首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated human and mouse pancreatic islet cells and the rat insulinoma cell line RIN-m5F were used to examine the ability of recombinant interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) to regulate the expression of the class I and class II major histocompatibility (MHC) surface proteins and mRNA in beta-cells. Each cytokine increased significantly the expression of class I MHC proteins as determined by double indirect immunofluorescence microscopy and flow cytofluorimetric analysis. In the RIN-m5F cells, this increase in surface expressed class I MHC proteins was mirrored by an increase in the level of class I MHC mRNA. The order of potency of the cytokines on class I MHC expression was TNF-alpha plus IFN-gamma greater than or equal to IFN-gamma greater than or equal to TNF-alpha. While IFN-gamma or TNF-alpha alone were without effect, in combination they were found to induce class II MHC proteins on 30-40% of human or murine beta-cells. In contrast, IFN-gamma plus TNF-alpha did not induce detectable class II MHC proteins or mRNA in the RIN-m5F cells. These findings indicate that 1) TNF-alpha, in addition to IFN-gamma, upregulates the expression of beta-cell class I MHC proteins and mRNA, and 2) more than one signal is required for the induction of class II MHC proteins on beta-cells. The ability of IFN-gamma plus TNF-alpha to induce class II MHC proteins on only a fraction of the normal beta-cell population and not on RIN-m5F cells suggests that this response is related to the differentiation state of the beta-cell.  相似文献   

2.
To produce a monoclonal antibody specific to a mouse major histocompatibility complex (MHC) class II protein, we synthesized the complementary DNAs for the heavy and light chains of a monoclonal antibody by PCR amplification. These cDNAs were then introduced separately into tobacco plant cells. After performing Northern blot analysis to confirm the expression of each of the chain genes in the transformed plants, we constructed transgenic plants expressing both the heavy and light chains by sexual crossing. The expression of the heavy and light chain genes in the sexually crossed plant was confirmed by Northern and Western blot analyses, respectively. Fluorocytometric analysis showed that the plant-derived antibodies, which we purified using a protein G affinity column, bound specifically to target cells that expressed the cognate MHC class II molecules on their cell surfaces. The results of this study demonstrate that a monoclonal antibody against mouse MHC class II proteins can be expressed in transgenic plants. They also show the specific binding activity of plant-derived antibodies to cognate antigens.  相似文献   

3.
The major histocompatibility complex (MHC) genes code for proteins that play a critical role in the immune system response. The MHC genes are among the most polymorphic genes in vertebrates, presumably due to balancing selection. The two MHC classes appear to differ in the rate of evolution, but the reasons for this variation are not well understood. Here, we investigate the level of polymorphism and the evolution of sequences that code for the peptide-binding regions of MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). We found evidence for four expressed MHC class I loci and two expressed MHC class II loci. MHC genes in marmots were characterized by low polymorphism, as one to eight alleles per putative locus were detected in 38 individuals from three French Alps populations. The generally limited degree of polymorphism, which was more pronounced in class I genes, is likely due to bottleneck the populations undergone. Additionally, gene duplication within each class might have compensated for the loss of polymorphism at particular loci. The two gene classes showed different patterns of evolution. The most polymorphic of the putative loci, Mama-DRB1, showed clear evidence of historical positive selection for amino acid replacements. However, no signal of positive selection was evident in the MHC class I genes. These contrasting patterns of sequence evolution may reflect differences in selection pressures acting on class I and class II genes.  相似文献   

4.
Major histocompatibility complex class II (MHC II) molecules are expressed on the surface of antigen-presenting cells and display short bound peptide fragments derived from self- and nonself antigens. These peptide-MHC complexes function to maintain immunological tolerance in the case of self-antigens and initiate the CD4(+) T cell response in the case of foreign proteins. Here we report the application of LC-MS/MS analysis to identify MHC II peptides derived from endogenous proteins expressed in freshly isolated murine splenic DCs. The cell number was enriched in vivo upon treatment with Flt3L-B16 melanoma cells. In a typical experiment, starting with about 5 × 10(8) splenic DCs, we were able to reliably identify a repertoire of over 100 MHC II peptides originating from about 55 proteins localized in membrane (23%), intracellular (26%), endolysosomal (12%), nuclear (14%), and extracellular (25%) compartments. Using synthetic isotopically labeled peptides corresponding to the sequences of representative bound MHC II peptides, we quantified by LC-MS relative peptide abundance. In a single experiment, peptides were detected in a wide concentration range spanning from 2.5 fmol/μL to 12 pmol/μL or from approximately 13 to 2 × 10(5) copies per DC. These peptides were found in similar amounts on B cells where we detected about 80 peptides originating from 55 proteins distributed homogenously within the same cellular compartments as in DCs. About 90 different binding motifs predicted by the epitope prediction algorithm were found within the sequences of the identified MHC II peptides. These results set a foundation for future studies to quantitatively investigate the MHC II repertoire on DCs generated under different immunization conditions.  相似文献   

5.
Ag processing and presentation via MHC class II is essential for activation of CD4(+) T lymphocytes. gamma-IFN-inducible lysosomal thiol reductase (GILT) is present in the MHC class II loading compartment and has been shown to facilitate class II Ag processing and recall responses to Ags containing disulfide bonds such as hen egg lysozyme (HEL). Reduction of proteins within the MHC class II loading compartment is hypothesized to expose residues for class II binding and protease trimming. In vitro analysis has shown that the active site of GILT involves Cys(46) and Cys(49), present in a CXXC motif that shares similarity with the thioredoxin family. To define the functional requirements for GILT in MHC class II Ag processing, a GILT-deficient murine B cell lymphoma line was generated and stably transduced with wild-type and cysteine mutants of GILT. Intracellular flow cytometric, immunoblotting, and immunofluorescence analyses demonstrated that wild-type and mutant GILT were expressed and maintained lysosomal localization. Transduction with wild-type GILT reconstituted MHC class II processing of a GILT-dependent HEL epitope. Mutation of either Cys(46) or Cys(49) abrogated MHC class II processing of a GILT-dependent HEL epitope. In addition, biochemical analysis of these mutants suggested that the active site facilitates processing of precursor GILT to the mature form. Precursor forms of GILT-bearing mutations in Cys(200) or Cys(211), previously found to display thiol reductase activity in vitro, could not mediate Ag processing. These studies demonstrate that the thiol reductase activity of GILT is its essential function in MHC class II-restricted Ag processing.  相似文献   

6.
Major histocompatibility complex (MHC) class II molecules are membrane-anchored heterodimers on the surface of antigen presenting cells (APCs) that bind the T cell receptor, initiating a cascade of interactions that results in antigen-specific activation of clonal populations of T cells. The peptide binding/T cell recognition domains of rat MHC class II (alpha-1 and beta-1 domains) were expressed as a single exon for structural and functional characterization. These recombinant single-chain T cell receptor ligands (termed 'beta1alpha1' molecules) of approximately 200 amino acid residues were designed using the structural backbone of MHC class II molecules as template, and have been produced in Escherichia coli with and without N-terminal extensions containing antigenic peptides. Structural characterization using circular dichroism predicted that these molecules retained the antiparallel beta-sheet platform and antiparallel alpha-helices observed in the native MHC class II heterodimer. The proteins exhibited a cooperative two-state thermal folding-unfolding transition. Beta1alpha1 molecules with a covalently linked MBP-72-89 peptide showed increased stability to thermal unfolding relative to the empty beta1alpha1 molecules. This new class of small soluble polypeptide provides a template for designing and refining human homologues useful in detecting and regulating pathogenic T cells.  相似文献   

7.
 Comparison of peptides eluted from human class I and class II major histocompatibility complex (MHC) molecules and the proteins from which they are derived (source proteins) revealed that class I MHC bind peptides derived from proteins that are highly conserved, hydrophilic, and universally expressed, while the peptides themselves are hydrophobic and even more conserved than their source proteins. In contrast, source proteins for class II-bound peptides were not significantly more conserved than a random sample of proteins. Class II-bound peptides were generally more conserved than their source proteins but were significantly less conserved than class I-bound peptides. The characteristics of class I-bound peptides can probably be explained by the selectivity of processing and transport of peptides for binding by class I, while the relative lack of selectivity of peptide binding for class II may explain the high incidence of autoimmune diseases associated with alleles of these molecules. Received: 17 May 1999 / Revised: 5 August 1999  相似文献   

8.
Human cytomegalovirus (HCMV) glycoprotein US2 causes degradation of major histocompatibility complex (MHC) class I heavy-chain (HC), class II DR-alpha and DM-alpha proteins, and HFE, a nonclassical MHC protein. In US2-expressing cells, MHC proteins present in the endoplasmic reticulum (ER) are degraded by cytosolic proteasomes. It appears that US2 binding triggers a normal cellular pathway by which misfolded or aberrant proteins are translocated from the ER to cytoplasmic proteasomes. To better understand how US2 binds MHC proteins and causes their degradation, we constructed a panel of US2 mutants. Mutants truncated from the N terminus as far as residue 40 or from the C terminus to amino acid 140 could bind to class I and class II proteins. Nevertheless, mutants lacking just the cytosolic tail (residues 187 to 199) were unable to cause degradation of both class I and II proteins. Chimeric proteins were constructed in which US2 sequences were replaced with homologous sequences from US3, an HCMV glycoprotein that can also bind to class I and II proteins. One of these US2/US3 chimeras bound to class II but not to class I, and a second bound class I HC better than wild-type US2. Therefore, US2 residues involved in the binding to MHC class I differ subtly from those involved in binding to class II proteins. Moreover, our results demonstrate that the binding of US2 to class I and II proteins is not sufficient to cause degradation of MHC proteins. The cytosolic tail of US2 and certain US2 lumenal sequences, which are not involved in binding to MHC proteins, are required for degradation. Our results are consistent with the hypothesis that US2 couples MHC proteins to components of the ER degradation pathway, enormously increasing the rate of degradation of MHC proteins.  相似文献   

9.
Modulation of host immune responses has emerged as a common strategy employed by herpesviruses both to establish life-long infections and to affect recovery from infection. Herpes simplex virus 1 (HSV-1) blocks the major histocompatibility complex (MHC) class I antigen presentation pathway by inhibiting peptide transport into the endoplasmic reticulum. The interaction of viral gene products with the MHC class II pathway, however, has not been thoroughly investigated, although CD4(+) T cells play an important role in human recovery from infection. We have investigated the stability, distribution, and state of MHC class II proteins in glioblastoma cells infected with wild-type HSV-1 or mutants lacking specific genes. We report the following findings. (i) Wild-type virus infection caused a decrease in the accumulation of class II protein on the surface of cells and a decrease in the endocytosis of lucifer yellow or dextran conjugated to fluorescein isothiocyanate but no decrease in the total amount of MHC class II proteins relative to the levels seen in mock-infected cells. (ii) Although the total amount of MHC class II protein remained unchanged, the amounts of cell surface MHC class II proteins were higher in cells infected with the U(L)41-negative mutant, which lacks the virion host shutoff protein, and especially high in cells infected with the gamma(1)34.5-negative mutant. We conclude that infected cells attempt to respond to infection by increased acquisition of antigens and transport of MHC class II proteins to the cell surface and that these responses are blocked in part by the virion host shutoff protein encoded by the U(L)41 gene and in large measure by the direct or indirect action of the infected cell protein 34.5, the product of the gamma(1)34.5 gene.  相似文献   

10.
Bacterial superantigens (SAgs) are potent activators of T lymphocytes and play a pathophysiological role in Gram-positive septic shock and food poisoning. To characterize potential MHC class II binding sites of the bacterial SAg staphylococcal enterotoxin (SE) A, we performed alanine substitution mutagenesis throughout the C-terminus and at selected sites in the N-terminal domain. Four amino acids in the C-terminus were shown to be involved in MHC class II binding. Three of these amino acids, H225, D227 and H187, had a major influence on MHC class II binding and appeared to be involved in coordination of a Zn2+ ion. Alanine substitution of H225 and D227 resulted in a 1000-fold reduction in MHC class II affinity. Mutation at F47, which is equivalent to the F44 previously shown to be central in the MHC class II binding site of the SAg, SEB, resulted in a 10-fold reduction in MHC class II affinity. The combination of these mutations in the N- and C-terminal sites resulted in a profound loss of activity. The perturbation of MHC class II binding in the various mutants was accompanied by a corresponding loss of ability to induce MHC class II-dependent T cell proliferation and cytotoxicity. All of the SEA mutants were expressed as Fab-SEA fusion proteins and found to retain an intact T cell receptor (TCR) epitope, as determined in a mAb targeted MHC class II-independent T cell cytotoxicity assay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Gamma interferon (IFN-gamma) induces expression of the gene products of the major histocompatibility complex (MHC), whereas IFN-alpha/beta can interfere with or suppress class II protein expression. In separate studies, measles virus (MV) was reported to induce IFN-alpha/beta and to up-regulate MHC class II proteins. In an attempt to resolve this paradox, we examined the surface expression of MHC class I and class II proteins in MV-infected peripheral monocytes in the presence and absence of IFN-alpha/beta. Infection of purified monocytes with Edmonston B MV resulted in an apparent increase in cell surface expression of HLA-A, -B, and -C class I proteins, but it had no effect on the expression of HLA-DR class II proteins. MV-infected purified monocytes expressed IFN-alpha/beta, but no measurable IFN-gamma expression was detected in supernatant fluids. Class II protein expression could be enhanced by coculture of purified monocytes with uninfected peripheral blood mononuclear cell (PBMC) supernatant. MV infection of PBMCs also did not affect expression of class II proteins, but the expression of HLA-A, -B, and -C class I proteins was increased two- to threefold in most donor cells. A direct role for IFN-alpha/beta suppression of MHC class II protein expression was not evident in monocytes since MV suppressed class II protein expression in the absence of IFN-alpha/beta. Taken together, these data suggest that MV interferes with the expression of peptide-loaded class II complexes, an effect that may potentially alter CD4(+)-T-cell proliferation and the cell-mediated immune responses that they help to regulate.  相似文献   

13.
Class II major histocompatibility complex (MHC) proteins bind peptides and present them at the cell surface for interaction with CD4+ T cells as part of the system by which the immune system surveys the body for signs of infection. Peptide binding is known to induce conformational changes in class II MHC proteins on the basis of a variety of hydrodynamic and spectroscopic approaches, but the changes have not been clearly localized within the overall class II MHC structure. To map the peptide-induced conformational change for HLA-DR1, a common human class II MHC variant, we generated a series of monoclonal antibodies recognizing the beta subunit that are specific for the empty conformation. Each antibody reacted with the empty but not the peptide-loaded form, for both soluble recombinant protein and native protein expressed at the cell surface. Antibody binding epitopes were characterized using overlapping peptides and alanine scanning substitutions and were localized to two distinct regions of the protein. The pattern of key residues within the epitopes suggested that the two epitope regions undergo substantial conformational alteration during peptide binding. These results illuminate aspects of the structure of the empty forms and the nature of the peptide-induced conformational change.  相似文献   

14.
The three-spined stickleback (Gasterosteus aculeatus) is an important model organism for investigations on the maintenance of polymorphism of the major histocompatibility complex (MHC) of vertebrates. Analysis of functional aspects of MHC diversity in stickleback would benefit from the availability of MHC specific reagents. Here we characterize antisera raised against recombinant fusion proteins of stickleback MHC class I alpha and class II alpha and beta. Western blot analysis using recombinant proteins confirmed the specificity of the antisera. In brain and muscle preparations, neither of the MHC types was detectable. High levels of each MHC receptor type were observed in gills and spleen and lower levels in head kidneys. In histological sections of gills, epithelial cells of primary and secondary lamellae stained positive with MHC class I antiserum, while single, scattered cells stained positive for MHC class II. In sections of spleen and head kidney, considerable numbers of cells positive for either MHC type were detected. Molecular weight shift in SDS-PAGE after deglycosylation of MHC class I alpha and class II beta confirmed the predicted glyco-protein character of the molecules. The majority of MHC II alpha was not glycosylated; only a small fraction of MHC II alpha was susceptible to deglycosylation. This suggests differential expression of the two stickleback MHC II alpha genes (Gaac-DAA, Gaac-DBA) only one of which (Gaac-DBA) has a site for N-linked glycosylation.  相似文献   

15.
Schmid D  Münz C 《Autophagy》2007,3(2):133-135
The adaptive immune system is orchestrated by CD4+ T cells. These cells detect peptides presented on Major Histocompatibility Complex (MHC) class II molecules, which are loaded in late endosomes with products of lysosomal proteolysis. One pathway by which proteins gain access to degradation in lysosomes is macroautophagy. We recently showed that constitutive macroautophagy can be detected in cells relevant for the immune system, including dendritic cells. In these antigen presenting cells, autophagosomes frequently fused with MHC class II antigen loading compartments and targeting of Influenza matrix protein 1 (MP1) for macroautophagy enhanced MHC class II presentation to MP1-specific CD4+ T cell clones up to 20 fold. Our findings indicate that macroautophagy is a constitutive and efficient pathway of antigen delivery for MHC class II presentation. We suggest that this pathway samples intracellular proteins for immune surveillance and induction of tolerance in CD4+ T cells, and could be targeted for improved MHC class II presentation of vaccine antigens.  相似文献   

16.
17.
The enterotoxins of Staphylococcus aureus (SE) are extremely potent activators of human and mouse T lymphocytes. In general, T cell responses to SE are MHC class II dependent (presumably reflecting the ability of SE to bind directly to MHC class II molecules) and restricted to responding cells expressing certain T cell receptor beta-chain variable (TCR V beta) domains. Recently we demonstrated that CD8+ CTL expressing appropriate TCR V beta could recognize SE presented on MHC class II-bearing target cells. We now show that MHC class II expression is not strictly required for T cell recognition of SE. Both human and mouse MHC class II negative target cells could be recognized (i.e., lysed) in a SE-dependent fashion by CD8+ mouse CTL clones and polyclonal populations, provided that the CTL expressed appropriate TCR V beta elements. SE-dependent lysis of MHC class II negative targets by CTL was inhibited by mAb directed against CD3 or LFA-1, suggesting that SE recognition was TCR and cell contact dependent. Furthermore, different SE were recognized preferentially by CTL on MHC class II+ vs MHC class II- targets. Taken together, our data raise the possibility that SE binding structures distinct from MHC class II molecules may exist.  相似文献   

18.
The MHC class II invariant chain (Ii or CD74) in higher vertebrates is necessary for normal MHC class II loading in endosomal compartments. Detection of an Ii chain in fish would greatly support the idea that MHC class II function in fish and higher vertebrates is similar. Before this study only Ii homologues had been reported in fish that are unlikely to perform true Ii function. In the present study two Ii-like genes, Onmy-Iclp-1 and Onmy-Iclp-2, were detected in rainbow trout. Conservation of elements, particularly in Onmy-Iclp-1, suggests that the encoded proteins may be involved in MHC class II transport and peptide loading as is the Ii protein. The expression pattern of both rainbow trout genes was similar to that of the MHC class II beta chain, with strong expression in the lymphoid tissues, gills and intestine. Analysis of separated peripheral blood leucocyte fractions indicated that expression of Onmy-Iclp-1, Onmy-Iclp-2 and the MHC class II beta chain were all highest in B lymphocytes. This agrees with the expectation that the functions of the products of the new genes are closely associated with MHC class II. It is interesting why in rainbow trout there are two proteins that may function similar to Ii in higher vertebrates.  相似文献   

19.
Activation of MHC-restricted rat T cells by cloned syngeneic thyrocytes   总被引:1,自引:0,他引:1  
We have previously demonstrated that rat thyrocytes express MHC class II Ag (RT1.B&D) in response to IFN-gamma. To determine whether MHC class II-positive thyrocytes can be recognized by MHC-restricted T cells, we used our clone of rat thyroid cells (1B-6) derived from the Fisher rat thyroid cell line (FRTL-5) and known to express MHC class II Ag in response to recombinant rat IFN-gamma. CD4+ and CD8+ normal syngeneic Fisher rat spleen T cells were selected by flow cytometry and averaged greater than 96% purity. We demonstrated that irradiated MHC class II-positive but not class II-negative 1B-6 thyrocytes stimulated CD4+ T cells in a primary sensitization reaction over 4 days. In contrast, CD8+ T cells had no response in similar experiments. This stimulation of CD4+ T cells was dose dependent for 1B-6 thyrocytes and was abrogated by anti-rat MHC class II mAb (MRC OX-6). Autoreactive (Fisher) and alloreactive (Buffalo) T cell lines and isolated CD4+ T cells derived from these lines, which were developed against Fisher rat spleen cells, similarly recognized MHC class II Ag expressed on 1B-6 cells but had no detectable response to 1B-6 MHC class II-negative thyrocytes or MHC class II-positive human thyroid cells. The CD4+ T cell recognition of 1B-6 cells via MHC class II Ag supports our previous data with autologous human thyroid T cell co-cultures and is indicative of an autospecific role for thyrocytes in the development of autoimmune thyroiditis.  相似文献   

20.
T cell expression of class II MHC/peptide complexes may be important for maintenance of peripheral self-tolerance, but mechanisms underlying the genesis of class II MHC glycoproteins on T cells are not well resolved. T cell APC (T-APC) used herein were transformed IL-2-dependent clones that constitutively synthesized class II MHC glycoproteins. When pulsed with myelin basic protein (MBP) and injected into Lewis rats, these T-APC reduced the severity of experimental autoimmune encephalomyelitis, whereas unpulsed T-APC were without activity. Normal MBP-reactive clones cultured without APC did not express class II MHC even when activated with mitogens and exposed to IFN-gamma. However, during a 4-h culture with T-APC or macrophage APC, recognition of MBP or mitogenic activation of responder T cells elicited high levels of I-A and I-E expression on responders. Acquisition of class II MHC glycoproteins by responders was resistant to the protein synthesis inhibitor cycloheximide, coincided with transfer of a PKH26 lipophilic dye from APC to responders, and resulted in the expression of syngeneic and allogeneic MHC glycoproteins on responders. Unlike rested I-A- T cell clones, rat thymic and splenic T cells expressed readily detectable levels of class II MHC glycoproteins. When preactivated with mitogens, naive T cells acquired APC-derived MHC class II molecules and other membrane-associated proteins when cultured with xenogeneic APC in the absence of Ag. In conclusion, this study provides evidence that APC donate membrane-bound peptide/MHC complexes to Ag-specific T cell responders by a mechanism associated with the induction of tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号