共查询到20条相似文献,搜索用时 93 毫秒
1.
Cristiana Pistol Tanase Simona Dima Mihaela Mihai Elena Raducan Mihnea Ioan Nicolescu Lucian Albulescu Bogdan Voiculescu Traian Dumitrascu Linda Maria Cruceru Mircea Leabu Irinel Popescu Mihail Eugen Hinescu 《Journal of molecular histology》2009,40(1):23-29
The assessment of caveolin-1 (Cav-1) as a marker of tumor aggressiveness in pancreatic ductal adenocarcinoma (PDAC). In this
study, we examined the expression of Cav-1 in 34 human PDAC tissue samples and the associated peritumoral tissues by immunohistochemistry
and western blot. Additionally, we correlated Cav-1 expression with other tissue (Ki-67, p53) and serum (CA 19-9) tumor markers.
In the tumor-derived tissue, both tumor cells and blood vessels expressed Cav-1. In contrast, in peritumoral tissue, Cav-1
expression was confined mainly to blood vessels and was only occasionally expressed in ductal or parenchymal cells. Western
blot analysis confirmed the overexpression of Cav-1 in pancreatic tumors compared with peritumoral tissue. Cav-1 expression
in tumor tissues was correlated with both the Ki-67 LI (r = 0.95, P < 0.0001) and p53 expression (χ2 = 9.91, P < 0.005). Overexpression of Cav-1 was associated with tumor size, grade and stage and Cav-1 expression in tumors was correlated
with an increased serum level of CA 19-9 (r = 0.795, P < 0.001). Based on the results of this study, the inclusion of Cav-1 in a putative panel of biomarkers predicting pancreatic
cancer aggressiveness is warranted. 相似文献
2.
Erkan M Reiser-Erkan C Michalski CW Kong B Esposito I Friess H Kleeff J 《Current molecular medicine》2012,12(3):288-303
Around 95% of patients diagnosed with pancreatic cancer will die of their disease within 5 years, three quarters within a year. The major hurdle in improving prognosis is the lack of a therapeutic time window. Early cancerous lesions are far beneath our threshold of detection. Therefore, at the time of diagnosis even early (T1) tumors can be metastatic and resistant to conventional treatments. Several therapies targeting epithelial tumor cells-all showing impressive results in vitro and in animal experiments-have failed to show relevant effects in clinical trials. This discrepancy between experimental data and clinical reality results mostly from the inefficiency of our current experimental setups in recreating the tumor microenvironment. Forming more than 80% of the tumor mass, the fibrotic stroma of pancreatic ductal adenocarcinoma is not a passive scaffold for the malignant cells but an active player in carcinogenesis. This component is mostly missing in the xeno-/allograft- mouse models. Although tumors are bigger if stellate cells are co-implanted, due to the disproportionate cancer/stromal cell ratio and -possibly- too rapid tumor growth, the stromal reaction is much smaller than in human pancreatic cancer. One the other hand, desmoplasia is present only in some of the genetically engineered mouse models. Clinically, stromal activity of the pancreatic ductal adenocarcinoma has as great an impact on patient prognosis as the lymph node status of the tumor. The exact molecular mechanisms behind this observation remain obscure. However, one possible fundamental biologic explanation could be that selective pressure applied by the stroma leads to the evolution of cancer cells. Consequently, somatic evolution of invasive cancer could be viewed as a sequence of phenotypical adaptations to this barrier, highlighting the importance of the fibrotic tumor microenvironment in the behavior of pancreatic cancer. In this review, the interaction of the epithelial tumor cells with the stroma in humans and in various animal models is scrutinized, and novel therapeutic options for uncoupling cancer-stroma interactions are discussed. 相似文献
3.
4.
5.
Background
Complex carbohydrate structures, glycans, are essential components of glycoproteins, glycolipids, and proteoglycans. While individual glycan structures including the SSEA and Tra antigens are already used to define undifferentiated human embryonic stem cells (hESC), the whole spectrum of stem cell glycans has remained unknown. We undertook a global study of the asparagine-linked glycoprotein glycans (N-glycans) of hESC and their differentiated progeny using MALDI-TOF mass spectrometric and NMR spectroscopic profiling. Structural analyses were performed by specific glycosidase enzymes and mass spectrometric fragmentation analyses.Results
The data demonstrated that hESC have a characteristic N-glycome which consists of both a constant part and a variable part that changes during hESC differentiation. hESC-associated N-glycans were downregulated and new structures emerged in the differentiated cells. Previously mouse embryonic stem cells have been associated with complex fucosylation by use of SSEA-1 antibody. In the present study we found that complex fucosylation was the most characteristic glycosylation feature also in undifferentiated hESC. The most abundant complex fucosylated structures were Lex and H type 2 antennae in sialylated complex-type N-glycans.Conclusion
The N-glycan phenotype of hESC was shown to reflect their differentiation stage. During differentiation, hESC-associated N-glycan features were replaced by differentiated cell-associated structures. The results indicated that hESC differentiation stage can be determined by direct analysis of the N-glycan profile. These results provide the first overview of the N-glycan profile of hESC and form the basis for future strategies to target stem cell glycans. 相似文献6.
Orchestrating a biomarker panel with lncRNAs and mRNAs for predicting survival in pancreatic ductal adenocarcinoma 下载免费PDF全文
Yingcheng Wu Jinhuan Wei Yue Ming Zhanghao Chen Jinzhong Yu Renfang Mao Hao Chen Guoxiong Zhou Yihui Fan 《Journal of cellular biochemistry》2018,119(9):7696-7706
The low survival of patients with pancreatic ductal adenocarcinoma (PDAC) makes the treatment of this disease one of the most challenging task in modern medicine. Here, by mining a large‐scale cancer genome atlas data set of pancreatic cancer tissues, we identified 21 long noncoding RNAs (lncRNAs) that significantly associated with overall survival in patients with PDAC (P < .01). Further analysis revealed that 8 lncRNAs turned out to be independently correlated with patients’ overall survival, and the risk score could be calculated based on their expression. To obtain a better predicting power, we integrated lncRNA data with a total of 410 differently expressed messenger RNAs (mRNAs) screened from PDAC and normal tissues in gene expression omnibus (GEO) database. The integration resulted in a much better panel including 8 lncRNAs (RP3.470B24.5, CTA.941F9.9, RP11.557H15.3, LINC00960, AP000479.1, LINC00635, LINC00636, and AC073133.1) and 8 mRNAs (DHRS9, ONECUT1, OR8D4, MT1M, TCN1, MMP9, DPYSL3, and TTN) to predict prognosis. A functional evaluation showed that these lncRNAs might play roles in pancreatic secretion, cell adhesion, and proteolysis. Using normal and pancreatic cancer cell lines, we confirmed that a majority of identified lncRNAs and mRNAs showed altered expressions in pancreatic cancer cells. Especially, LINC01589, LINC00960, TCN1, and MT1M showed a profoundly increased expression in pancreatic cancer cells, which suggests their potentially important role in pancreatic cancer. The results of our work indicate that lncRNAs have vital roles in PADC and provide new insights to integrate multiple kinds of markers in clinical practices. 相似文献
7.
8.
BackgroundPancreatic ductal adenocarcinoma (PDAC) is a fatal malignant tumor with an unfavorable prognosis. Increasing evidence indicated circRNAs were associated with the pathogenesis and progression of tumors, but data on the expression of serum exosomal circRNAs in PDAC are scarce. This study attempted to explore the prognostic value and function of serum exosomes in PDAC patients.MethodsMicroarray-based circRNA expression was determined in PDAC and paired with normal serum samples, and the intersection of differentially expressed circRNAs (DECs) in serum exosomal samples and GSE79634 tissue samples was conducted. A specific CircRNA database was applied to investigate DECs binding miRNAs. Target genes were predicted using the R package multiMiR. Cox regression analyses were applied for constructing a prognostic model. The immunological characteristics analysis was carried out through the TIMER, QUANTISEQ, XCELL, EPIC, and ssGSEA algorithms.Results15 DECs were finally identified, and a circRNA-miRNA-mRNA network was established. A prognostic risk model was developed to categorize patients according to the risk scores. Furthermore, the association between risk score and immune checkpoint genes including CD80, TNFSF9, CD276, CD274, LGALS9, and CD44 were significantly elevated in the high-risk group, while ICOSLG and ADORA2A were upregulated in the low-risk group.ConclusionsOur results may provide new clues for the prognosis and treatment of PDAC. 相似文献
9.
10.
Luebke AM Baudis M Matthaei H Vashist YK Verde PE Hosch SB Erbersdobler A Klein CA Izbicki JR Knoefel WT Stoecklein NH 《Pancreatology : official journal of the International Association of Pancreatology (IAP) ... [et al.]》2012,12(1):16-22
Here we tested the prognostic impact of genomic alterations in operable localized pancreatic ductal adenocarcinoma (PDAC). Fifty-two formalin-fixed and paraffin-embedded primary PDAC were laser micro-dissected and were investigated by comparative genomic hybridization after whole genome amplification using an adapter-linker PCR. Chromosomal gains and losses were correlated to clinico-pathological parameters and clinical follow-up data. The most frequent aberration was loss on chromosome 17p (65%) while the most frequent gains were detected at 2q (41%) and 8q (41%), respectively. The concomitant occurrence of losses at 9p and 17p was found to be statistically significant. Higher rates of chromosomal losses were associated with a more advanced primary tumor stage and losses at 9p and 18q were significantly associated with presence of lymphatic metastasis (chi-square: p = 0.03, p = 0.05, respectively). Deletions on chromosome 4 were of prognostic significance for overall survival and tumor recurrence (Cox-multivariate analysis: p = 0.026 and p = 0.021, respectively). In conclusion our data suggest the common alterations at chromosome 8q, 9p, 17p and 18q as well as the prognostic relevant deletions on chromosome 4q as relevant for PDAC progression. Our comprehensive data from 52 PDAC should provide a basis for future studies with a higher resolution to discover the relevant genes located within the chromosomal aberrations identified. 相似文献
11.
TWIST1 a new determinant of epithelial to mesenchymal transition in EGFR mutated lung adenocarcinoma
Pallier K Cessot A Côté JF Just PA Cazes A Fabre E Danel C Riquet M Devouassoux-Shisheboran M Ansieau S Puisieux A Laurent-Puig P Blons H 《PloS one》2012,7(1):e29954
Metastasis is a multistep process and the main cause of mortality in lung cancer patients. We previously showed that EGFR mutations were associated with a copy number gain at a locus encompassing the TWIST1 gene on chromosome 7. TWIST1 is a highly conserved developmental gene involved in embryogenesis that may be reactivated in cancers promoting both malignant conversion and cancer progression through an epithelial to mesenchymal transition (EMT). The aim of this study was to investigate the possible implication of TWIST1 reactivation on the acquisition of a mesenchymal phenotype in EGFR mutated lung cancer. We studied a series of consecutive lung adenocarcinoma from Caucasian non-smokers for which surgical frozen samples were available (n = 33) and showed that TWIST1 expression was linked to EGFR mutations (P<0.001), to low CDH1 expression (P<0.05) and low disease free survival (P = 0.044). To validate that TWIST1 is a driver of EMT in EGFR mutated lung cancer, we used five human lung cancer cell lines and demonstrated that EMT and the associated cell mobility were dependent upon TWIST1 expression in cells with EGFR mutation. Moreover a decrease of EGFR pathway stimulation through EGF retrieval or an inhibition of TWIST1 expression by small RNA technology reversed the phenomenon. Collectively, our in vivo and in vitro findings support that TWIST1 collaborates with the EGF pathway in promoting EMT in EGFR mutated lung adenocarcinoma and that large series of EGFR mutated lung cancer patients are needed to further define the prognostic role of TWIST1 reactivation in this subgroup. 相似文献
12.
13.
《Chronobiology international》2013,30(4):497-512
Pancreatic cancer (PC), the fourth leading cause of cancer-related deaths, is characterized by high aggressiveness and resistance to chemotherapy. Pancreatic carcinogenesis is kept going by derangement of essential cell processes, such as proliferation, apoptosis, metabolism and autophagy, characterized by rhythmic variations with 24-h periodicity driven by the biological clock. We assessed the expression of the circadian genes ARNLT, ARNLT2, CLOCK, PER1, PER2, PER3, CRY1, CRY2 and the starvation-activated histone/protein deacetylase SIRT1 in 34 matched tumor and non-tumor tissue specimens of PC patients, and evaluated in PC derived cell lines if the modulation of SIRT1 expression through starvation could influence the temporal pattern of expression of the circadian genes. We found a significant down-regulation of ARNLT (p?=?0.015), CRY1 (p?=?0.013), CRY2 (p?=?0.001), PER1 (p?<?0.0001), PER2 (p?<?0.001), PER3 (p?=?0.001) and SIRT1 (p?=?0.017) in PC specimens. PER3 and CRY2 expression levels were lower in patients with jaundice at diagnosis (?<?0.05). Having adjusted for age, adjuvant therapy and tumor stage, we evidenced that patients with higher PER2 and lower SIRT1 expression levels showed lower mortality (p?=?0.028). Levels and temporal patterns of expression of many circadian genes and SIRT1 significantly changed upon serum starvation in vitro, with differences among four different PC cell lines examined (BXPC3, CFPAC, MIA-PaCa-2 and PANC-1). Serum deprivation induced changes of the overall mean level of the wave and amplitude, lengthened or shortened the cycle time and phase-advanced or phase-delayed the rhythmic oscillation depending on the gene and the PC cell line examined. In conclusion, a severe deregulation of expression of SIRT1 and circadian genes was evidenced in the cancer specimens of PC patients, and starvation influenced gene expression in PC cell lines, suggesting that the altered interplay between SIRT1 and the core circadian proteins could represent a crucial player in the process of pancreatic carcinogenesis. 相似文献
14.
Immunotherapy has recently become a promising cancer therapy with extensive applications of immune checkpoint inhibitors (ICIs). However, pancreatic ductal adenocarcinoma (PDAC) appears to be unresponsive to immunotherapy due to the immunosuppressive microenvironment. Recent studies showed that cancer stem cell marker DCLK1 promoted the initiation and development of PDAC. Nevertheless, the mechanism driving this process remains unclear. Here, by performing gain-of-function investigations in PDAC cell lines, we demonstrate that both DCLK1 long (DCLK1-iso1, DCLK1-AS) and short (DCLK1-iso4, DCLK1-BL) isoforms can efficiently activate EMT leading to tumor migration and invasion. Consistent with experiments in vitro, bioinformatic analysis demonstrates that DCLK1 may act as a driver of EMT activation in PDAC. Further analysis showed that EMT was associated with an immunosuppressive microenvironment, which includes more immunosuppressive cells and chemokines, and patients with a higher EMT score were less sensitive to immune checkpoint inhibitors according to the TIDE (Tumor Immune Dysfunction and Exclusion) algorithm. Multiplexed immunofluorescence results demonstrated the close correlation between DCLK1, EMT and immunosuppression in PDAC patients. The findings were further confirmed in vivo reflected by decreased CD4+, CD8+ T cells and increased M2 macrophages as well as E-cad loss in DCLK1-overexpressing subcutaneous tumors. Importantly, the highly-specific DCLK1 inhibitor (DCLK1-IN-1) was able to effectively block EMT process and restore T-cell activity. Altogether, our data demonstrate that DCLK1 is strongly associated with tumor immune escape in PDAC and inhibiting DCLK1 kinase activity may be a promising therapeutic modality. 相似文献
15.
16.
Jiayi Yan Guanghui Chen Xuesong Zhao Fangying Chen Ting Wang Fei Miao 《Biochemical and biophysical research communications》2018,495(2):1908-1914
Diffuse panbronchiolitis critical region 1 (DPCR1) is located in the major histocompatibility complex (MHC) class I. It was reported to be downregulated in invasive pituitary adenoma compared with that in non-invasive tumors, but upregulated in the precursor of gastric carcinogenesis. However, the direct effect of DPCR1 on cancer cells has rarely been reported, and the role DPCR1 in pancreatic ductal adenocarcinoma (PDAC) remains unclear. The clinical sample validation and public data analysis of the present study demonstrated that DPCR1 was upregulated markedly in PDAC and this high expression was negatively correlated with the patient prognosis. Functionally, knocking down DPCR1 in PDAC cell lines inhibited cell proliferation, migration and invasion in vitro. Tumor xenograft experiments further showed that suppression of DPCR1 inhibited tumor growth in vivo. In addition, the results of RNA deep sequencing and qRT-PCR assay showed that DPCR1 participated in PADC progression by regulating nuclear factor-kappa B signaling pathway, suggesting that it might be a novel oncogene in tumor progression and a potential therapeutic target in PDAC as well. 相似文献
17.
Armstrong AJ Marengo MS Oltean S Kemeny G Bitting RL Turnbull JD Herold CI Marcom PK George DJ Garcia-Blanco MA 《Molecular cancer research : MCR》2011,9(8):997-1007
During cancer progression, malignant cells undergo epithelial-mesenchymal transitions (EMT) and mesenchymal-epithelial transitions (MET) as part of a broad invasion and metastasis program. We previously observed MET events among lung metastases in a preclinical model of prostate adenocarcinoma that suggested a relationship between epithelial plasticity and metastatic spread. We thus sought to translate these findings into clinical evidence by examining the existence of EMT in circulating tumor cells (CTC) from patients with progressive metastatic solid tumors, with a focus on men with castration-resistant prostate cancer (CRPC) and women with metastatic breast cancer. We showed that the majority (> 80%) of these CTCs in patients with metastatic CRPC coexpress epithelial proteins such as epithelial cell adhesion molecule (EpCAM), cytokeratins (CK), and E-cadherin, with mesenchymal proteins including vimentin, N-cadherin and O-cadherin, and the stem cell marker CD133. Equally, we found that more than 75% of CTCs from women with metastatic breast cancer coexpress CK, vimentin, and N-cadherin. The existence and high frequency of these CTCs coexpressing epithelial, mesenchymal, and stem cell markers in patients with progressive metastases has important implications for the application and interpretation of approved methods to detect CTCs. 相似文献
18.
19.
Zi-Man Zhu Yue-Fang Xu Qin-Jun Su Jun-Dong Du Xiang-Long Tan Yu-Liang Tu Jing-Wang Tan Hua-Bao Jiao 《Molecular and cellular biochemistry》2014,388(1-2):39-49
Increasing evidence shows that dysregulation of microRNAs is correlated with tumor development. This study was performed to determine the expression of miR-141 and investigate its clinical significance in pancreatic ductal adenocarcinoma (PDAC). Taqman quantitative RT-PCR was used to detect miR-141 expressions in 94 PDAC tissues and 16 nontumorous pancreatic tissues. Correlations between miR-141 expression and clinicopathologic features and prognosis of patients were statistically analyzed. The effects of miR-141 expression on growth and apoptosis of PDAC cell line (PANC-1) were determined by MTT, colony formation, and flow cytometry assays. Potential target genes were identified by luciferase reporter and Western blot assays. The expression level of miR-141 in PDAC tissues was significantly lower than that in corresponding nontumorous tissues. Downregulation of miR-141 correlated with poorer pT and pN status, advanced clinical stage, and lymphatic invasion. Also, low miR-141 expression in PDAC tissues was significantly correlated with shorter overall survival, and multivariate analysis showed that miR-141 was an independent prognostic factor for PDAC patients. Further, functional researches suggested that miR-141 inhibits growth and colony formation, and enhances caspase-3-dependent apoptosis in PANC-1 cells by targeting Yes-associated protein-1 (YAP1). Therefore, miR-141 is an independent prognostic factor for PDAC patients, and functions as a tumor suppressor gene by targeting YAP1. 相似文献
20.
间质表皮转化因子(Mesenchymal to epithelial transition factor,MET)蛋白作为一种受体酪氨酸激酶,通常存在于上皮细胞中,被HGF等配体激活后,能够参与调控细胞的增殖、凋亡、迁移侵袭和细胞形态等多种生物学功能。随着研究的深入,MET已被证实在多种恶性肿瘤中异常表达或基因扩增,其与肿瘤患者的预后有着密切的关系。因此,针对MET的抑制剂研究发展比较迅速,且其良好的抗肿瘤效果也得到了证实。本文结合目前本实验室的研究,对MET的结构、功能及其抑制剂研究的现状等进行了综述,为今后的研究者提供一个阶段性的数据资料。 相似文献