首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Although diabetes normally causes an elevation of cholesterol biosynthesis and induces hypercholesterolemia in animals and human, the mechanism linking diabetes to the dysregulation of cholesterol biosynthesis in the liver is not fully understood. As liver peroxisomal β-oxidation is induced in the diabetic state and peroxisomal oxidation of fatty acids generates free acetate, we hypothesized that peroxisomal β-oxidation might play a role in liver cholesterol biosynthesis in diabetes. Here, we used erucic acid, a specific substrate for peroxisomal β-oxidation, and 10,12-tricosadiynoic acid, a specific inhibitor for peroxisomal β-oxidation, to specifically induce and suppress peroxisomal β-oxidation. Our results suggested that induction of peroxisomal β-oxidation increased liver cholesterol biosynthesis in streptozotocin-induced diabetic mice. We found that excessive oxidation of fatty acids by peroxisomes generated considerable free acetate in the liver, which was used as a precursor for cholesterol biosynthesis. In addition, we show that specific inhibition of peroxisomal β-oxidation decreased cholesterol biosynthesis by reducing acetate formation in the liver in diabetic mice, demonstrating a crosstalk between peroxisomal β-oxidation and cholesterol biosynthesis. Based on these results, we propose that induction of peroxisomal β-oxidation serves as a mechanism for a fatty acid-induced upregulation in cholesterol biosynthesis and also plays a role in diabetes-induced hypercholesterolemia.  相似文献   

2.
Animal models link ectopic lipid accumulation to renal dysfunction, but whether this process occurs in the human kidney is uncertain. To this end, we investigated whether altered renal TG and cholesterol metabolism results in lipid accumulation in human diabetic nephropathy (DN). Lipid staining and the expression of lipid metabolism genes were studied in kidney biopsies of patients with diagnosed DN (n = 34), and compared with normal kidneys (n = 12). We observed heavy lipid deposition and increased intracellular lipid droplets. Lipid deposition was associated with dysregulation of lipid metabolism genes. Fatty acid β-oxidation pathways including PPAR-α, carnitine palmitoyltransferase 1, acyl-CoA oxidase, and L-FABP were downregulated. Downregulation of renal lipoprotein lipase, which hydrolyzes circulating TGs, was associated with increased expression of angiopoietin-like protein 4. Cholesterol uptake receptor expression, including LDL receptors, oxidized LDL receptors, and acetylated LDL receptors, was significantly increased, while there was downregulation of genes effecting cholesterol efflux, including ABCA1, ABCG1, and apoE. There was a highly significant correlation between glomerular filtration rate, inflammation, and lipid metabolism genes, supporting a possible role of abnormal lipid metabolism in the pathogenesis of DN. These data suggest that renal lipid metabolism may serve as a target for specific therapies aimed at slowing the progression of glomerulosclerosis.  相似文献   

3.
4.
The mitochondrial β-oxidation system is one of the central metabolic pathways of energy metabolism in mammals. Enzyme defects in this pathway cause fatty acid oxidation disorders. To elucidate the role of 2,4-dienoyl-CoA reductase (DECR) as an auxiliary enzyme in the mitochondrial β-oxidation of unsaturated fatty acids, we created a DECR–deficient mouse line. In Decr−/− mice, the mitochondrial β-oxidation of unsaturated fatty acids with double bonds is expected to halt at the level of trans-2, cis/trans-4-dienoyl-CoA intermediates. In line with this expectation, fasted Decr−/− mice displayed increased serum acylcarnitines, especially decadienoylcarnitine, a product of the incomplete oxidation of linoleic acid (C18:2), urinary excretion of unsaturated dicarboxylic acids, and hepatic steatosis, wherein unsaturated fatty acids accumulate in liver triacylglycerols. Metabolically challenged Decr−/− mice turned on ketogenesis, but unexpectedly developed hypoglycemia. Induced expression of peroxisomal β-oxidation and microsomal ω-oxidation enzymes reflect the increased lipid load, whereas reduced mRNA levels of PGC-1α and CREB, as well as enzymes in the gluconeogenetic pathway, can contribute to stress-induced hypoglycemia. Furthermore, the thermogenic response was perturbed, as demonstrated by intolerance to acute cold exposure. This study highlights the necessity of DECR and the breakdown of unsaturated fatty acids in the transition of intermediary metabolism from the fed to the fasted state.  相似文献   

5.
6.
Fatty acid β-oxidation is essential for seedling establishment of oilseed plants, but little is known about its role in leaf metabolism of adult plants. Arabidopsis thaliana plants with loss-of-function mutations in the peroxisomal ABC-transporter1 (PXA1) or the core β-oxidation enzyme keto-acyl-thiolase 2 (KAT2) have impaired peroxisomal β-oxidation. pxa1 and kat2 plants developed severe leaf necrosis, bleached rapidly when returned to light, and died after extended dark treatment, whereas the wild type was unaffected. Dark-treated pxa1 plants showed a decrease in photosystem II efficiency early on and accumulation of free fatty acids, mostly α-linolenic acid [18:3(n-3)] and pheophorbide a, a phototoxic chlorophyll catabolite causing the rapid bleaching. Isolated wild-type and pxa1 chloroplasts challenged with comparable α-linolenic acid concentrations both showed an 80% reduction in photosynthetic electron transport, whereas intact pxa1 plants were more susceptible to the toxic effects of α-linolenic acid than the wild type. Furthermore, starch-free mutants with impaired PXA1 function showed the phenotype more quickly, indicating a link between energy metabolism and β-oxidation. We conclude that the accumulation of free polyunsaturated fatty acids causes membrane damage in pxa1 and kat2 plants and propose a model in which fatty acid respiration via peroxisomal β-oxidation plays a major role in dark-treated plants after depletion of starch reserves.  相似文献   

7.
We previously found that peroxisomal biogenesis factor 11a (Pex11a) deficiency is associated with a reduction in peroxisome abundance and impaired fatty acid metabolism in hepatocytes, and results in steatosis. In the present study, we investigated whether butyrate induces Pex11a expression and peroxisome proliferation, and studied its effect on lipid metabolism. C57BL/6 mice fed standard chow or a high-fat diet (HFD) were treated with tributyrin, 4-phelybutyrate acid (4-PBA), or the butyrate-producing probiotics (Clostridium butyricum MIYAIRI 588 [CBM]) plus inulin (dietary fiber), and the body weight, white adipose tissue, serum triglycerides, mRNA expression, and peroxisome abundance were evaluated. Tributyrin or 4-PBA treatment significantly decreased body weight and increased hepatic mRNA expression of peroxisome proliferator-activated receptor-α (PPARα) and Pex11a. In addition, 4-PBA treatment increased peroxisome abundance and the expression of genes involved in peroxisomal fatty acid β-oxidation (acyl-coenzyme A oxidase 1 and hydroxysteroid [17-beta] dehydrogenase 4). CBM and inulin administration reduced adipose tissue mass and serum triglycerides, induced Pex11a, acyl-coenzyme A oxidase 1, and hydroxysteroid (17-beta) dehydrogenase 4 genes, and increased peroxisome abundance in mice fed standard chow or an HFD. In conclusion, elevation of butyrate availability (directly through administration of butyrate or indirectly via administration of butyrate-producing probiotics plus fiber) induces PPARα and Pex11a and the genes involved in peroxisomal fatty acid β-oxidation, increases peroxisome abundance, and improves lipid metabolism. These results may provide a new therapeutic strategy against hyperlipidemia and obesity.  相似文献   

8.
X-linked adrenoleukodystrophy (X-ALD), an inherited peroxisomal disorder, is caused by mutations in the ABCD1 gene encoding the peroxisomal ATP-binding cassette (ABC) transporter ABCD1 (adrenoleukodystrophy protein, ALDP). Biochemically, X-ALD is characterized by an accumulation of very long-chain fatty acids and partially impaired peroxisomal β-oxidation. In this study, we used primary human fibroblasts from X-ALD and Zellweger syndrome patients to investigate the peroxisomal β-oxidation defect. Our results show that the degradation of C26:0-CoA esters is as severely impaired as degradation of unesterified very long-chain fatty acids in X-ALD and is abolished in Zellweger syndrome. Interestingly, the β-oxidation rates for both C26:0-CoA and C22:0-CoA were similarly affected, although C22:0 does not accumulate in patient fibroblasts. Furthermore, we show that the β-oxidation defect in X-ALD is directly caused by ABCD1 dysfunction as blocking ABCD1 function with a specific antibody reduced β-oxidation to levels observed in X-ALD fibroblasts. By quantification of mRNA and protein levels of the peroxisomal ABC transporters and by blocking with specific antibodies, we found that residual β-oxidation activity toward C26:0-CoA in X-ALD fibroblasts is mediated by ABCD3, although the efficacy of ABCD3 appeared to be much lower than that of ABCD1. Finally, using isolated peroxisomes, we show that β-oxidation of C26:0-CoA is independent of additional CoA but requires a cytosolic factor of >10-kDa molecular mass that is resistant to N-ethylmaleimide and heat inactivation. In conclusion, our findings in human cells suggest that, in contrast to yeast cells, very long-chain acyl-CoA esters are transported into peroxisomes by ABCD1 independently of additional synthetase activity.  相似文献   

9.
The effect of acetone consumption on some microsomal and peroxisomal activities was studied in rat kidney and these results were compared with data from former investigations in liver. Acetone increased the microsomal lauric acid hydroxylation, the aminopyrine N-demethylation catalyzed by cytochrome P450 and the microsomal UDP-glucuronyltransferase activity. Also, acetone increased the peroxisomal β-oxidation of palmitoyl CoA and catalase activities in kidney. These studies suggest that acetone is a common inducer of the microsomal and peroxisomal fatty acid oxidation, as previously shown in both starved and ethanol treated rats. Our results support the hypothesis that microsomal fatty acid ω-hydroxylation results in the generation of substrates being supplied for peroxisomal β-oxidation. We propose that the final purpose of these linked fatty acid oxidations could be the catabolism of fatty acids or the generation of a substrate for the synthesis of glucose from fatty acids. This pathway would be triggered by acetone treatment in a similar way in liver and kidney.  相似文献   

10.
The NF-κB pathway plays an important role in chronic inflammatory and autoimmune diseases. Recently, NF-κB has also been suggested as an important mechanism linking obesity, inflammation, and metabolic disorders. However, there is no current evidence regarding the mechanism of action of NF-κB inhibition in insulin resistance and diabetic nephropathy in type 2 diabetic animal models. We investigated the effects of the NF-κB inhibitor celastrol in db/db mice. The treatment with celastrol for 2 months significantly lowered fasting plasma glucose (FPG), HbA1C and homeostasis model assessment index (HOMA-IR) levels. Celastrol also exhibited significant decreases in body weight, kidney/body weight and adiposity. Celastrol reduced insulin resistance and lipid abnormalities and led to higher plasma adiponectin levels. Celastrol treatment also significantly mitigated lipid accumulation and oxidative stress in organs including the kidney, liver and adipose tissue. The treated group also exhibited significantly lower creatinine levels and urinary albumin excretion was markedly reduced. Celastrol treatment significantly lowered mesangial expansion and suppressed type IV collagen, PAI-1 and TGFβ1 expressions in renal tissues. Celastrol also improved abnormal lipid metabolism, oxidative stress and proinflammatory cytokine activity in the kidney. In cultured podocytes, celastrol treatment abolished saturated fatty acid-induced proinflammatory cytokine synthesis. Taken together, celastrol treatment not only improved insulin resistance, glycemic control and oxidative stress, but also improved renal functional and structural changes through both metabolic and anti-inflammatory effects in the kidney. These results suggest that targeted therapy for NF-κB may be a useful new therapeutic approach for the management of type II diabetes and diabetic nephropathy.  相似文献   

11.
Diabetes is a multifactorial disease that has now been recognized to involve overproduction of reactive oxygen species and pro-inflammatory cytokines. Peroxisomes are subcellular organelles with several important metabolic functions, and their role in the regulation of cellular oxidative stress is now well established. Despite having their own antioxidant system, peroxisomes undergo functional alterations during various conditions that are associated with free radical production such as inflammation, ischemia-reperfusion, carcinogenesis and diabetes. In this study we investigated the effect of diabetes on peroxisomal functions in rat kidneys and show for the first time that experimental diabetes induces redox-sensitive enhancement of peroxisomal activities. Streptozotocin-induced diabetes significantly increased (p<0.01) -oxidation of lignoceric acid and the enzymic activity of acyl coenzyme A oxidase. Catalase activity was significantly reduced (p<0.01) in the kidneys of diabetic rats, whereas the enzymic activity of DHAPATase (dihydroxyacetone phosphate acyltransferase) was not markedly affected by diabetes. Treatment of diabetic rats with antioxidants, thiocetic acid and vitamin C attenuated the diabetes-induced modulation of peroxisomal functions. The present study shows that the diabetes-induced effects on kidney peroxisomal functions are redox sensitive, and antioxidants might prove useful tools to alleviate nephropathy in diabetes.  相似文献   

12.
13.
14.
NADPH oxidase 4 (Nox4) is reported to be the major source of reactive oxygen species (ROS) in the kidneys during the early stages of diabetic nephropathy. It has been shown to mediate TGFβ1-induced differentiation of cardiac fibroblasts into myofibroblasts. Despite TGFβ1 being recognised as a mediator of renal fibrosis and functional decline role in diabetic nephropathy, the renal interaction between Nox 4 and TGFβ1 is not well characterised. The aim of this study was to investigate the role of Nox4 inhibition on TGFβ1-induced fibrotic responses in proximal tubular cells and in a mouse model of diabetic nephropathy. Immortalised human proximal tubular cells (HK2) were incubated with TGFβ1 ± plumbagin (an inhibitor of Nox4) or specific Nox4 siRNA. Collagen IV and fibronectin mRNA and protein expression were measured. Streptozotocin (STZ) induced diabetic C57BL/6J mice were administered plumbagin (2 mg/kg/day) or vehicle (DMSO; 50 µl/mouse) for 24 weeks. Metabolic, physiological and histological markers of nephropathy were determined. TGFβ1 increased Nox4 mRNA expression and plumbagin and Nox4 siRNA significantly inhibited TGF-β1 induced fibronectin and collagen IV expression in human HK2 cells. STZ-induced diabetic C57BL/6J mice developed physiological features of diabetic nephropathy at 24 weeks, which were reversed with concomitant plumbagin treatment. Histologically, plumbagin ameliorated diabetes induced upregulation of extracellular matrix protein expression compared to control. This study demonstrates that plumbagin ameliorates the development of diabetic nephropathy through pathways that include Nox4 signalling.  相似文献   

15.
Streptozotocin (STZ) is widely used as diabetogenic agent in animal models for diabetic nephropathy (DN). However, it is also directly cytotoxic to kidneys, making it difficult to distinguish between DN-related and STZ-induced nephropathy. Therefore, an improved protocol to generate mice for DN studies, with a quick and robust achievement of the diabetic state, without direct kidney toxicity is required. To investigate the mechanism leading to STZ-induced nephropathy, kidney damage was induced with a high dose of STZ. This resulted in delayed gastric emptying, at least partially caused by impaired desacyl ghrelin clearance. STZ uptake in the kidneys is to a large extent mediated by the sodium/glucose cotransporters (Sglts) because the Sglt inhibitor phlorizin could reduce STZ uptake in the kidneys. Consequently, the direct toxic effects in the kidney and the gastric dilatation were resolved without interfering with the β-cell toxicity. Furthermore, pancreatic STZ uptake was increased, hereby decreasing the threshold for β-cell toxicity, allowing for single low non-nephrotoxic STZ doses (70 mg/kg). In conclusion, this study provides novel insights into the mechanism of STZ toxicity in kidneys and suggests a more efficient regime to induce DN with little or no toxic side effects.  相似文献   

16.
17.
Rice powder extract (RPE) from black and brown rice (Oryza sativa L. indica) improves hepatic lipid accumulation in obese and diabetic model mice via peroxisomal fatty acid oxidation. RPE showed PPARα agonistic activity which did not differ between black and brown RPE despite a higher anthocyanin content in black RPE.  相似文献   

18.
Lipid droplets (LDs) are intracellular organelles that dynamically regulate lipids and energy homeostasis in the cell. LDs can grow through either local lipid synthesis or LD fusion. However, how lipids involving in LD fusion for LD growth is largely unknown. Here, we show that genetic mutation of acox-3 (acyl-CoA oxidase), maoc-1 (enoyl-CoA hydratase), dhs-28 (3-hydroxylacyl-CoA dehydrogenase), and daf-22 (3-ketoacyl-CoA thiolase), all involved in the peroxisomal β-oxidation pathway in Caenorhabditis elegans, led to rapid fusion of adjacent LDs to form giant LDs (gLDs). Mechanistically, we show that dysfunction of peroxisomal β-oxidation results in the accumulation of long-chain fatty acid-CoA and phosphocholine, which may activate the sterol-binding protein 1/sterol regulatory element–binding protein to promote gLD formation. Furthermore, we found that inactivation of either FAT-2 (delta-12 desaturase) or FAT-3 and FAT-1 (delta-15 desaturase and delta-6 desaturase, respectively) to block the biosynthesis of polyunsaturated fatty acids (PUFAs) with three or more double bonds (n≥3-PUFAs) fully repressed the formation of gLDs; in contrast, dietary supplementation of n≥3-PUFAs or phosphocholine bearing these PUFAs led to recovery of the formation of gLDs in peroxisomal β-oxidation–defective worms lacking PUFA biosynthesis. Thus, we conclude that n≥3-PUFAs, distinct from other well-known lipids and proteins, promote rapid LD fusion leading to LD growth.  相似文献   

19.
Diabetic nephropathy is a complex and poorly understood disease process, and our current treatment options are limited. It remains critical, then, to identify novel therapeutic targets. Recently, a developmental protein and one of the bone morphogenetic protein antagonists, Gremlin, has emerged as a novel modulator of diabetic nephropathy. The high expression and strong co-localization with transforming growth factor- β1 in diabetic kidneys suggests a role for Gremlin in the pathogenesis of diabetic nephropathy. We have constructed a gremlin siRNA plasmid and have examined the effect of Gremlin inhibition on the progression of diabetic nephropathy in a mouse model. CD-1 mice underwent uninephrectomy and STZ treatment prior to receiving weekly injections of the plasmid. Inhibition of Gremlin alleviated proteinuria and renal collagen IV accumulation 12 weeks after the STZ injection and inhibited renal cell proliferation and apoptosis. In vitro experiments, using mouse mesangial cells, revealed that the transfect ion of gremlin siRNA plasmid reversed high glucose induced abnormalities, such as increased cell proliferation and apoptosis and increased collagen IV production. The decreased matrix metalloprotease level was partially normalized by transfection with gremlin siRNA plasmid. Additionally, we observed recovery of bone morphogenetic protein-7 signaling activity, evidenced by increases in phosphorylated Smad 5 protein levels. We conclude that inhibition of Gremlin exerts beneficial effects on the diabetic kidney mainly through maintenance of BMP-7 activity and that Gremlin may serve as a novel therapeutic target in the management of diabetic nephropathy.  相似文献   

20.
Xiexin decoction, a herbal therapeutic agent commonly used in traditional Chinese medicine, is recognized for its beneficial effects on diabetic nephropathy exerted through the combined action of multiple components, including Rhizoma Coptidis alkaloids (A), Radix et Rhizoma Rhei polysaccharides (P), and Radix Scutellaria flavones (F). Our previous studies have shown that a combination of A, P, and F (APF) exhibits renoprotective effects against diabetic nephropathy. This study was aimed at determining the effects of APF on renal fibrosis in diabetic nephropathy and elucidating the underlying molecular mechanisms. To evaluate the effects of APF, in vivo, db/db diabetic mice were orally administered a low or high dose of APF (300 or 600 mg/kg, respectively) once a day for 8 weeks. We evaluated the blood and urine indices of metabolic and renal function, renal tissue histopathology, renal inflammation, and fibrosis. APF treatment significantly ameliorated glucose and lipid metabolism dysfunction, decreased urinary albumin excretion, normalized creatinine clearance, and reduced the morphological changes in renal tissue. Additionally, APF administration in db/db diabetic mice reduced the elevated levels of renal inflammation mediators such as intercellular adhesion molecule-1, monocyte chemotactic protein-1, tumor necrosis factor-α, interleukin-1β, and active nuclear factor κB (NF-κB). APF treatment also reduced type I and IV collagen, transforming growth factor-β1 (TGF-β1), and TGF-β1 type II receptor expression levels, and decreased the phosphorylation of Smad2/3 in the kidneys of db/db diabetic mice. These results suggest that APF reduces renal fibrosis in diabetic nephropathy through the NF-κB and TGF-β1/Smad signaling pathways. In vitro, APF treatment reduced cell proliferation and protein expression of α-smooth muscle actin, collagen I, TGF-β1 and NF-κB in mesangial cells cultured with high glucose concentrations. Our findings indicate that treatment with multi-component herbal therapeutic formulations may be a useful approach for the treatment of diabetic nephropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号