首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a highly specific, robust and rapid new method for labeling cell surface proteins with biophysical probes. The method uses the Escherichia coli enzyme biotin ligase (BirA), which sequence-specifically ligates biotin to a 15-amino-acid acceptor peptide (AP). We report that BirA also accepts a ketone isostere of biotin as a cofactor, ligating this probe to the AP with similar kinetics and retaining the high substrate specificity of the native reaction. Because ketones are absent from native cell surfaces, AP-fused recombinant cell surface proteins can be tagged with the ketone probe and then specifically conjugated to hydrazide- or hydroxylamine-functionalized molecules. We demonstrate this two-stage protein labeling methodology on purified protein, in the context of mammalian cell lysate, and on epidermal growth factor receptor (EGFR) expressed on the surface of live HeLa cells. Both fluorescein and a benzophenone photoaffinity probe are incorporated, with total labeling times as short as 20 min.  相似文献   

2.
3.
4.
Pancreatic ductal adenocarcinoma is one of the most deadly forms of cancers, with a mortality that is almost identical to incidence. The inability to predict, detect or diagnose the disease early and its resistance to all current treatment modalities but surgery are the prime challenges to changing the devastating prognosis. Also, relatively little is known about pancreatic carcinogenesis. In order to better understand relevant aspects of pathophysiology, differentiation, and transformation, we analysed the cellular proteomes of 24 pancreatic cancer cell lines and two controls using an antibody microarray that targets 741 cancer-related proteins. In this analysis, 72 distinct disease marker proteins were identified that had not been described before. Additionally, categorizing cancer cells in accordance to their original location (primary tumour, liver metastases, or ascites) was made possible. A comparison of the cells' degree of differentiation (well, moderately, or poorly differentiated) resulted in unique marker sets of high relevance. Last, 187 proteins were differentially expressed in primary versus metastatic cancer cells, of which the majority is functionally related to cellular movement.  相似文献   

5.
Jang JH  Hanash S 《Proteomics》2003,3(10):1947-1954
The in depth-mining of the proteome necessitates the comprehensive analysis of proteins in individual subcellular compartments to uncover interesting patterns of protein expression that include assessment of protein location, trafficking and of post-translational modifications that are location specific. One of the compartments of substantial interest from a diagnostic and therapeutic point of view is the plasma membrane which contains intrinsic membrane proteins and other proteins expressed on the cell surface. Technologies are currently available for the comprehensive profiling of the cell surface proteome that rely on protein tagging of intact cells. Studies are emerging that point to unexpected patterns of expression of specific proteins on the cell surface, with a common occurrence of proteins previously considered to occur predominantly in other compartments, notably the endoplasmic reticulum. The profiling of the cell surface and plasma membrane proteomes will likely provide novel insights and uncover disease related alterations.  相似文献   

6.
In mammalian reproduction, many important events occur within the female reproductive tract, especially within the oviduct. These include transport and final maturation of the female and male gametes, fertilization, embryonic development, and transport of the embryo to the uterus. The plasma membrane molecules of oviductal epithelia that are in direct contact with gametes and embryo(s) and potentially mediate these processes are poorly characterized, and their function is poorly understood. Defining the oviductal cell surface proteome could provide a better understanding of the basis of reproductive processes taking place within the oviduct. We aimed to provide a detailed profile of the surface plasma membrane proteome of the oviductal epithelium by biotinylation of proteins at the cell surface, followed by highly specific purification of these proteins using avidin. This approach for enrichment of oviductal cell surface proteome was validated by immunohistochemistry, gel electrophoresis, and western blot analysis experiments. The enriched molecules were identified using two different technologies: (i) the combination of 2D gel electrophoresis with mass spectrometry and (ii) 1D gel electrophoresis with mass spectrometry (a modified multidimensional protein identification technology (MudPIT) technique). The number of proteins identified using the MudPIT approach was approximately 7 times the number of proteins identified by 2D gel electrophoresis using the same samples (40 versus 276, respectively). Some of the proteins found at the surface of oviductal cells had previously been reported as present in the oviduct and to have known functions in relation to reproductive processes. The other category of proteins that were highly represented in the oviductal surface proteome were various members of the family of heat-shock proteins. To the best of our knowledge, this is the first comprehensive study to identify and characterize proteins at the surface of the epithelium of the mammalian oviduct.  相似文献   

7.
Dreisbach A  van Dijl JM  Buist G 《Proteomics》2011,11(15):3154-3168
The Gram-positive bacterium Staphylococcus aureus is a wide spread opportunistic pathogen that can cause a range of life-threatening diseases. To obtain a better understanding of the global mechanisms for pathogenesis and to identify novel targets for therapeutic interventions, the S. aureus proteome has been recently 'dissected' in several studies. Proteins that are exposed on the cell surface - collectively referred to as the 'surfacome' - have received particular attention, because they can directly interact with extracellular molecules, including drugs and antibodies. Accordingly, these proteins represent interesting candidate targets for active or passive immunization against S. aureus. Here, we review the proteomics strategies used, and we compare the results that were so far obtained. Since the surfacome is part of the cell wall proteome, we first present an overview of general properties of the S. aureus cell envelope, cell wall-associated proteins and mechanisms for protein attachment to the cell wall. Then we zoom in on the surfacome, and discuss the pro's and con's of the specific strategies that have been applied for surfacome profiling. The insights thus obtained may serve as leads for future studies on the S. aureus surfacome and possible applications.  相似文献   

8.
Anaya C  Church N  Lewis JP 《Proteomics》2007,7(2):215-219
A rapid method of detection and identification of bacterial cell surface proteins is needed to better understand the interaction of bacteria with host components. To detect cell surface proteins, we have labeled cells of the Gram-negative anaerobic bacterium, Porphyromonas gingivalis, with fluorescent cyanine dyes, Cy3 and Cy5. We demonstrate that only cell surface proteins were labeled, indicating the method applied in our study is suitable for detection and identification of cell surface proteins in Gram-negative bacteria and possibly other organisms.  相似文献   

9.
There is currently limited data available pertaining to the global characterization of the cell surface proteome. We have implemented a strategy for the comprehensive profiling and identification of surface membrane proteins. This strategy has been applied to cancer cells, including the SH-SY5Y neuroblastoma, the A549 lung adenocarcinoma, the LoVo colon adenocarcinoma, and the Sup-B15 acute lymphoblastic leukemia (B cell) cell lines and ovarian tumor cells. Surface membrane proteins of viable, intact cells were subjected to biotinylation then affinity-captured and purified on monomeric avidin columns. The biotinylated proteins were eluted from the monomeric avidin columns as intact proteins and were subsequently separated by two-dimensional PAGE, transferred to polyvinylidene difluoride membranes, and visualized by hybridization with streptavidin-horseradish peroxidase. Highly reproducible, but distinct, two-dimensional patterns consisting of several hundred biotinylated proteins were obtained for the different cell populations analyzed. Identification of a subset of biotinylated proteins among the different cell populations analyzed using matrix-assisted laser desorption ionization and tandem mass spectrometry uncovered proteins with a restricted expression pattern in some cell line(s), such as CD87 and the activin receptor type IIB. We also identified more widely expressed proteins, such as CD98, and a sushi repeat-containing protein, a member of the selectin family. Remarkably, a set of proteins identified as chaperone proteins were found to be highly abundant on the cell surface, including GRP78, GRP75, HSP70, HSP60, HSP54, HSP27, and protein disulfide isomerase. Comprehensive profiling of the cell surface proteome provides an effective approach for the identification of commonly occurring proteins as well as proteins with restricted expression patterns in this compartment.  相似文献   

10.
The aim of the present study was the molecular profiling of different Ph+ chronic myelogenous leukemia (CML) cell lines (LAMA84, K562, and KCL22) by a proteomic approach. By employing two-dimensional gel electrophoresis combined with mass spectrometry analysis, we have identified 191 protein spots corresponding to 142 different proteins. Among these, 63% were cancer-related proteins and 74% were described for the first time in leukemia cells. Multivariate analysis highlighted significant differences in the global proteomic profile of the three CML cell lines. In particular, the detailed analysis of 35 differentially expressed proteins revealed that LAMA84 cells preferentially expressed proteins associated with an invasive behavior, while K562 and KCL22 cells preferentially expressed proteins involved in drug resistance. These data demonstrate that these CML cell lines, although representing the same pathological phenotype, show characteristics in their protein expression profile that suggest different phenotypic leukemia subclasses. These data contribute a new potential characterization of the CML phenotype and may help to understand interpatient variability in the progression of disease and in the efficacy of a treatment.  相似文献   

11.

Background

Fibroblasts are mesenchymal stromal cells which occur in all tissue types. While their main function is related to ECM production and physical support, they are also important players in wound healing, and have further been recognized to be able to modulate inflammatory processes and support tumor growth. Fibroblasts can display distinct phenotypes, depending on their tissue origin, as well as on their functional state.

Results

In order to contribute to the proteomic characterization of fibroblasts, we have isolated primary human fibroblasts from human skin, lung and bone marrow and generated proteome profiles of these cells by LC-MS/MS. Comparative proteome profiling revealed characteristic differences therein, which seemed to be related to the cell’s tissue origin. Furthermore, the cells were treated in vitro with the pro-inflammatory cytokine IL-1beta. While all fibroblasts induced the secretion of Interleukins IL-6 and IL-8 and the chemokine GRO-alpha, other inflammation-related proteins were up-regulated in an apparently tissue-dependent manner. Investigating fibroblasts from tumorous tissues of skin, lung and bone marrow with respect to such inflammation-related proteins revealed hardly any conformity but rather individual and tumor type-related variations. However, apparent up-regulation of IGF-II, PAI-1 and PLOD2 was observed in melanoma-, lung adenocarcinoma- and multiple myeloma-associated fibroblasts, as well as in hepatocellular carcinoma-associated fibroblasts.

Conclusions

Inflammation-related proteome alterations of primary human fibroblasts were determined by the analysis of IL-1beta treated cells. Tumor-associated fibroblasts from different tissue types hardly showed signs of acute inflammation but displayed characteristic functional aberrations potentially related to chronic inflammation. The present data suggest that the state of the tumor microenvironment is relevant for tumor progression and targeted treatment of tumor-associated fibroblasts may support anti-cancer strategies.

Electronic supplementary material

The online version of this article (doi:10.1186/1559-0275-11-41) contains supplementary material, which is available to authorized users.  相似文献   

12.
The formation of covalently linked, high molecular weight protein aggregates has been thought to play an important role in opacification of the human lens. Antisera were used in Western blot analysis to demonstrate the involvement of all major classes of lens proteins (alpha, beta and gamma crystallin; the major intrinsic membrane polypeptide) in covalent aggregation. Of these classes, aggregation of gamma and beta crystallins via intermolecular disulfide bonding and aggregation of the major intrinsic membrane polypeptide via intermolecular, non-disulfide bonding were more pronounced in cataractous as compared with normal lenses.  相似文献   

13.
14.
Low concentrations of sodium metaperiodate induce specific oxidative cleavage of sialic acids between carbon 7 and carbon 8 or carbon 8 and carbon 9. The aldehydes formed can easily be reduced with NaB3H4 to tritiated 5-acetamido-3,5-dideoxy-L-arabino-2-heptulosonic acid or 5-acetamido-3,5-dideoxy-L-arabino-2-octulosonic acid. At 0 degrees, the periodate anion penetrates the cell plasma membrane very slowly and only externally exposed sialic acids are oxidized. This was shown by (a) limited labeling of the sialoglycoproteins in a preparation of inside-out erythrocyte vesicles; (b) trapping 14C-labeled fetuin within resealed erythrocyte ghosts; fetuin was then poorly labeled, whereas the erythrocyte sialoglycoproteins were highly labeled; (c) comparison of labeled glycoproteins of mouse lymphoid cells before and after treatment with neuraminidase. This simple method of specifically introducing a radioactive label into cell surface sialic acids is useful in the study of cell surface sialic acid-containing glycoproteins.  相似文献   

15.
The expanding realm of exploratory proteomics has added a unique dimension to the study of the complex pathophysiology involved in sickle cell disease. A review of proteomic studies published on sickle cell erythrocytes and plasma shows trends of upregulation of antioxidant proteins, an increase in cytoskeletal defects, an increase in protein repair and turnover components, a decrease in lipid raft proteins and apolipoprotein dysregulation. Many of these findings are consistent with the pathophysiology of sickle cell disease, including high oxidant burden, resulting in damage to cytoskeletal and other proteins, and erythrocyte rigidity. More unexpected findings, such as a decrease in lipid raft components and apolipoprotein dysregulation, offer previously unexplored targets for future investigation and potential therapeutic intervention. Exploratory proteomic profiling is a valuable source of hypothesis generation for the cellular and molecular pathophysiology of sickle cell disease.  相似文献   

16.
The expression of the hepatocellular membrane receptor for desialylated galactose-termining glycoproteins was studied during different proliferative stages of a human hepatoma cell line. Rapidly growing cells exhibited a reduced endocytotic rate of desialylated orsomucoid as compared to non-growing cells. This reduction was shown to be the consequence of a lower concentration of active cell-surface associated receptor protein in the dividing cells.  相似文献   

17.
Summary Cell recognition and adhesion are important events in embryonic development as well as in adult physiology. In recent years several cell adhesion molecules (CAMs), that mediate adhesive interactions between vertebrate cells, have been identified and characterized. These CAMs are in general cell surface-associated high molecular weight glycoproteins. Two groups of CAMs have been classified: primary CAMs, that appear early in development; secondary CAMs, that become expressed later and with a more restricted tissue distribution. One example of a secondary CAM is cellCAM 105. This glycoprotein was originally identified in rat hepatocytes, and was shown to be involved in the reaggregation of freshly isolated hepatocytesin vitro. Physico-chemical studies on pure cellCAM 105 have demonstrated that it has adhesive properties and can bind to itself in a homophilic, calcium-independent reaction. Immunochemical and immunohistochemical investigations have shown that cellCAM 105 occurs in liver, several epithelia, vessel endothelia, platelets and polymorphonuclear leukocytes, and that it is expressed primarily in terminally differentiated cells or cells that are undergoing terminal differentiation. Available information suggests that cellCAM 105 has different functions in different cell types, and that the common functional denominator might be membrane-membrane binding. Recent data indicate that cellCAM 105 is a calmodulin-binding protein, suggesting that cellCAM-mediated cell binding could be involved in transmembrane signalling.Abbreviation CAM cell adhesion molecule  相似文献   

18.
The cell surface proteome of human mesenchymal stromal cells   总被引:1,自引:0,他引:1  

Background

Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers.

Methodology/Principal Findings

To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin to enrich the plasma membrane proteins and mass spectrometry for identification with extremely high confidence. Among the 888 proteins identified, we found ≈200 bona fide plasma membrane proteins including 33 cell adhesion molecules and 26 signaling receptors. In total 41 CD markers including 5 novel ones (CD97, CD112, CD239, CD276, and CD316) were identified. The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis. Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously.

Conclusions/Significance

Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention.  相似文献   

19.
A new method is described for the selective 'in synthesis' labeling of peptides by rhodamine or biotin at a single, predetermined epsilon-amino group of a lysine residue. The alpha-amino group and other lysyl residues of the peptide remain unmodified. Peptides are assembled by the Fmoc approach, which requires mild operative conditions for the final deprotection and cleavage, and ensures little damage of the reporter group. The labeling technique involves the previous preparation of a suitable Lysine derivative, easily obtained from commercially-available protected amino acids. This new derivative, where the reporter group (biotin, or rhodamine) acts now as permanent protection of lysyl side chain functions, is then inserted into the synthesis program as a conventional protected amino acid, and linked to the preceding residue by aid of carbodiimide. A simpler, alternative method is also described for the selective 'in synthesis' labeling of peptides with N-terminal lysyl residues. Several applications of labeled peptides are reported.  相似文献   

20.
The primary amine coupling reagents succinimidyl-6-biotinamido-hexanoate (NHS-A-biotin) and sulfosuccinimidyl-6-biotinamido-hexanoate (NHS-LC-biotin) were tested for their ability to selectively label Escherichia coli cell envelope proteins in vivo. Probe localization was determined by examining membrane, periplasmic, and cytosolic protein fractions. Both hydrophobic NHS-A-biotin and hydrophilic NHS-LC-biotin were shown to preferentially label outer membrane, periplasmic, and inner membrane proteins. NHS-A- and NHS-LC-biotin were also shown to label a specific inner membrane marker protein (Tet-LacZ). Both probes, however, failed to label a cytosolic marker (the omega fragment of beta-galactosidase). The labeling procedure was also used to label E. coli cells grown in low-salt Luria broth medium supplemented with 0, 10, and 20% sucrose. Outer membrane protein A (OmpA) and OmpC were labeled by both NHS-A- and NHS-LC-biotin at all three sucrose concentrations. In contrast, OmpF was labeled by NHS-A-biotin but not by NHS-LC-biotin in media containing 0 and 10% sucrose. OmpF was not labeled by either NHS-A- or NHS-LC-biotin in E. coli cells grown in medium containing 20% sucrose. Coomassie-stained gels, however, revealed similar quantities of OmpF in E. coli cells grown at all three sucrose concentrations. These data indicate that there was a change in outer membrane structure due to increased osmolarity, which limits accessibility of NHS-A-biotin to OmpF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号