molecularly imprinted polymers in an enzymatic reaction. The enzymatic condensation of Z-L-aspartic acid with L-phenylalanine methyl ester to give Z-L-Asp-L-Phe-OMe (Z-aspartame) was chosen as a model system to evaluate the applicability of using molecularly imprinted polymers to facilitate product formation. When the product-imprinted polymer is present, a considerable increase (40%) in product yield is obtained. Besides their use to enhance product yields, as demonstrated here, we suggest that imprinted polymers may also find use in the continuous removal of toxic compounds during biochemical reactions.  相似文献   

13.
An analytical methodology for the analysis of methamidophos in water and soil samples incorporating a molecularly imprinted solid-phase extraction process using methamidophos-imprinted polymer was developed. Binding study demonstrated that the polymer exhibited excellent affinity and high selectivity to the methamidophos. Evidence was also found by FT-IR analysis that hydrogen bonding between the CO(2)H in the polymer cavities and the NH(2) and P=O of the template was the origin of methamidophos recognition. The use of molecularly imprinted solid-phase extraction improved the accuracy and precision of the GC method and lowered the limit of detection. The recovery of methamidophos extracted from a 10.0 g soil sample at the 100 ng/g spike level was 95.4%. The limit of detection was 3.8 ng/g. The recovery of methamidophos extracted from 100 mL tap and river water at 1 ng/mL spike level was 96.1% and 95.8%, and the limits of detection were 10 and 13 ng/L respectively. These molecularly imprinted solid-phase extraction procedures enabled selective extraction of polar methamidophos successfully from water and soil samples, demonstrating the potential of molecularly imprinted solid-phase extraction for rapid, selective, and cost-effective sample pretreatment.  相似文献   

14.
A novel molecularly imprinted polymer (MIP) system selective for D-phenylalanine is described where polymerization is performed in aqueous solution. The unique polymer system comprises a hydrophobic moiety-selective functional monomer, polymerizable beta-cyclodextrin, an electrostatic interacting functional monomer, 2-acryloylamido-2-methylpropane sulfonic acid (AMPSA), and the crosslinking agent N,N'-diacryloylpiperazine. Chromatographic evaluation of polymer-ligand recognition characteristics demonstrated ligand selectivity by the MIP and that optimal recognition was achieved through a balance of hydrophobic and electrostatic ligand-polymer interactions, indicating that recognition in these systems is regulated by enthalpy-entropy compensation. The imprinting effect was shown to be sufficient to reverse the inherent selectivity of cyclodextrin for L-phenylalanine.  相似文献   

15.
Induced-fit responsive dopamine (DA) imprinted polymer, poly (melamine-co-chloranil), was used as a suitable coating material for the modification of a hanging mercury drop electrode. The zwitterionic conformation of the imprinted polymer responded differential pulse, cathodic stripping voltammetric current, without any false-positive or false-negative contributions of non-specific sorptions, in aqueous environment of complex matrices. The limit of detection (3σ) of dopamine was found to be as low as 0.148 ng mL−1, by the proposed sensor that could be considered a sensitive marker of dopamine depletion in Parkinson's disease (PD).  相似文献   

16.
The Photoluminescence of quantum dots have been found to be a useful tool for the detection of small to medium sized analyte molecules in a host-guest environment. By the incorporation of quantum dots into molecularly imprinted polymers, which can offer shape and selectivity, the former can respond by quenching the photoluminescence emission upon template binding. In this work host polymers were synthesized and cased into thin films using functional monomers such as methacrylic acid (MAA), CdSe/ZnS core-shell derivatized with 4-vinyl pyridine and ethylene glycol dimethacrylic acid (EGDMA) as a cross-linker. The intensity of photoluminescence emission is detected upon analyte binding.  相似文献   

17.
In this study, molecularly imprinted polymers (MIPs) prepared using a multifunctional and a monofunctional monomer were compared with respect to their affinities, selectivities, and imprinting efficiencies for organophosphates. This is of interest because multifunctional monomers have higher affinities than traditional monofunctional monomers for their target analytes and thus should yield MIPs with higher affinities and selectivities. However, polymers containing multifunctional monomer may also have a higher number of unselective, non-templated binding sites. This increase in background binding sites could lead to a decrease in the magnitude of the imprinting effect and in the selectivity of the MIP. Therefore, phosphate selective imprinted and non-imprinted polymers (NIPs) were prepared using a novel multifunctional triurea monomer. The binding properties of these polymers were compared with polymers prepared using a monofunctional monourea monomer. The binding affinities and selectivities of the monomers, imprinted polymers, and NIPs were characterized by NMR titration, binding uptake studies, and binding isotherms. MIPs prepared with the triurea monomer showed higher binding affinity and selectivity for the diphenylphosphate anion in organic solvents than the MIPs prepared with the monofunctional monomer. Surprisingly, the binding properties of the NIPs revealed that the polymers prepared using the multifunctional and monofunctional monomers were very similar in affinity and selectivity. Thus, the multifunctional monomers increase not only the affinity of the MIP but also enhance the imprinting effect.  相似文献   

18.
Molecularly imprinted polymers (MIPs) are polymers that can be tailored with affinity and selectivity for a molecule of interest. Offsetting the low cost and ease of preparation of MIPs is the presence of binding sites that vary widely in affinity and selectivity. Presented is a review of methods that take into account binding site heterogeneity when calculating the binding properties of MIPs. These include the bi-Langmuir, Freundlich, and Langmuir-Freundlich binding models. These methods yield a measure of heterogeneity in the form of binding site affinity distributions and the heterogeneity index. Recent developments have made these methods surprisingly easy to use while also yielding more accurate measures of the binding properties of MIPs. These have allowed for easier comparison and optimization of MIPs. Heterogeneous binding models have also led to a better understanding of the imprinting process and of the advantages and limitations of MIPs in chromatographic and sensor applications.  相似文献   

19.
A set of polymers was imprinted with (-)-ephedrine using two different initiators. A chemometrics approach was used to optimise experiments aimed at analysis of the interplay of parameters such as polymerisation time, temperature and percentage of initiator. The results presented demonstrate the importance of keeping the right balance between these various parameters of polymerisation conditions. It is shown that enhancing one single parameter such as polymer rigidity does not necessarily improve polymer performance. In general it could be concluded that MIPs should be synthesised over a long period of time using low concentration of initiator and low temperature. The best selectivity was achieved for polymers prepared by photo-initiation with 2,2-dimethoxy-2-phenylacetophenone as initiator.  相似文献   

20.
Molecular imprints were prepared using L-phenylalanine anilide as the print molecule and methacrylic acid as the functional monomer. Methacrylic acid interacts ionically with the primary amine of the print molecule and via hydrogen bonding with the amide function. In the HPLC mode such polymers were shown to exhibit efficient enantiomeric resolution of a racemic mixture of the original print molecule. Enantiomeric resolution was shown to be dependent on the ratio of methacrylic acid to print molecule in the pre-polymerization mixture and specific for the presence of both print molecule and functional monomer. Further analyses showed the importance of both the primary amino and amide functions in the correct stereochemistry for recognition and enantiomeric resolution of compounds on such polymers. Other amide derivatives of amino acids including p-nitroanilides, beta-naphthylamides and amides were recognized by such polymers, and enantiomeric resolution was obtained for amide derivatives of amino acid ranging from alanine to tryptophan on a single polymer. The implications of these findings with respect to the mechanism of recognition and the ability to predict enantiomeric resolution of molecules on molecularly imprinted polymers will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号