首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of fasting and refeeding on oxidation, lipogenesis and amino acid synthesis from ketone bodies has been studied in neonatal chick duodenal mucosa. Oxidation and amino acid synthesis were higher from acetoacetate and were stimulated by fasting from both 3-hydroxybutyrate and acetoacetate. On the contrary, lipogenesis was always higher from 3-hydroxybutyrate and fasting reduced lipogenesis rate from acetoacetate (by 66%) but not from 3-hydroxybutyrate. Results suggests the existence of a cytosolic fast-dependent acetoacetyl-CoA synthetase in chick duodenal mucosa which is involved in phospholipid synthesis.  相似文献   

2.
Lipid synthesis from acetoacetate and 3-hydroxybutyrate was studied in chick embryo from 15 to 21 days and in chick neonate from 1 to 21 days. Embryonic spinal cord showed higher ability than brain to incorporate acetoacetate into total lipids, although a sharp decrease was found at hatching. 3-Hydroxybutyrate incorporation into total lipids was also higher in spinal cord than in brain, especially during the embryonic period. Phospholipids were the main lipids formed in both tissues from both precursors. An appreciable percentage of radioactivity was also recovered as free cholesterol, especially during the embryonic phase. The developmental patterns of amino acid synthesis from acetoacetate and 3-hydroxybutyrate were similar in both tissues: a clear increase after hatching was followed by a decrease at day 4 of neonatal life. Acetoacetate was a better substrate for amino acid synthesis than 3-hydroxybutyrate during the embryonic development in both tissues. Oxidation of both precursors to CO2 strongly decreased between 15 and 21 days of embryonic development both in brain and spinal cord.  相似文献   

3.
1. The activities of the drug metabolizing enzymes ethoxycoumarin-O-deethylase, glutathione-S-transferase, and protein concentrations were measured in vitro in the liver, kidney and duodenal mucosa of camels, sheep, goats and rats. 2. Enzyme activities were generally higher in the liver than in the kidney and duodenal mucosa in the four species studied. 3. The activities of ethoxycoumarin-O-deethylase and glutathione-S-transferase in liver of male kids were about one third and half of that in adult male goats, respectively. In the kidney and duodenal mucosa of male kids, the activity of glutathione-S-transferase was about 70% and 53% of that in the mature male goat, respectively. In the latter tissues, however, there was no detectable activity of ethoxycoumarin-O-deethylase. 4. In general, goats and sheep had similar activities of the two enzymes which were significantly higher than those found in camels and rats. 5. Some sex-related differences were noted in the activity of the two enzymes studied. Female sheep had significantly higher hepatic glutathione-S-transferase than the male: while the enzyme activity in the kidney and duodenal mucosa of male goats was significantly higher than in females. Male rats had higher hepatic ethoxycoumarin-O-deethylase activity than females.  相似文献   

4.
1. Two distinct fatty acid binding proteins (FABPs) were isolated and characterized from chicken duodenal mucosa. 2. Molecular weight, functional activity, immunospecificity, mRNA expression, and amino acid composition data for the 14 kDa chicken intestinal FABP was similar, yet not identical, to that of a previously isolated chicken liver FABP. 3. Bound fatty acids were shown to produce isoforms of the 14 kDa intestinal protein but not the larger molecular weight intestinal FABP.  相似文献   

5.
The in vivo utilization ofd-3-hydroxy[3-14C]butyrate for oxidation in the whole animal and for lipid and amino acid synthesis in brain and spinal cord of overnight-fasted 15-day-old chicks has been measured. Appreciable amounts of injected 3-hydroxy[3-14C]butyrate were expired as14CO2 one hour after injection, the total amount of which increased with increasing dosages. Lipid synthesis was high in both brain and spinal cord. Free, cholesterol and phospholipids were the main lipids labeled in both, tissues, increasing with time after injection up to 120 min. The incorporation of radioactivity into triglycerides, esterified cholesterol and free fatty acids was not time-dependent. Increased concentrations of 3-hydroxybutyrate gave rise to higher synthetic rates both in brain and spinal cord The rate of amino acid synthesis was slightly higher in brain than in spinal cord. Glutamate was always the major amino acid formed.  相似文献   

6.
The biosynthesis of retinoic acid from retinol by rat tissues in vitro   总被引:3,自引:0,他引:3  
This report shows that a spectrum of vitamin A-dependent tissues can produce retinoic acid by synthesis in situ, indicates that cellular retinol and retinoic acid binding proteins are not obligatory to retinoic acid synthesis, and provides initial characterization of retinoic acid synthesis by rat tissues. Retinoic acid synthesis from retinol was detected in homogenates of rat testes, liver, lung, kidney, and small intestinal mucosa, but not spleen. Zinc did not stimulate the conversion of retinol into retinoic acid by liver homogenates. Retinoic acid synthesis was localized in cytosol of liver and kidney, where its rate of synthesis from retinol was fourfold (liver) and sevenfold (kidney) slower than from retinal. The synthesis of retinoic acid from retinol required NAD and was not supported by NADP. NADH (0.5 mM) reduced retinoic acid synthesis from retinol, supported by NAD (2 mM), by 50-70%, but was fivefold less potent in reducing retinoic acid synthesis from retinal. Dithiothreitol enhanced the conversion of retinol, but not retinal, into retinoic acid. EDTA inhibited the conversion of retinol into retinoic acid slightly (13%, liver; 29%, kidney). A high ethanol concentration (100 mM), relative to retinoid substrate (10 microM), inhibited retinoic acid synthesis from retinol (liver, 54%; kidney, 30%) and from retinal (30%, liver; 9%, kidney). 4'-(9-Acridinylamino)methansulfon-m-anisidine, an inhibitor of aldehyde oxidase, and disulfiram, a sulfhydryl-group crosslinking agent, were potent inhibitors of retinoic acid synthesis at 10 microM or less, and seemed equipotent in liver and kidney. 4-Methylpyrazole, an inhibitor of ethanol metabolism, also inhibited retinoic acid synthesis from retinol, but was less potent than the former two inhibitors, and affected liver to a greater extent than kidney, particularly with retinal as substrate.  相似文献   

7.
Undegraded polyribosome preparations may be obtained from chick intestinal mucosa if ribonuclease activity is strictly controlled. This is best achieved by homogenization of the mucosa directly in rat liver cell-sap. 2. The extent of amino acid incorporation by chick intestinal polyribosomes is greatly influenced by the source of the cell-sap. Sephadex-treated intestinal cell-sap caused impaired incorporation and release of completed polypeptide chains, whereas Sephadex-treated rat liver cell-sap promoted the polymerization of up to 90 amino acids per ribosome. Under optimum conditions 30-35% of the nascent polypeptide chains are completed and released. 3. The preparation of an antiserum against the calcium-binding protein formed in response to vitamin D is described. It is shown that the antiserum is highly specific for calcium-binding protein. 4. This antiserum was used to investigate the ability of chick intestinal polyribosomes to synthesize calciumbinding protein. Only polyribosomes from chicks receiving vitamin D have the ability to synthesize calcium-binding protein. Moreover, the product formed in vitro has the same electrophoretic mobility as calcium-binding protein synthesized in vivo. 5. It is concluded that one of the main functions of vitamin D in the small intestine is to induce the synthesis de novo of calcium-binding protein.  相似文献   

8.
1. Activities of 3-oxo acid CoA-transferase, D-3-hydroxybutyrate dehydrogenase, hexokinase and carnitine palmitoyltransferase have been measured in the gastrointestinal tract. 2. Activity of 3-oxo acid CoA-transferase in the glandular mucosa of the stomach was as high as that in heart and kidney, and was 2--4 times greater than that in other regions of the gastrointestinal tract. It is suggested that metabolism of acetoacetate might support acid secretion on re-feeding after a period without food. 3. All regions of the gastrointestinal tract have the capacity to use ketone bodies, and it is likely that both muscle and mucosa will contribute to their utilization. 4. Activity of hexokinase was twice the rate of glucose utilization by the jejunum under anaerobic conditions. The maximal rate of glucose metabolism in the jejunum may not be substantially different from that in other regions of the gastrointestinal tract. 5. Starvation decreased the capacity for metabolism of glucose in several regions of the intestine. 6. Activities of carnitine palmitolytransferase in the stomach, jejunum and colon were similar, and about one-third of that in the liver. Activity in the jejunum was much higher than the apparent rate of oxidation of exogenous fatty acid. 7. The results do not suggest any large variation between tissues of the gastrointestinal tract in metabolism of glucose or fatty acids, whereas metabolism of ketone bodies may be more prominent in the stomach.  相似文献   

9.
Synthesis of ophthalmic acid in liver and kidney in vivo.   总被引:4,自引:0,他引:4       下载免费PDF全文
The synthesis of ophthalmic acid, an analogue of glutathione, was studied in vivo in mouse liver and kidney after administration of either L-alpha-aminobutyrate or L-gamma-glutamyl-L-alpha-aminobutyrate as precursor. L-alpha-aminobutyrate accumulated to a much greater extent, and induced a much greater synthesis of ophthalmic acid in the liver than in the kidney. In contrast, L-gamma-glutamyl-L-alpha-aminobutyrate initiated a large and more rapid synthesis of ophthalmic acid in the kidney than in the liver. Experiments with L-gamma-[G(-14)C]glutamyl-L-alpha-aminobutyrate showed that, although part of the dipeptide is degraded to its constituent amino acids, a significant proportion is directly incorporated into kidney ophthalmic acid. In contrast L-gamma-glutamyl-L-alpha-aminobutyrate serves poorly as a direct precursor of liver ophthalmic acid. The present results show that kidney gamma-glutamyl tripeptide synthesis can proceed directly from an exogenous gamma-glutamyl dipeptide precursor.  相似文献   

10.
Formation of glucosides of the bile acids chenodeoxycholic, ursodeoxycholic, deoxycholic and hyodeoxycholic acids has been detected in microsomes from human liver, kidney and intestinal mucosa. Hepatic and extrahepatic bile acid glucosyltransferase activities were characterized with respect to kinetic parameters and other catalytic properties. Whereas no marked organ-specific differences in the affinities of individual bile acids toward hepatic and extrahepatic glucosyltransferases were observed, microsomes from extrahepatic sources showed twice to 5-times the maximal rates of bile acid glucosidation estimated with microsomes from liver. In addition to bile acid glucoside formation, microsomes from human liver, kidney and intestinal mucosa catalyzed the synthesis of dolichyl phosphoglucose acting as natural glucosyl donor in bile acid glucosidation.  相似文献   

11.
Dodecylthioacetic acid (DTA) was both omega-hydroxylated and sulfur-oxygenated at about equal rates by the microsomal fraction from liver and kidney. Feeding tetradecylthioacetic acid (TTA) for 4 days increased omega-hydroxylation 4-fold only in the liver. The sulfur oxygenation rate was similar in liver, kidney and lung, barely detectable in heart and absent in intestinal mucosa. In isolated hepatocytes from normal rats the major metabolite from dodecylthioacetic acid was carboxypropylsulfoxyacetic acid. In hepatocytes from adapted rats, the main product was identified as bis(carboxymethyl)sulfide. In kidney perfusion experiments dodecylthioacetic acid was metabolized to carboxypropyl-sulfoxyacetic acid and preferentially excreted in the urine. In hindquarter perfusion experiments no oxidative metabolites were detected. These experiments show that only liver and kidney can metabolize dodecylthioacetic acid completely and that omega-hydroxylation in the liver is the only inducible activity, in addition to the beta-oxidation.  相似文献   

12.
Abstract Several alcohols were examined as substrates for the polyhydroxyalkanoate synthesis by Paracoccus denitrificans. The bacterium synthesized a homopolyester of poly(3-hydroxybutyrate) from ethanol. When n -pentanol was used as growth substrate, homopolyester poly(3-hydroxyvalerate) was synthesized, whereas copolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate) accumulated during bacterial growth on n -propanol. When alcohols were automatically fed as growth substrates, ethanol, n -propanol, and n -pentanol gave higher polyester content. Although poly(3-hydroxybutyrate) was synthesized from methanol or n -butanol, its content was very low. Under nitrogen-deficient conditions, polyester;content in cells increased, especially with ethanol, n -propanol, and n -pentanol. Using a mixture of two alcohols P. denitrificans could synthesize polyesters with varying relative ratios of 3-hydroxybutyrate to 3-hydroxyvalerate.  相似文献   

13.
The biochemical pathways involved in acetyl-L-carnitine utilization were investigated in conscious, freely moving rats by 13C NMR spectroscopy. Following 4-h [(1,2-13C2)acetyl]-L-carnitine infusion in fasted animals, the free carnitine levels in serum were increased, and an efflux of unlabelled acetyl-L-carnitine from tissues was observed. [(1,2-13C2)Acetyl]-L-carnitine was found to enter biosynthetic pathways in liver, and the acetyl moiety was incorporated into both cholesterol and 3-hydroxybutyrate carbon skeleton. In accord with the entry of [(1,2-13C2)acetyl]-L-carnitine in the mitochondrial acetylCoA pool associated with tricarboxylic acid cycle, the 13C label was also found in liver glutamate, glutamine, and glutathione. The analysis of the 13C-labelling pattern in 3-hydroxybutyrate and cholesterol carbon skeleton provided evidence that the acetyl-L-carnitine-derived acetylCoA pool used for ketone bodies synthesis in mitochondria was homogeneous, whereas cholesterol was synthesized from two different acetylCoA pools located in the extra- and intramitochondrial compartment, respectively. Furthermore, cholesterol molecules were shown to be preferentially synthesized by the metabolic route involving the direct channelling of CoA-activated mitochondria-derived ketone bodies into 3-hydroxy-3-methylglutarylCoA pathway, prior to equilibration of their acyl groups with extramitochondrial acetylCoA pool via acetoacetylCoA thiolase.  相似文献   

14.
The regulation of fatty acid synthesis, measured by 3H2O incorporation into fatty acids, was studied in hepatocytes from rats meal-fed a high carbohydrate diet. Ca2+ increased fatty acid synthesis, which became maximal at physiological concentrations of Ca2+. Ethanol markedly inhibited fatty acid synthesis. Maximum inhibition was reached at 4 mm ethanol. However, ethanol did not decrease lipogenesis in the presence of pyruvate. dl-3-Hydroxybutyrate increased fatty acid synthesis. Acetoacetate decreased lipogenesis when used alone and reversed the effect of dl-3-hydroxybutyrate when both were added. dl-3-Hydroxybutyrate moderately decreased flux through the pyruvate dehydrogenase system and markedly inhibited citric acid cycle flux. By measurement of glycolytic intermediates, two ethanol-induced crossover points were observed: one between fructose 6-phosphate and fructose 1,6-diphosphate and the other between glyceraldehyde 3-phosphate and 1,3-diphosphoglycerate. The concentrations of pyruvate and citrate were decreased by ethanol and increased by dl-3-hydroxybutyrate. Aminooxyacetate and l-cycloserine inhibited fatty acid synthesis and these effects were overcome by dl-3-hydroxybutyrate. Results indicate that in hepatocytes in a metabolic state favoring a high rate of lipogenesis, production of reducing equivalents in the cytosol via ethanol metabolism inhibits fatty acid synthesis from glucose by inhibition of both phosphofructokinase and glyceraldehyde 3-phosphate dehydrogenase and by promoting reduction of pyruvate to lactate. Production of reducing equivalents in the mitochondria via dl-3-hydroxybutyrate enhances fatty acid synthesis in liver cells by altering the partition of citrate between oxidation in the citric acid cycle and conversion to fatty acids in favor of the latter pathway. These interactions indicate the importance of the intracellular pyridine nucleotide redox states in the rate control of hepatic fatty acid synthesis.  相似文献   

15.
1. The effect of exogenous cortisone on concentration of free amino acids in serum, skeletal muscle, kidney, small intestine and liver was studied. 2. The amino acid pool in serum, skeletal muscle and small intestine decreased significantly. 3. Glutamine synthesis increased significantly in skeletal muscle. 4. Levels of branched amino acids increased in serum and small intestine. 5. Levels of alanine increased in kidney and liver.  相似文献   

16.
Glycolyl-CoA can be formed during the course of the beta-oxidation by rat liver mitochondria of 4-hydroxybutyrate. The existence of this beta-oxidation has been previously supported by the occurrence of 4-hydroxybutyrate and its beta-oxidation catabolites in urine from patients with 4-hydroxybutyric aciduria, an inborn error of gamma-aminobutyric acid metabolism due to the deficiency of succinic semialdehyde dehydrogenase. The characteristics of the mitochondrial beta-oxidation of 4-hydroxybutyrate were, in rat liver, compared with those of the mitochondrial beta-oxidation of butyrate. The inhibition by malonate of the oxidation of 4-hydroxybutyrate was about twofold weaker than that of oxidation of butyrate, whereas both oxidations were abolished by preincubating the mitochondria with 1 mM valproic acid, a known inhibitor of mitochondrial beta-oxidation. Mitochondria from rat kidney cortex were demonstrated to catalyse, as previously shown for hepatic mitochondria, the carnitine-dependent oxidation of 12-hydroxylauroyl-CoA-omega-Hydroxymonocarboxylyl-CoAs are thus concluded to be precursors of glycolyl-CoA also in rat kidney cortex. In addition, 3-hydroxypyruvate was found to be a precursor of glycolyl-CoA, since it was oxidized by bovine heart pyruvate dehydrogenase with a cofactor requirement similar to that of pyruvate oxidation. Glycolyl-CoA was a substrate of carnitine acetyltransferase (pigeon breast muscle). Pig heart citrate synthase was capable of catalyzing the condensation of glycolyl-CoA with oxaloacetate. The product of this reaction induced low NADH production rates dependent on the addition of porcine heart aconitase and isocitrate dehydrogenase.  相似文献   

17.
The effects of dietary iols on gastric, duodenal mucosa and liver were investigated ina rat model. Unsaturated fatty acid profles and in vitro prostaglandin (PG) synthesis (PGE2, PGF, 6-oxo-PGF and thromboxane B2). were measured after 14 days of dietary oil supplements.There were no significant differences in prostanoid synthesis between rats fed coconut oil (high saturated fat content) and standard diet. After fish oil supplement, tissue eicosapentaenoic acid and docosahexaenoic acid levels were higher, arachidonic acid levels were lower, and prostanoid synthesis was reduced in both stomach and duodenum. After corn oil and evening primrose oil, linoleic acid levels were variaby increased, bt there were no significant differences in arachidonic acid or prostanoid synthesis. Dihomogamma-linolenic acid levels were slightly increased after evening primrose oil.Dietary incorporation of fatty acids into gastroduodenal tissue is not uniform. When incorporated, fatty acids can modify prostaglandin synthesis.  相似文献   

18.
19.
In rodents, fasting increases the carnitine concentration in the liver by an up-regulation of enzymes of hepatic carnitine synthesis and novel organic cation transporter (OCTN) 2, mediated by activation of peroxisome proliferator-activated receptor (PPAR) α. This study was performed to investigate whether such effects occur also in pigs which like humans, as nonproliferating species, have a lower expression of PPARα and are less responsive to treatment with PPARα agonists than rodents. An experiment with 20 pigs was performed, which were either fed a diet ad-libitum or fasted for 24 h. Fasted pigs had higher relative mRNA concentrations of the PPARα target genes carnitine palmitoyltransferase 1 and acyl-CoA oxidase in liver, heart, kidney, and small intestinal mucosa than control pigs, indicative of PPARα activation in these tissues (P<.05). Fasted pigs had a higher activity of γ-butyrobetaine dioxygenase (BBD), enzyme that catalyses the last step of carnitine biosynthesis in liver and kidney, and higher relative mRNA concentrations of OCTN2, the most important carnitine transporter, in liver, kidney, skeletal muscle, and small intestinal mucosa than control pigs (P<.05). Fasted pigs moreover had higher concentrations of free and total carnitine in liver and kidney than control pigs (P<.05). This study shows for the first time that fasting increases the activity of BBD in liver and kidney and up-regulates the expression of OCTN2 in various tissues of pigs, probably mediated by PPARα activation. It is concluded that nonproliferating species are also able to cover their increased demand for carnitine during fasting by an increased carnitine synthesis and uptake into cells.  相似文献   

20.
1. 3-Hydroxybutyrate dehydrogenase (EC 1.1.1.30) activities in sheep kidney cortex, rumen epithelium, skeletal muscle, brain, heart and liver were 177, 41, 38, 33, 27 and 17μmol/h per g of tissue respectively, and in rat liver and kidney cortex the values were 1150 and 170 respectively. 2. In sheep liver and kidney cortex the 3-hydroxybutyrate dehydrogenase was located predominantly in the cytosol fractions. In contrast, the enzyme was found in the mitochondria in rat liver and kidney cortex. 3. Laurate, myristate, palmitate and stearate were not oxidized by sheep liver mitochondria, whereas the l-carnitine esters were oxidized at appreciable rates. The free acids were readily oxidized by rat liver mitochondria. 4. During oxidation of palmitoyl-l-carnitine by sheep liver mitochondria, acetoacetate production accounted for 63% of the oxygen uptake. No 3-hydroxybutyrate was formed, even after 10min anaerobic incubation, except when sheep liver cytosol was added. With rat liver mitochondria, half of the preformed acetoacetate was converted into 3-hydroxybutyrate after anaerobic incubation. 5. Measurement of ketone bodies by using specific enzymic methods (Williamson, Mellanby & Krebs, 1962) showed that blood of normal sheep and cattle has a high [3-hydroxybutyrate]/[acetoacetate] ratio, in contrast with that of non-ruminants (rats and pigeons). This ratio in the blood of lambs was similar to that of non-ruminants. The ratio in sheep blood decreased on starvation and rose again on re-feeding. 6. The physiological implications of the low activity of 3-hydroxybutyrate dehydrogenase in sheep liver and the fact that it is found in the cytoplasm in sheep liver and kidney cortex are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号