首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomovic A  Oakeley EJ 《PloS one》2008,3(9):e3243

Background

With increasing numbers of crystal structures of protein∶DNA and protein∶protein∶DNA complexes publically available, it is now possible to extract sufficient structural, physical-chemical and thermodynamic parameters to make general observations and predictions about their interactions. In particular, the properties of macromolecular assemblies of multiple proteins bound to DNA have not previously been investigated in detail.

Methodology/Principal Findings

We have performed computational structural analyses on macromolecular assemblies of multiple proteins bound to DNA using a variety of different computational tools: PISA; PROMOTIF; X3DNA; ReadOut; DDNA and DCOMPLEX. Additionally, we have developed and employed an algorithm for approximate collision detection and overlapping volume estimation of two macromolecules. An implementation of this algorithm is available at http://promoterplot.fmi.ch/Collision1/. The results obtained are compared with structural, physical-chemical and thermodynamic parameters from protein∶protein and single protein∶DNA complexes. Many of interface properties of multiple protein∶DNA complexes were found to be very similar to those observed in binary protein∶DNA and protein∶protein complexes. However, the conformational change of the DNA upon protein binding is significantly higher when multiple proteins bind to it than is observed when single proteins bind. The water mediated contacts are less important (found in less quantity) between the interfaces of components in ternary (protein∶protein∶DNA) complexes than in those of binary complexes (protein∶protein and protein∶DNA).The thermodynamic stability of ternary complexes is also higher than in the binary interactions. Greater specificity and affinity of multiple proteins binding to DNA in comparison with binary protein-DNA interactions were observed. However, protein-protein binding affinities are stronger in complexes without the presence of DNA.

Conclusions/Significance

Our results indicate that the interface properties: interface area; number of interface residues/atoms and hydrogen bonds; and the distribution of interface residues, hydrogen bonds, van der Walls contacts and secondary structure motifs are independent of whether or not a protein is in a binary or ternary complex with DNA. However, changes in the shape of the DNA reduce the off-rate of the proteins which greatly enhances the stability and specificity of ternary complexes compared to binary ones.  相似文献   

2.
The universal sesquiterpene precursor, farnesyl diphosphate (FPP), is cyclized in an Mg(2+)-dependent reaction catalyzed by the tetrameric aristolochene synthase from Aspergillus terreus to form the bicyclic hydrocarbon aristolochene and a pyrophosphate anion (PP(i)) coproduct. The 2.1-A resolution crystal structure determined from crystals soaked with FPP reveals the binding of intact FPP to monomers A-C, and the binding of PP(i) and Mg(2+)(B) to monomer D. The 1.89-A resolution structure of the complex with 2-fluorofarnesyl diphosphate (2F-FPP) reveals 2F-FPP binding to all subunits of the tetramer, with Mg(2+)(B)accompanying the binding of this analogue only in monomer D. All monomers adopt open activesite conformations in these complexes, but slight structural changes in monomers C and D of each complex reflect the very initial stages of a conformational transition to the closed state. Finally, the 2.4-A resolution structure of the complex with 12,13-difluorofarnesyl diphosphate (DF-FPP) reveals the binding of intact DF-FPP to monomers A-C in the open conformation and the binding of PP(i), Mg(2+)(B), and Mg(2+)(C) to monomer D in a predominantly closed conformation. Taken together, these structures provide 12 independent "snapshots" of substrate or product complexes that suggest a possible sequence for metal ion binding and conformational changes required for catalysis.  相似文献   

3.
S-shaped binding curves often characterize interactions of ligands with nucleic acid molecules as analyzed by different physico-chemical and biophysical techniques. S-shaped experimental binding curves are usually interpreted as indicative of the positive cooperative interactions between the bound ligand molecules. This paper demonstrates that S-shaped binding curves may occur as a result of the "mixed mode" of DNA binding by the same ligand molecule. Mixed mode of the ligand-DNA binding can occur, for example, due to 1) isomerization or dimerization of the ligands in solution or on the DNA lattice, 2) their ability to intercalate the DNA and to bind it within the minor groove in different orientations. DNA-ligand complexes are characterized by the length of the ligand binding site on the DNA lattice (so-called "multiple-contact" model). We show here that if two or more complexes with different lengths of the ligand binding sites could be produced by the same ligand, the dependence of the concentration of the complex with the shorter length of binding site on the total concentration of ligand should be S-shaped. Our theoretical model is confirmed by comparison of the calculated and experimental CD binding curves for bis-netropsin binding to poly(dA-dT) poly(dA-dT). Bis-netropsin forms two types of DNA complexes due to its ability to interact with the DNA as monomers and trimers. Experimental S-shaped bis-netropsin-DNA binding curve is shown to be in good correlation with those calculated on the basis of our theoretical model. The present work provides new insight into the analysis of ligand-DNA binding curves.  相似文献   

4.
Molecular docking is a popular way to screen for novel drug compounds. The method involves aligning small molecules to a protein structure and estimating their binding affinity. To do this rapidly for tens of thousands of molecules requires an effective representation of the binding region of the target protein. This paper presents an algorithm for representing a protein's binding site in a way that is specifically suited to molecular docking applications. Initially the protein's surface is coated with a collection of molecular fragments that could potentially interact with the protein. Each fragment, or probe, serves as a potential alignment point for atoms in a ligand, and is scored to represent that probe's affinity for the protein. Probes are then clustered by accumulating their affinities, where high affinity clusters are identified as being the "stickiest" portions of the protein surface. The stickiest cluster is used as a computational binding "pocket" for docking. This method of site identification was tested on a number of ligand-protein complexes; in each case the pocket constructed by the algorithm coincided with the known ligand binding site. Successful docking experiments demonstrated the effectiveness of the probe representation.  相似文献   

5.
PDZ domains are protein-protein interaction modules that typically bind to short peptide sequences at the carboxyl terminus of target proteins. Proteins containing multiple PDZ domains often bind to different trans-membrane and intracellular proteins, playing a central role as organizers of multimeric complexes. To characterize the rules underlying the binding specificity of different PDZ domains, we have assembled a novel repertoire of random peptides that are displayed at high density at the carboxyl terminus of the capsid D protein of bacteriophage lambda. We have exploited this combinatorial library to determine the peptide binding preference of the seven PDZ domains of human INADL, a multi-PDZ protein that is homologous to the INAD protein of Drosophila melanogaster. This approach has permitted the determination of the consensus ligand for each PDZ domain and the assignment to class I, class II, and to a new specificity class, class IV, characterized by the presence of an acidic residue at the carboxyl-terminal position. Homology modeling and site-directed mutagenesis experiments confirmed the involvement of specific residues at contact positions in determining the domain binding preference. However, these experiments failed to reveal simple rules that would permit the association of the chemical characteristics of any given residue in the peptide binding pocket to the preference for specific amino acid sequences in the ligand peptide. Rather, they suggested that to infer the binding preference of any PDZ domain, it is necessary to simultaneously take into account all contact positions by using computational procedures. For this purpose we extended the SPOT algorithm, originally developed for SH3 domains, to evaluate the probability that any peptide would bind to any given PDZ domain.  相似文献   

6.
The “strong” binding of two antibiotics, actinomycin D and daunomycin, to native DNA (calf-thymus) in dilute aqueous solution has been studied by means of calorimetric and spectroscopic measurements. In essence our results show: (1) Daunomycin interaction with DNA is an exothermic process, all features of which depend in a discontinuous way on the fraction of DNA binding sites engaged by the drug. Fluorescence data indicate that such a discontinuous trend should be independent of the GC content of DNA. (2) Actinomycin binding to DNA is, on the contrary, characterized by a positive enthalpy. For such binding, no discontinuity appears discernible with increasing the molar ratio of drug to DNA (phosphorous) on the basis of calorimetric and fluorescence data. (3) Both antibiotics can be bound simultaneously to DNA: our results would suggest that their binding sites on the biopolymer are independent.Discussion is focussed on the possible information derivable from our data on whether or not intercalation may indeed be the main process through which each antibiotic considered “strongly” interacts with DNA.  相似文献   

7.

Background

We introduce a protein docking refinement method that accepts complexes consisting of any number of monomeric units. The method uses a scoring function based on a tight coupling between evolutionary conservation, geometry and physico-chemical interactions. Understanding the role of protein complexes in the basic biology of organisms heavily relies on the detection of protein complexes and their structures. Different computational docking methods are developed for this purpose, however, these methods are often not accurate and their results need to be further refined to improve the geometry and the energy of the resulting complexes. Also, despite the fact that complexes in nature often have more than two monomers, most docking methods focus on dimers since the computational complexity increases exponentially due to the addition of monomeric units.

Results

Our results show that the refinement scheme can efficiently handle complexes with more than two monomers by biasing the results towards complexes with native interactions, filtering out false positive results. Our refined complexes have better IRMSDs with respect to the known complexes and lower energies than those initial docked structures.

Conclusions

Evolutionary conservation information allows us to bias our results towards possible functional interfaces, and the probabilistic selection scheme helps us to escape local energy minima. We aim to incorporate our refinement method in a larger framework which also enables docking of multimeric complexes given only monomeric structures.
  相似文献   

8.
Extent of binding (gamma 2(1)) of cationic surfactants cetyltrimethyl ammonium bromide (CTAB), myristyltrimethyl ammonium bromide (MTAB) and dodecyl trimethyl ammonium bromide (DTAB) to calf-thymus DNA, bovine serum albumin (BSA) and to their binary mixture respectively have been measured as function of bulk concentration of the surfactant by using equilibrium dialysis technique. Binding of CTAB has been studied at different pH, ionic strength (mu), temperature and biopolymer composition and with native and denatured states of the biopolymers. The chain-length of different long chain amines plays a significant role in the extent of binding under identical solution condition. The binding ratios for CTAB to collagen, gelatin, DNA-collagen and DNA-gelatin mixtures respectively have also been determined. The conformational structures of different biopolymers are observed to play significant role in macromolecular interactions between protein and DNA in the presence of CTAB. From the experimental values of the maximum binding ratio (gamma 2m) at the saturation level for each individual biopolymer, ideal values (gamma 2m)id have been theoretically calculated for binary mixtures of biopolymers using additivity rule. The protein-DNA-CTAB interaction in mixture has been explained in terms of the deviation (delta) of (gamma 2m) from (gamma 2m)id in the presence of a surfactant in bulk. The binding of surfactants to biopolymers and to their binary mixtures are compared more precisely in terms of the Gibbs' free energy decrease (-delta G degree) for the saturation of the binding sites in the biopolymers or biopolymer mixtures with the change of the bulk surfactant activity from zero to unity in the rational mole fraction scale.  相似文献   

9.
In order to examine the origins of the large positive cooperativity (ΔG(0)(coop) = -2.9 kcal mol(-1)) of trimethoprim (TMP) binding to a bacterial dihydrofolate reductase (DHFR) in the presence of NADPH, we have determined and compared NMR solution structures of L. casei apo DHFR and its binary and ternary complexes with TMP and NADPH and made complementary thermodynamic measurements. The DHFR structures are generally very similar except for the A-B loop region and part of helix B (residues 15-31) which could not be directly detected for L. casei apo DHFR because of line broadening from exchange between folded and unfolded forms. Thermodynamic and NMR measurements suggested that a significant contribution to the cooperativity comes from refolding of apo DHFR on binding the first ligand (up to -0.95 kcals mol(-1) if 80% of A-B loop requires refolding). Comparisons of Cα-Cα distance differences and domain rotation angles between apo DHFR and its complexes indicated that generally similar conformational changes involving domain movements accompany formation of the binary complexes with either TMP or NADPH and that the binary structures are approaching that of the ternary complex as would be expected for positive cooperativity. These favorable ligand-induced structural changes upon binding the first ligand will also contribute significantly to the cooperative binding. A further substantial contribution to cooperative binding results from the proximity of the bound ligands in the ternary complex: this reduces the solvent accessible area of the ligand and provides a favorable entropic hydrophobic contribution (up to -1.4 kcal mol(-1)).  相似文献   

10.
《Inorganica chimica acta》1988,145(2):279-284
Several copper(II) complexes of 3,5-diisopropylsalicylic acid and a variety of ligating solvents have been prepared and studied by elemental analysis, and by infrared, electronic, and EPR spectroscopy. In the solid state, all of the compounds are binuclear, carboxylate-bridged Cu2(3,5-DIPS)4(L)2, where L may be a vacant site or a coordinating ligand. In non-coordinating solvents such as hexane and dichloromethane, the binuclear structure is retained in solution, but in polar coordinating solvents the dimer dissociates into monomers where the copper is coordinated to two solvent molecules and to two bidentate diisopropylsalicylate ligands through their carboxylic and phenolic oxygen atoms.  相似文献   

11.
12.
The mutual effect of three actin-binding proteins (alpha-actinin, calponin and filamin) on the binding to actin was analyzed by means of differential centrifugation and electron microscopy. In the absence of actin alpha-actinin, calponin and filamin do not interact with each other. Calponin and filamin do not interfere with each other in the binding to actin bundles. Slight interference was observed in the binding of alpha-actinin and calponin to actin bundles. Higher ability of calponin to depress alpha-actinin binding can be due to the higher stoichiometry calponin/actin in the complexes formed. The largest interference was observed in the pair filamin-alpha-actinin. These proteins interfere with each other in the binding to the bundled actin filaments; however, neither of them completely displaced another protein from its complexes with actin. The structure of actin bundles formed in the presence of any one actin-binding protein was different from that observed in the presence of binary mixtures of two actin-binding proteins. In the case of calponin or its binary mixtures with alpha-actinin or filamin the total stoichiometry actin-binding protein/actin was larger than 0.5. This means that alpha-actinin, calponin and filamin may coexist on actin filaments and more than mol of any actin-binding protein is bound per two actin monomers. This may be important for formation of different elements of cytoskeleton.  相似文献   

13.
The mutual effect of three actin-binding proteins (α-actinin, calponin and filamin) on the binding to actin was analyzed by means of differential centrifugation and electron microscopy. In the absence of actin α-actinin, calponin and filamin do not interact with each other. Calponin and filamin do not interfere with each other in the binding to actin bundles. Slight interference was observed in the binding of α-actinin and calponin to actin bundles. Higher ability of calponin to depress α-actinin binding can be due to the higher stoichiometry calponin/actin in the complexes formed. The largest interference was observed in the pair filamin–α-actinin. These proteins interfere with each other in the binding to the bundled actin filaments; however, neither of them completely displaced another protein from its complexes with actin. The structure of actin bundles formed in the presence of any one actin-binding protein was different from that observed in the presence of binary mixtures of two actin-binding proteins. In the case of calponin or its binary mixtures with α-actinin or filamin the total stoichiometry actin-binding protein/actin was larger than 0.5. This means that α-actinin, calponin and filamin may coexist on actin filaments and more than mol of any actin-binding protein is bound per two actin monomers. This may be important for formation of different elements of cytoskeleton.  相似文献   

14.
In this work, we introduce a generalized, global numerical methodology for analysis of binding phenomena in complex macromolecular assemblies. On the basis of a numerical algorithm (EQS) to solve systems of simultaneous free energy equations, binding profiles of simple to highly complex interacting systems can be analyzed over any concentration region without any need to generate an analytical form to describe the data. The output of the numerical algorithm is the concentration of each individual species in solution, allowing the generation of all possible binding profiles of the system (e.g., protein saturation by ligand). We present here the application of this approach to the DNA-protein subunit-ligand interactions of the trp repressor system as a typical example. From a practical point of view, the analysis program is capable of the rapid and simultaneous analysis of multiple binding profiles in terms of internally consistent sets of free energies. Given both the enormous complexity, as well as the underlying subtlety, involved in the regulation of biological function, the present generalized approach to analyzing macromolecular binding should find wide applications.  相似文献   

15.
We present a computational approach for predicting structures of ligand-protein complexes and analyzing binding energy landscapes that combines Monte Carlo simulated annealing technique to determine the ligand bound conformation with the dead-end elimination algorithm for side-chain optimization of the protein active site residues. Flexible ligand docking and optimization of mobile protein side-chains have been performed to predict structural effects in the V32I/I47V/V82I HIV-1 protease mutant bound with the SB203386 ligand and in the V82A HIV-1 protease mutant bound with the A77003 ligand. The computational structure predictions are consistent with the crystal structures of these ligand-protein complexes. The emerging relationships between ligand docking and side-chain optimization of the active site residues are rationalized based on the analysis of the ligand-protein binding energy landscape. Proteins 33:295–310, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Computational methods play a pivotal role in drug discovery and are widely applied in virtual screening, structure optimization, and compound activity profiling. Over the last decades, almost all the attention in medicinal chemistry has been directed to protein-ligand binding, and computational tools have been created with this target in mind. With novel discoveries of functional RNAs and their possible applications, RNAs have gained considerable attention as potential drug targets. However, the availability of bioinformatics tools for nucleic acids is limited. Here, we introduce fingeRNAt—a software tool for detecting non-covalent interactions formed in complexes of nucleic acids with ligands. The program detects nine types of interactions: (i) hydrogen and (ii) halogen bonds, (iii) cation-anion, (iv) pi-cation, (v) pi-anion, (vi) pi-stacking, (vii) inorganic ion-mediated, (viii) water-mediated, and (ix) lipophilic interactions. However, the scope of detected interactions can be easily expanded using a simple plugin system. In addition, detected interactions can be visualized using the associated PyMOL plugin, which facilitates the analysis of medium-throughput molecular complexes. Interactions are also encoded and stored as a bioinformatics-friendly Structural Interaction Fingerprint (SIFt)—a binary string where the respective bit in the fingerprint is set to 1 if a particular interaction is present and to 0 otherwise. This output format, in turn, enables high-throughput analysis of interaction data using data analysis techniques. We present applications of fingeRNAt-generated interaction fingerprints for visual and computational analysis of RNA-ligand complexes, including analysis of interactions formed in experimentally determined RNA-small molecule ligand complexes deposited in the Protein Data Bank. We propose interaction fingerprint-based similarity as an alternative measure to RMSD to recapitulate complexes with similar interactions but different folding. We present an application of interaction fingerprints for the clustering of molecular complexes. This approach can be used to group ligands that form similar binding networks and thus have similar biological properties. The fingeRNAt software is freely available at https://github.com/n-szulc/fingeRNAt.  相似文献   

17.
Worch R  Stolarski R 《Proteins》2008,71(4):2026-2037
Recognition of the ribonucleic acid 5' termini (RNA 5' cap) by a wide class of cap-binding proteins is largely accomplished by cation-pi stacking that involves the positively charged 7-methylguanine ring and aromatic amino acid side chains. Quantum calculations of the stacking energy were performed by means of MP2 perturbation method for binary and ternary associates composed of the 7-methylguanine moiety and tryptophan, tyrosine, or phenylalanine, in their spatial orientations known from the crystalline cap-protein complexes. The results clearly pointed to an enhancement of the stacking energy due to a net positive charge in the cap guanine moiety and allowed analysis of a role of various amino acids in stabilization of the complexes. Conformational flexibility of the aromatic amino acids taking part in binding ligands to a wide class of RNA-recognizing proteins, including the cap-binding proteins, was determined by regional order neural network (RONN) algorithm that provides results close to those of the crystallographic B-factors analysis. Interestingly, some of the tyrosines that are classified in general as "rigid" showed high flexibility when engaged in binding the cap to nuclear cap-binding protein complex CBC and to viral methyltransferase VP39. Parallel analyses of the binding energy and flexibility of the protein fragments engaged in the binding leads to understanding differences in molecular mechanisms of the cap recognition by various proteins, CBC compared with the eukaryotic initiation factor eIF4E, and enzymes vs. other protein factors.  相似文献   

18.
Amide protection factors have been determined from NMR measurements of hydrogen/deuterium amide NH exchange rates measured on assigned signals from Lactobacillus casei apo-DHFR and its binary and ternary complexes with trimethoprim (TMP), folinic acid and coenzymes (NADPH/NADP(+)). The substantial sizes of the residue-specific DeltaH and TDeltaS values for the opening/closing events in NH exchange for most of the measurable residues in apo-DHFR indicate that sub-global or global rather than local exchange mechanisms are usually involved. The amide groups of residues in helices and sheets are those most protected in apo-DHFR and its complexes, and the protection factors are generally related to the tightness of ligand binding. The effects of ligand binding that lead to changes in amide protection are not localised to specific binding sites but are spread throughout the structure via a network of intramolecular interactions. Although the increase in protein stability in the DHFR.TMP.NADPH complex involves increased ordering in the protein structure (requiring TDeltaS energy) this is recovered, to a large extent, by the stronger binding (enthalpic DeltaH) interactions made possible by the reduced motion in the protein. The ligand-induced protection effects in the ternary complexes DHFR.TMP.NADPH (large positive binding co-operativity) and DHFR.folinic acid.NADPH (large negative binding co-operativity) mirror the co-operative effects seen in the ligand binding. For the DHFR.TMP.NADPH complex, the ligand-induced protection factors result in DeltaDeltaG(o) values for many residues being larger than the DeltaDeltaG(o) values in the corresponding binary complexes. In contrast, for DHFR.folinic acid.NADPH, the DeltaDeltaG(o) values are generally smaller than many of those in the corresponding binary complexes. The results indicate that changes in protein conformational flexibility on formation of the ligand complex play an important role in determining the co-operativity in the ligand binding.  相似文献   

19.
Nickel(II) complexes with the first-generation quinolone antibacterial agent flumequine in the presence or absence of nitrogen donor heterocyclic ligands (4-benzylpyridine, pyridine, 2,2′-bipyridine or 1,10-phenanthroline) have been structurally characterized by physicochemical and spectroscopic techniques. The experimental data suggest that flumequine acts as deprotonated bidentate ligand coordinated to Ni(II) through the carboxylato and ketone oxygen atoms. The crystal structures of bis(4-benzylpyridine)bis(flumequinato)nickel(II) 2, (2,2′-bipyridine)bis(flumequinato)nickel(II) 4 and (1,10-phenanthroline)bis(flumequinato)nickel(II) 5 have been determined by X-ray crystallography and are the first crystal structures of flumequinato complexes reported. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that the complexes bind to CT DNA and bis(aqua)bis(flumequinato)nickel(II) exhibits the highest binding constant to CT DNA. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The cyclic voltammograms of the complexes recorded in DMSO solution and in 1/2 DMSO/buffer (containing 150 mM NaCl and 15 mM trisodium citrate at pH 7.0) solution have shown that in the presence of CT DNA they bind to CT DNA by the intercalative binding mode. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values.  相似文献   

20.

Background

The folate binding protein (FBP) regulates homeostasis and intracellular trafficking of folic acid, a vitamin of decisive importance in cell division and growth. We analyzed whether interrelationship between ligand binding and self-association of FBP plays a significant role in the physiology of folate binding.

Methods

Self-association behavior of apo- and holo-FBP was addressed through size exclusion chromatography, SDS-PAGE, mass spectrometry, surface plasmon resonance and fluorescence spectroscopy.

Results

Especially holo-FBP exhibits concentration-dependent self-association at pH 7.4 (pI), and is more prone to associate into stable complexes than apo-FBP. Even more pronounced was the tendency to complexation between apo-FBP and holo-FBP in accord with a model predicting association between apo and holo monomers [19]. This will lead to removal of apo monomers from the reaction scheme resulting in a weak incomplete ligand binding similar to that observed at FBP concentrations < 10 nM. The presence of synthetic and natural detergents normalized folate binding kinetics and resulted in appearance of monomeric holo-FBP. Fluorescence spectroscopy indicated molecular interactions between detergent and tryptophan residues located in hydrophobic structures of apo-FBP which may participate in protein associations.

General significance

Self-association into multimers may protect binding sites, and in case of holo-FBP even folate from biological degradation. High-affinity folate binding in body secretions, typically containing 1–10 nM FBP, requires the presence of natural detergents, i.e. cholesterol and phospholipids, to avoid complexation between apo- and holo-FBP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号