首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the first cladistic analysis focused at the tribal and subfamily level of the orb-weaving spider family Araneidae. The data matrix of 82 characters scored for 57 arancid genera of 6 subfamilies and 19 tribes (and 13 genera from 8 outgroup families) resulted in 16 slightly different, most parsimonious trees. Successive weighting corroborated 62 of the 66 informative nodes on these cladograms; one is recommended as the 'working' araneid phylogcny. The sister group of Araneidae is all other Araneoidea. Araneidae comprises two major clades: the subfamily Araneinae, and the 'argiopoid' clade, which includes all other subfamilies and most tribes (((Gasteracanthinae, Caerostreae), (((Micratheninae, Xylcthreae), Eruyosaccus ), (Eurycorminae, Arciinae)), Cyrlarachninae), ((Argiopinae, Cyrtophorinae), Arachnureae)). Cyrtarachneae and Mastophoreae are united in a new subfamily, Cyr-tarachninae. The spiny orb-weavers alone (Gasteracanthinae and Micratheninae) are not monophyletic. The mimetid subfamily Arciinae and the 'tetragnathid' genus Zygiella are araneids, but .Nephila (and other tetragnathids) are not. On the preferred tree, web decorations (stabilimenta) evolved 9 times within 15 genera, and were lost once. The use of silk to subdue prey evolved once in cribellate and four times in ecribillate orb weavers. Sexual size dimorphism evolved once in nephilines, twice in araneids, and reverted to monomorphism five times. Evolution in other genitalic and somatic characters is also assessed; behavioral and spinneret features arc most consistent (male genitalia, leg and prosomal features least consistent) on the phylogeny.  相似文献   

2.
Using characters from mitochondrial DNA to construct maximum parsimony and maximum likelihood trees, we performed a phylogenetic analysis on representative species of 14 genera: 12 that belong to the treefrog family Rhacophoridae and two, Amolops and Rana, that are not rhacophorids. Our results support a phylogenetic hypothesis that depicts a monophyletic family Rhacophoridae. In this family, the Malagasy genera Aglyptodactylus, Boophis, Mantella, and Mantidactylus form a well-supported sister clade to all other rhacophorid genera, and Mantella is the sister taxon to Mantidactylus. Within the Asian/African genera, the genus Buergeria forms a well-supported clade of four species. The genera, except for Chirixalus, are generally monophyletic. An exception to this is that Polypedates dennysii clusters with species of Rhacophorus, suggesting that the taxonomy of the rhacophorids should be revised to reflect this relationship. Chirixalus is not monophyletic. Unexpectedly, there is strong support for Chirixalus doriae from Southeast Asia forming a clade with species of the African genus Chiromantis, suggesting that Chiromantis dispersed to Africa from Asia. Also, there is strong support for the sister taxon relationship of Chirixalus eiffingeri and Chirixalus idiootocus apart from other congeners.  相似文献   

3.
This systematic study recognizes and describes 14 species of the genus Mallos O. Pickard-Cambridge, 1902 and three species of the genus Mexitlia Lehtinen, 1967. Three species of Mallos – Mallos gertschi, Mallos chamberlini and Mallos macrolirus –and one species of Mexitlia – Mexitlia altima –are newly described. Mallos ghiggi (Caporiacco, 1938) is considered a synonym of Mexitlia grandis (O. Pickard-Cambridge, 1896). Mexitlia grandis is considered the senior synonym of Mexitlia avara (Banks, 1898). Two species, Mallos jlavovittatus (Keyserling, 1880) and Mallos nigrescens (Caporiacco, 1955) are removed from Mallos. The males of Mallos kraussi Gertsch, 1946 and Mallos blandus Chamberlin and Gertsch 1958, are described for the first time. A cladistic analysis based on 26 morphological characters produced a cladogram that supports the monophyly of Mallos and the validity of Mexitlia. This cladogram presents a phylogenetic framework for considering the evolution of social behaviour in Mallos.  相似文献   

4.
5.
The Neotropical genera of the linyphiid spider subfamily Erigoninae are revised at the genus level. Emphasis was placed on genera endemic to the Neotropics and species with dubious relationships to their nominal genera, especially species from the older literature. This work recognizes 50 genera in the Neotropics, of which 39 genera are strictly endemic to the Neotropics, three are represented outside the Neotropics by one species, and eight genera have significant representation both in and beyond the Neotropics. Three additional genera, Ceraticelus Simon, 1884, Idionella Banks, 1893, and Eulaira Chamberlin & Ivie, 1933, are represented in northern Mexico and/or the West Indies, but are best classified as having a Nearctic or Holarctic distribution. Species previously placed in the typically northern hemisphere genera Gongylidiellum Simon, 1884, Leptorhoptrum Kulczynski, 1894, Macrargus Dahl, 1886, Minyriolus Simon, 1884, Oedothorax Bertkau, 1883, Phanetta Keyserling, 1886, and Tmeticus Menge, 1868 are found to be misplaced or nomina dubia; two genera endemic to the Neotropics, Clitistes Simon, 1902 and Zilephus Simon, 1902 are nomina dubia. The genus Beauchenia Usher, 1983 is an erigonine, not a mynoglenine; there are no known representatives of the Mynogleninae in the Neotropics. One hundred and forty new combinations are established; 19 genera are synonymized including Micromaso Tambs‐Lyche, 1954, revalidation rejected; 34 species are synonymized. The following new genera are established: Gigapassus gen. nov. , Intecymbium gen. nov. , Moyosi gen. nov. , Orfeo gen. nov. and Toltecaria gen. nov. Malkinella Millidge, 1991 and Valdiviella Millidge, 1985 are preoccupied; Malkinola nom. nov. and Valdiviola nom. nov. are established as replacement names. The following new species are described: Asemostera daedalus sp. nov. , Asemostera enkidu sp. nov. , Asemostera janetae sp. nov. , Fissiscapus attercop sp. nov. , Gonatoraphis lysistrata sp. nov. , Gravipalpus standifer sp. nov. , Microplanus odin sp. nov. , Moyosi chumota sp. nov. , Myrmecomelix leucippus sp. nov. , Neomaso damocles sp. nov. , Notiomaso exonychus sp. nov. , Paraletes pogo sp. nov. , Psilocymbium acanthodes sp. nov. , Smermisia holdridgi sp. nov. and Smermisia parvoris sp. nov. The following species remain misplaced in inappropriate genera: Erigone fellita Keyserling, 1886, Erigone zabluta Keyserling, 1886, and Oedothorax fuegianus (Simon, 1902). For 23 species, type specimens could not be located and the species could not be unambiguously identified; the type of Macrargus pacificus Berland, 1924 could not be located, but it is transferred to Laminacauda Millidge, 1985. The female of Onychembolus subalpinus Millidge, 1985 described by Millidge in 1991 is mismatched; this female is Notiomaso exonychus sp. nov. ; the true female of Onychembolus subalpinus was described as both Neomaso bidentatus Millidge, 1991 syn. nov. and Neomaso tridentatus Millidge, 1991 syn. nov. The male and female of Asemonetes[now Asemostera]arcana (Millidge, 1991) are not conspecific; a male thought to be conspecific with the female of A. arcana is newly described; the true female of A. arcana is unknown. The transfer of Emenista dentichelis Berland, 1913 to Laminacauda comb. nov. renders Laminacauda dentichelis Millidge, 1991 a junior homonym; the replacement name Laminacauda baerti nom. nov. is provided for Laminacauda dentichelis Millidge. The following species were erroneously placed in erigonine genera: Oedothorax bisignatus Mello‐Leitão, 1945 is synonymized with Theridion calcynatum Holmberg, 1876 syn. nov. (Theridiidae); Liger incomta O. Pickard‐Cambridge, 1896 is transferred to Theridion Walckenaer, 1805 (Theridiidae) [Theridion incomtum comb. nov. ]; Erigone ectrapela Keyserling, 1886 is transferred to Dictyna Sundevall, 1833 (Dictynidae) [Dictyna ectrapela comb. nov. ]; Erigone peruana Keyserling, 1886 is transferred to Thymoites Keyserling, 1884 (Theridiidae) [Thymoites peruanus comb. nov. ]; Adelonetria dubiosa Millidge, 1991 is not a linyphiid and will be dealt with elsewhere. Lomaita darlingtoni Bryant, 1948 is confirmed as a linyphiid, not a mysmenid. © 2007 The Linnean Society of London, Zoological Journal of the Linnean Society, 2007, 149 (Suppl. 1), 1–263.  相似文献   

6.
7.
Here, we present a comprehensive phylogenetic analysis based on nuclear and mitochondrial DNA sequences of rodents of the subfamily Sigmodontinae. The emphasis is placed on the large tribe Phyllotini; sampling includes for the first time in any molecular‐based phylogenetic analysis representatives of several genera traditionally considered to be phyllotines. Given the broad taxonomic sampling, results provide substantial improvements in our knowledge on both the structure of the sigmodontine radiation and of phyllotine phylogenetic relationships. For instance, the tribe Ichthyomyini was not recovered monophyletic. Similarly, in a novel hypothesis on the contents of the tribe Phyllotini, it is shown that unlike Galenomys, the genera Chinchillula, Neotomys and Punomys are not phyllotines. The later genera together with Andinomys, Euneomys, Irenomys and Juliomys form part of novel generic clades of mostly Andean sigmodontine rodents. More in general, results strongly suggest the occurrence of several instances of putative morphological convergence among distinct sigmodontine lineages (e.g. among now considered to be ichthyomyines; between Phyllotini and some Andean taxa; among EuneomysNeotomys and Reithrodon). Finally, we suggest that the historical biogeography of the sigmodontine rodents is far more complex than earlier envisioned.  相似文献   

8.
Summary Prey of feeding juvenile and adult Dolomedes triton (Walckenaer 1837) were sampled over two seasons on three small ponds in central Alberta, Canada. Prey were mainly insects active at the water surface with truly aquatic species making up about 14% of the diet. Throughout the season aquatic and semi-aquatic Heteroptera represented about 30% of the prey. Diptera and adult Odonata were also important prey items but their abundance in the diet was more variable seasonally. Of the 625 prey items recorded nearly 50% were represented by taxa taken no more than once by spiders in one of the five size classes (adult females, adult males, large, intermediate and small juveniles). Large spiders did not take the smallest prey available, although small and intermediate-sized spiders fed on nearly the full size range taken by larger spiders. Cannibalism was common, accounting for 5% of the observations, with females and large juveniles as the most frequently observed cannibals. We hypothesize that intraguild predation (including cannibalism) could be an important coevolutionary force structuring phenology, population dynamics and microhabitat use of the predatory guild of the neuston community.  相似文献   

9.
G. Levy    P. Amitai 《Journal of Zoology》1982,196(1):81-131
Israeli thendiid spiders of the genera Theridion, Achaearanea and Anelosimus have been revised. A relative richness in species is presented providing thereby updated information on the little known Mediterranean spider fauna. All type and non-type material previously described from the Middle East, deposited in several European collections has been re-examined, along with species from adjacent regions considered pertinent to the study undertaken. Altogether 21 species are recognized. Systematic, ecologic and all available zoogeographic information on taxa treated are discussed along with recent, pertaining literature. The presence of seven species formerly reported from Israel has been confirmed and the occurrence of another four species unknown hitherto from this region, has been proved. Some of these have never been adequately described or illustrated.
Ten new species are described: Theridion ochreolus, T. agaricographus, T hierwhonticus, T. jordanensis, T. negebensis, T. gekkonicus, T. dafnensis, T. vallisalinarum, T. pustiliferus and Anelosimus giladensis. The male of Theridion melanostictum is described for the first time. Keys, illustrations of diagnostic characters and records of distribution are provided for each species, all readily applicable also in adjacent countries. These may provide clues for better understanding of zoogeographic patterns of the Palearctic fauna, including those of the Old World Desert belt extending south and east of the Mediterranean region.  相似文献   

10.
We present a new phylogeny of the spider family Araneidae based on five genes (28S, 18S, COI, H3 and 16S) for 158 taxa, identified and mainly sequenced by us. This includes 25 outgroups and 133 araneid ingroups representing the subfamilies Zygiellinae Simon, 1929, Nephilinae Simon, 1894, and the typical araneids, here informally named the “ARA Clade”. The araneid genera analysed here include roughly 90% of all currently named araneid species. The ARA Clade is the primary focus of this analysis. In taxonomic terms, outgroups comprise 22 genera and 11 families, and the ingroup comprises three Zygiellinae and four Nephilinae genera, and 85 ARA Clade genera (ten new). Within the ARA Clade, we recognize ten informal groups that contain at least three genera each and are supported under Bayesian posterior probabilities (≥ 0.95): “Caerostrines” (Caerostris, Gnolus and Testudinaria), “Micrathenines” (Acacesia, Micrathena, Ocrepeira, Scoloderus and Verrucosa), “Eriophorines” (Acanthepeira, Alpaida, Eriophora, Parawixia and Wagneriana), “Backobourkiines” (Acroaspis, Backobourkia, Carepalxis, Novakiella, Parawixia, Plebs, Singa and three new genera), “Argiopines” (Arachnura, Acusilas, Argiope, Cyrtophora, Gea, Lariniaria and Mecynogea), “Cyrtarachnines” (Aranoethra, Cyrtarachne, Paraplectana, Pasilobus and Poecilopachys), “Mastophorines” (Celaenia, Exechocentrus and Mastophora,), “Nuctenines” (Larinia, Larinioides and Nuctenea), “Zealaraneines” (Colaranea, Cryptaranea, Paralarinia, Zealaranea and two new genera) and “Gasteracanthines” (Augusta, Acrosomoides, Austracantha, Gasteracantha, Isoxya, Macracantha, Madacantha, Parmatergus and Thelacantha). Few of these groups are currently corroborated by morphology, behaviour, natural history or biogeography. We also include the large genus Araneus, along with Aculepeira, Agalenatea, Anepsion, Araniella, Cercidia, Chorizopes, Cyclosa, Dolophones, Eriovixia, Eustala, Gibbaranea, Hingstepeira, Hypognatha, Kaira, Larinia, Mangora, Metazygia, Metepeira, Neoscona, Paraplectanoides, Perilla, Poltys, Pycnacantha, Spilasma and Telaprocera, but the placement of these genera was generally ambiguous, except for Paraplectanoides, which is strongly supported as sister to traditional Nephilinae. Araneus, Argiope, Eriophora and Larinia are polyphyletic, Araneus implying nine new taxa of genus rank, and Eriophora and Larinia two each. In Araneus and Eriophora, polyphyly was usually due to north temperate generic concepts being used as dumping grounds for species from southern hemisphere regions, e.g. South-East Asia, Australia or New Zealand. Although Araneidae is one of the better studied spider families, too little natural history and/or morphological data are available across these terminals to draw any strong evolutionary conclusions. However, the classical orb web is reconstructed as plesiomorphic for Araneidae, with a single loss in “cyrtarachnines”–“mastophorines”. Web decorations (collectively known as stabilimenta) evolved perhaps five times. Sexual dimorphism generally results from female body size increase with few exceptions; dimorphic taxa are not monophyletic and revert to monomorphism in a few cases.  相似文献   

11.
All species of Filistatidae occurring in Iran are surveyed. Zaitunia akhanii sp. n. is described on the basis of female specimens collected in Tehran province, and the previously unknown male of Sahastata sinuspersica Marusik, Zamani & Mirshamsi, 2014 is described for the first time. Also, the endogynes of the holotypes of Zaitunia alexandri Brignoli, 1982, Zaitunia medica Brignoli, 1982 and Zaitunia persica Brignoli, 1982 are illustrated. Including these results, the number of Iranian species of Filistatidae is increased to seven, which indicates the highest species-richness of this family in the Western Palaearctic.  相似文献   

12.
本文记述中国狡蛛属1新种,命名为掌形狡蛛Dolomedes palmatus sp.nov..模式标本保存在河北大学博物馆和广西大学农学院.文中测量单位为mm.  相似文献   

13.
14.
15.
16.
《Genomics》2019,111(6):1266-1273
Mitochondrial genomes are widely used for phylogenetic and phylogeographic analyses among arthropods, but there is a lack of sufficient mitochondrial genome sequence data for spiders. Herein, we sequenced and characterized the complete mitochondrial genome of a crab spider Ebrechtella tricuspidata (Araneae: Thomisidae). The circular mitochondrial genome is 14,352 bp long, including a standard set of 37 genes and an A + T-rich region. Nucleotide composition is highly biased toward A + T nucleotides (77.3%). A novel gene order rearrangement is detected by a tRNA (trnL1) translocation. Tandem repeats are not identified in the A + T-rich region. Most of the tRNAs are greatly reduced in size and cannot be folded into typical cloverleaf-shaped secondary structures. The phylogenetic analysis confirms that the mitochondrial genome sequences are useful in resolving higher-level relationship of Araneae. Overall, our data present in this study will elevate our knowledge on the architecture and evolution of spider mitochondrial genome.  相似文献   

17.
The Lejeuneaceae are the largest family of the liverworts (Hepaticae), with almost a thousand species in 91 currently accepted genera. We analysed phylogenetic relationships of 69 genera, representing all major subfamilies and tribes recognized in the family, by using 49 informative morphological characters (31 gametophytic, 18 sporophytic), one chemical character, and applying equal and successive weighting of characters and parsimony analysis. In all trees recovered, the Lejeuneaceae were monophyletic with Nipponolejeunea (subfam. Nipponolejeuneoideae) forming the basalmost lineage. The remaining genera clustered in two major groups, the monophyletic Lejeuneoideae (52 genera) and the paraphyletic Ptychanthoideae (16 genera). Within each, several multigeneric lineages corresponding in part to previously described taxa were recovered: the Acrolejeuneinae and Ptychanthinae clades in the Ptychanthoideae, and the Brachiolejeuneinae, Lejeuneeae and Tuyamaella–Cololejeunea clades in the Lejeuneoideae. Bryopteris , a genus sometimes treated as a separate family, was nested in the Ptychanthinae clade. The Tuyamaella–Cololejeunea lineage corresponded with three previously recognized subfamilies (Cololejeuneoideae, Myriocoleoideae and Tuyamaelloideae) and contained genera with neotenic features, in two subclades. These features seemed to have originated by multiple heterochronic events: single origins were detected for 'protonemal neoteny' and 'primary neoteny', whereas 'secondary neoteny' probably evolved twice. Relationships within the large Lejeuneeae clade (43 genera) remained largely unresolved, although several putative lineages were detected in majority rule trees. Additional characters such as DNA sequences may provide better phylogenetic resolution in this group.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 143 , 391–410.  相似文献   

18.
Crews SC  Harvey MS 《ZooKeys》2011,(99):1-104
We relimit and revise the family Selenopidae to include four new genera and 27 new species from Australia and the Oriental Region. The family is redefined, as are the genera Anyphops Benoit, Garcorops Corronca, Hovops Benoit, Selenops Latreille, and Siamspinops Dankittipakul & Corronca, to accommodate the new genera and to correct previous inconsistencies in the diagnoses and definitions of the aforementioned genera. The species of Selenops that occur throughout India and China are also reviewed. Three species occur in China: Selenops bursarius Karsch 1879, also known from Japan, Korea and Taiwan, Selenops ollarius Zhu, Sha, & Chen 1990, and Selenops radiatus Latreille 1819, the type of the genus and most widespread selenopid. Selenops cordatus Zhu, Sha & Chen syn. n. is recognized as a junior synonym of Selenops radiatus. Amamanganopsgen. n. is monotypic, with Amamanganops baginawasp. n. (♀; from the Philippines). Godumopsgen. n. is monotypic, with Godumops caritussp. n. (♂; from Papua New Guinea). Karaopsgen. n. occurs throughout Australia and includes 24 species. A new combination is proposed for Karaops australiensis (L. Koch 1875) comb. n. (ex. Selenops), and the new species: Karaops gangariesp. n. (♀, ♂), Karaops monteithisp. n. (♀), Karaops alanlongbottomisp. n. (♂), Karaops keithlongbottomisp. n. (♂), Karaops larryoosp. n. (♂), Karaops jarritsp. n. (♂,♀), Karaops marrayagongsp. n. (♀), Karaops ravenisp. n. (♂,♀), Karaops badgeraddasp. n. (♀), Karaops burbidgeisp. n. (♂,♀), Karaops karrawarlasp. n. (♂,♀), Karaops julianneaesp. n. (♀), Karaops martamartasp. n. (♀), Karaops manaaynsp. n. (♀, ♂), Karaops vadlaadambarasp. n. (♀, ♂), Karaops pilkingtonisp. n. (♀, ♂), Karaops deserticolasp. n. (♀), Karaops ngarutjaranyasp. n. (♂,♀), Karaops francesaesp. n. (♂,♀), Karaops toolbrunupsp. n. (♀, ♂), the type species Karaops ellenaesp. n. (♂,♀), Karaops jenniferaesp. n. (♀), and Karaops dawarasp. n. (♀).The genus Makdiopsgen. n. contains five species from India and Nepal. A new combination is proposed for Makdiops agumbensis (Tikader 1969), comb. n., Makdiops montigenus (Simon 1889), comb. n., Makdiops nilgirensis (Reimoser 1934) comb. n.,(ex. Selenops). Also, there are two new species the type of the genus Makdiops mahishasurasp. n. (♀; from India), and Makdiops shivasp. n. (♀). The genus Pakawopsgen. n. is monotypic. A new combination is proposed for Pakawops formosanus (Kayashima 1943) comb. n. (ex. Selenops), known only from Taiwan. A new combination is proposed for Siamspinops aculeatus (Simon)comb. n. (ex. Selenops). The distribution and diversity of the studied selenopid fauna is discussed. Finally, keys are provided to all of the selenopid genera and to the species of Karaopsgen. n.and Makdiopsgen. n.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号