首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The diurnal variation in insulin-stimulated systemic glucose and amino acid utilization was investigated in eleven pigs of approximately 40 kg. Pigs were fed isoenergetic/isoproteinic diets (366 kJ/kg BW (0.75) per meal) in two daily rations (06:00 and 18:00 h). After a 3-week habituation period, hyperinsulinemic euglycemic euaminoacidemic clamp studies (by intra-portal insulin, glucose and amino acids infusion and arterial blood sampling) were performed starting at 06:00 or 18:00 h (while skipping the meal), using a cross-over within-animal design. Basal (preclamp) plasma concentrations of insulin, glucose, lactate, individual amino acids and urea were similar in the morning compared to the evening. Insulin-stimulated ( approximately 4-fold increase over basal) systemic glucose utilization was similar (17.6+/-1.4 and 18.9+/-1.8 mg.kg (-1).min (-1)) but amino acid utilization was 19% greater in the morning VS. the evening (2.37+/-0.21 VS. 1.99+/-0.15 mg.kg (-1).min (-1), p<0.05), respectively. Insulin-stimulated plasma lactate concentrations remained constant in the morning (0.77+/-0.06 to 0.71+/-0.04 mmol.l (-1)) but declined in the evening (0.89+/-0.09 to 0.65+/-0.06 mmol.l (-1), p<0.05). By contrast, insulin-stimulated plasma urea concentrations declined in the morning (2.48+/-0.11 to 2.03+/-0.10 mmol.l (-1), p<0.005) but remained constant in the evening (2.18+/-0.14 to 2.12+/-0.12 mmol.l (-1)). In conclusion, pigs fed identical meals at 12-hour intervals follow a clear diurnal biorhythm in protein anabolism, with greater insulin-stimulated systemic amino acid utilization and lower plasma urea response in the morning compared to the evening.  相似文献   

2.
The aim of the present study was to examine the effects of time of day on stroke parameters and motor organization in front-crawl swimmers. In a randomized order, fourteen regional swimmers (age: 18.7 ± 1.6 years) performed maximal front crawls over 12.5 m during two experimental sessions; the morning sessions were conducted between 07:00 and 09:00 h and the evening experiments were conducted between 17:00 and 19:00 h. Stroke parameters (swim velocity, stroke rate [SR], and stroke length), motor organization (arm stroke phases and arm coordination) were calculated from aerial and underwater side-view cameras. Arm coordination was quantified in terms of an index of coordination (Idc). Results showed that oral temperature was significantly higher in the evening 36.8 ± 0.2 °C than in the morning 36.1 ± 0.2 °C (p < 0.001), with a morning–evening difference of ?0.7 ± 0.1 °C. Performance was also higher in the evening (7.4 ± 0.6 s) than in the morning (8.0 ± 0.8 s) (p < 0.001), with a morning–evening difference of 0.55 ± 0.30 s. Likewise, values of swim velocity and SR were higher in the evening than in the morning (p < 0.001) with morning–evening differences of ?0.10 ± 0.04 m s?1 and ?3.99 ± 2.91 cycles min?1, respectively. Percentage Idc increased significantly (p < 0.01) between the morning (?5.1 ± 6.5%) and evening (?1.6 ± 7.0%). It is concluded that maximal swimming trials are performed better in the evening than the morning, and that this might be explained by better stroke parameters and motor organization at this time.  相似文献   

3.
The adequate time to perform physical activity (PA) to maintain optimal circadian system health has not been defined. We studied the influence of morning and evening PA on circadian rhythmicity in 16 women with wrist temperature (WT). Participants performed controlled PA (45?min continuous-running) during 7 days in the morning (MPA) and evening (EPA) and results were compared with a no-exercise-week (C). EPA was characterized by a lower amplitude (evening: 0.028?±?0.01?°C versus control: 0.038?±?0.016?°C; p?<?0.05) less pronounced second-harmonic (power) (evening: 0.41?±?0.47 versus morning: 1.04?±?0.59); and achrophase delay (evening: 06:35?±?02:14?h versus morning: 04:51?±?01:11?h; p?<?0.05) as compared to MPA and C. Performing PA in the late evening might not be as beneficial as in the morning.  相似文献   

4.
This study was designed to understand the cellular mechanisms responsible for defects in the insulin-stimulated signal transduction pathway in a type 2 diabetic animal model. We examined the in vitro PC-1 phosphodiesterase activity and glucose uptake in adipose tissue of streptozotocin (STZ)-induced type 2 diabetic rats. The PC-1 activity was significantly increased in adipose tissue of diabetic rats (0.54 ± 0.08 nmol PNTP hydrolyzed/mg protein/min) compared with controls (0.29 ± 0.05 nmol PNTP hydrolyzed/mg protein/min, p < 0.05). Upon insulin stimulation (100 nM), glucose uptake in the adipose tissue of the controls (4.17 ± 1.28×10−8 μmol/mg/min) was significantly higher than that in the diabetic rats (1.26 ± 0.35×10−8; p < 0.05). These results suggest that elevated PC-1 phosphodiesterase activity and decreased glucose uptake in adipose tissues may be acquired characteristics contributing to the development of type 2 diabetes mellitus.  相似文献   

5.
Sixteen normal healthy volunteers were randomized into two groups, receiving either low doses insulin infusion clamp study (8mU/M2/min) or high dose (40mU/M2/min) to determine the diurnal insulin clearance and sensitivity. Each subject received the assigned dose of insulin clamp twice; one in the morning (0800-1000) and the other in the evening (1800-2000), each with a precedent 9 hours of fasting, respectively. The results showed that there were diurnal variation of serum insulin clearance in the high dose study (AM:791 +/- 54ml/min/M2, PM:947 +/- 53ml/min/M2, p less than 0.01), and the small dose study (AM:411 +/- 32ml/min/M2, PM:716 +/- 87ml/min/M2, p less than 0.001). Diurnal variation of insulin sensitivity as judged by dividing glucose infusion rate by the ambient serum free insulin level (M/FI ration), was only noted in the low dose insulin infusion clamp study (AM:14.6 +/- 2.4, PM:10.5 +/- 1.1, p less than 0.05). In summary, at low physiological levels of insulin the insulin sensitivity is better in the morning, whereas at both high and low insulin levels the insulin clearance of normal subject is greater in the evening. The mechanism of this diurnal variation of insulin clearance and sensitivity awaits further studies.  相似文献   

6.
Objective: Offspring of diabetic or hypertensive patients are insulin resistant at a prediabetic/prehypertensive stage. We tested the hypothesis that insulin action may be impaired in the offspring of obese nondiabetic parents. Research Methods and Procedures: Twenty‐one lean offspring of nonobese subjects [(OL) 22 ± 3 years of age] were matched to 23 lean offspring of obese subjects (OOb) by gender distribution, age, BMI, and waist circumference. Anthropometry, oral glucose tolerance, in vivo insulin sensitivity [by a euglycemic insulin clamp (6 pmol/min per kilogramFFM; where FFM represents fat‐free mass)], and thermogenesis (by indirect calorimetry) were measured in each subject. The study subjects were from a population of 267 nuclear families (one offspring and both his/her parents) in which there was statistically significant (χ2 = 30.2, p = 0.001) concordance of BMI between parents and offspring. Results: In comparing OOb with OL, no statistically significant difference or trend toward a difference was detected in fasting plasma glucose and insulin concentrations, glucose and insulin responses to oral glucose, insulin sensitivity [metabolism value = 45 ± 12 (OOb) vs. 47 ± 17 μmol/min per kilogramFFM (OL)], insulin‐induced inhibition of protein and lipid oxidation, stimulation of glucose oxidation and nonoxidative glucose disposal, respiratory quotient, resting energy expenditure, and glucose‐induced thermogenesis. Discussion: The metabolic similarity between lean offspring of obese parents and those of nonobese parents suggests that insulin resistance and its correlates are not co‐inherited with the predisposition to develop obesity.  相似文献   

7.
Stimulationg of glucose oxidation by dichloroacetate (DCA) treatment is beneficial during recovery of ischemic hearts from non-diabetic rats. We therfore determined whether DCA treatment of diabetic rat hearts (in which glucose use is extremely low), increases recovery of function of hearts reperfused following ischemia. Isolated working hearts from 6 week streptozotocindiabetic rats were perfused with 11 mM [2-3H/U-14C]glucose, 1.2 mM palmitate, 20 μU/ml insulin, and subjected to 30 min of no flow ischemia followed by 60 min reperfusion. Heart function (expressed as the product of heart rate and peak systolic pressure), prior to ischemia, was depressed in diabetic hearts compared to controls (HR × PSP × 10?3 was 18.2 ± 1 and 24.3 ± 1 beats/mm Hg/min in diabetic and control hearts respectively) but recover to pre-ischemic levels following ischemia, whereas recovery of control of control hearts was significantly decreased (17.8 ± 1 and 11.9 ± 3 beats/mm Hg/min in diabetic and control hearts respectively). This enhanced recovery of diabetic rat hearts occurred even though glucose oxidation during reperfusion was significantly reduced as compared to controls (39 ± 6 and 208 ± 42 nmol/min/g dry wt, in diabetic and control hearts respectively). Glycolytic rate (3G2O production) during reperfusion were similar in diabetic and control hearts (1623 ± 359 and 2071 ± 288 nmol/min/g dry wt, respectively). If DCA (1 mM) was added at reperfusion, hearts from control animals exhibited a significant improvement in function (HR × PSP × 10? recovered to 20 ± 4 beats/mm Hg/min) that was accompanied by a 4-fold increase in glucose oxidation (from 208 ± 42 to 753 ± 111 nmol/min/g dry wt). DCA was without effect on functional recovery of diabetic rat hearts during reperfusion but did significantly increase glucose oxidation from 39 ± 6 to 179 ± 44 nmol/min/g dry wt). These data suggests that, unlike control hearts, low glucose oxidation rates are not an important factor in reperfusion recovery of previouskly ischemic diabetic rat hearts.  相似文献   

8.
The present study investigated whether increasing morning rectal temperatures (Trec) to evening levels, or increasing morning and evening Trec to an “optimal” level (38.5°C), resulting in increased muscle temperatures (Tm), would offset diurnal variation in repeated sprint (RS) performance in a causal manner. Twelve trained males underwent five sessions [age (mean ± SD) 21.0 ± 2.3 years, maximal oxygen consumption (V?O2max) 60.0 ± 4.4 mL.kg–1 min–1, height 1.79 ± 0.06 m, body mass 78.2 ± 11.8 kg]. These included control morning (M, 07:30 h) and evening (E, 17:30 h) sessions (5-min warm-up), and three further sessions consisting of a warm-up morning trial (ME, in 39–40°C water) until Trec reached evening levels; two “optimal” trials in the morning and evening (M38.5 and E38.5, in 39–40°C water) respectively, until Trec reached 38.5°C. All sessions included 3 × 3-s task-specific warm-up sprints, thereafter 10 × 3-s RS with 30-s recoveries were performed a non-motorised treadmill. Trec and Tm measurements were taken at the start of the protocol and following the warm-up periods. Values for Trec and Tm at rest were higher in the evening compared to morning values (0.48°C and 0.69°C, p < 0.0005). RS performance was lower (7.8–8.3%) in the M for distance covered (DC; p = 0.002), average power (AP; p = 0.029) and average velocity (AV; p = 0.002). Increasing Trec in the morning to evening values or optimal values (38.5°C) did not increase RS performance to evening levels (p = 1.000). However, increasing Trec in the evening to “optimal” level through a passive warm-up significantly reduced DC (p = 0.008), AP (p < 0.0005) and AV (p = 0.007) to values found in the M condition (6.0–6.9%). Diurnal variation in Trec and Tm is not wholly accountable for time-of-day oscillations in RS performance on a non-motorised treadmill; the exact mechanism(s) for a causal link between central temperature and human performance are still unclear and require more research.  相似文献   

9.
10.
Objective: To study the effect of weight loss in response to a lifestyle modification program on the circulating levels of adipose tissue derived cytokines (adipokines) in obese individuals with insulin resistance. Research Methods and Procedures: Twenty‐four insulin‐resistant obese subjects with varying degrees of glucose tolerance completed a 6‐month program consisting of combined hypocaloric diet and moderate physical activity. Adipokines [leptin, adiponectin, resistin, tumor necrosis factor‐α (TNF‐α), interleukin‐6 (IL‐6)] and highly sensitive C‐reactive protein were measured before and after the intervention. Insulin sensitivity index was evaluated by the frequently sampled intravenous glucose tolerance test. Results: Participants had a 6.9 ± 0.1 kg average weight loss, with a significant improvement in sensitivity index and reduction in plasma leptin (27.8 ± 3 vs. 23.6 ± 3 ng/mL, p = 0.01) and IL‐6 (2.75 ± 1.51 vs. 2.3 ± 0.91 pg/mL, p = 0.012). TNF‐α levels tended to decrease (2.3 ± 0.2 vs. 1.9 ± 0.1 pg/mL, p = 0.059). Adiponectin increased significantly only among diabetic subjects. The reductions in leptin were correlated with the decreases in BMI (r = 0.464, p < 0.05) and with changes in highly sensitive C‐reactive protein (r = 0.466, p < 0.05). Discussion: Weight reduction in obese individuals with insulin resistance was associated with a significant decrease in leptin and IL‐6 and a tendency toward a decrease in circulating TNF‐α, whereas adiponectin was increased only in diabetic subjects. Further studies are needed to elucidate the relationship between changes of adipokines and the health benefits of weight loss.  相似文献   

11.

Background

The possible participation of endogenous islet catecholamines (CAs) in the control of insulin secretion was tested.

Methods

Glucose-induced insulin secretion was measured in the presence of 3-Iodo-L-Tyrosine (MIT), a specific inhibitor of tyrosine-hydroxylase activity, in fresh and precultured islets isolated from normal rats. Incubated islets were also used to measure CAs release in the presence of low and high glucose, and the effect of α2-(yohimbine [Y] and idazoxan [I]) and α1-adrenergic antagonists (prazosin [P] and terazosin [T]) upon insulin secretion elicited by high glucose.

Results

Fresh islets incubated with 16.7 mM glucose released significantly more insulin in the presence of 1 μM MIT (6.66 ± 0.39 vs 5.01 ± 0.43 ng/islet/h, p < 0.02), but did not affect significantly the insulin response to low glucose. A similar enhancing effect of MIT upon insulin secretion was obtained using precultured islets devoid of neural cells, but absolute values were lower than those from fresh islets, suggesting that MIT inhibits islet rather than neural tyrosine hydroxylase. CAs concentration in the incubation media of fresh isolated islets was significantly higher in the presence of 16.7 than 3.3 mM glucose: dopamine 1.67 ± 0.13 vs 0.69 ± 0.13 pg/islet/h, p < 0.001, and noradrenaline 1.25 ± 0.17 vs 0.49 ± 0.04 pg/islet/h, p < 0.02. Y and I enhanced the release of insulin elicited by 16.7 mM glucose while P and T decreased such secretion.

Conclusion

Our results suggest that islet-originated CAs directly modulate insulin release in a paracrine manner.  相似文献   

12.
Intravenous glucose tolerance tests (IVGTT) were performed on 30 anesthetized, captive Sumatran (Pongo pygmaeus abeli), Bornean (P. p. pygmaeus), and hybrid (P. p. ablie x P. p. pygmaeus) orangutans, and fasted blood samples were taken from two additional juvenile orangutans in 11 U.S. zoos from 1989 to 1997. The age range of animals was 3.5 to 40.5 years. Plasma and serum samples were assayed for glucose and insulin concentrations. Glucose disappearance rate (KG), an index of glucose tolerance, was calculated, as were the early (acute) and second phase insulin responses to administered glucose. The mean ± SE (and median) fasting glucose and insulin concentrations were 113 ± 16 mg/dL (90 mg/dL) and 45 ± 7 μU/mL (27 μU/mL), respectively. Two animals previously suspected to be diabetic were easily identified by their markedly elevated fasting glucose concentrations (380 and 562 mg/dL) and relatively low fasted insulin concentrations (21 and 14 μU/mL); their insulin responses during the IVGTTs were also low or non‐detectable. Without these diabetics, the mean ± SE (median) fasting glucose concentration was 92 ± 18 mg/dL (89 mg/dL). Two animals, ages 18 and 40, were identified as potentially pre‐diabetic based on age, adiposity, elevated fasted glucose (116 and 137 mg/dL, respectively), and elevated fasted insulin concentrations (114 and 217 μU/mL, respectively). In addition, nearly half of the animals of varying ages, all sub‐species and both sexes exhibited delayed or attenuated acute insulin responses during the IVGTTs, resulting in lower KG (P < 0.04) and suggesting propensity for glucose intolerance in captive orangutans. Glucose and insulin concentrations and insulin responses to glucose did not differ between females on hormonal contraception regimes and those not receiving treatment. Zoo Biol 19:193–208, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

13.
To study effects of the portal-arterial glucose difference on the hepatic glycogenesis, the liver was isolated from fasted rats and was bivascularly perfused. Thirty-five milliliters of Krebs-Ringer buffer (pH 7.4) with 2 mM glucose, 3 mM lactate, 20 ng/ml insulin, and [1-14C]glucose or [U-14C]lactate was recirculated at flow rates of 14 ml/min via the portal vein and 7 ml/min via the hepatic artery. Glucose was continuously infused at a rate of 27.75 μmol/min into the portal (P experiment) and the arterial cannula (A experiment), and the portal-arterial glucose gradients were + 1.98 and −3.96 mM. Perfusate glucose concentration was not different between the P and A experiments within 20 min. Perfusate lactate level was higher in the P experiment than in the A experiment at 20 min. Incorporation of radioactivity from [14C]glucosc into glycogen was higher in the P experiment than in the A experiment (0.245 ± 0.014%/20 min vs 0.175 ± 0.022%/20 min, P < 0.01), and not influenced by the addition of insulin. Incorporation of 14C from [14C]lactate into glycogen was not different between the P and A experiments, and was significantly increased with the addition of insulin. This activity, in the presence of insulin, was higher in the P experiment than in the A experiment (0.490 ± 0,028%/20 min vs 0.406 ± 0.025%/20 min, P < 0.05). These results suggest that the portal-arterial glucose difference has an important role in the regulation of hepatic glycogenesis from exogenous glucose and gluconeogenesis.  相似文献   

14.
This study was designed to assess the effect of sport practice and warm-up duration on the morning–evening differences in muscle power and fatigue during performance of anaerobic exercise and perceptual responses to it. Twenty-two male physical education students – twelve trained (TG) (21.51 ± 1.25 years, 182.17 ± 4.37 cm and 82.88 ± 11.23 kg) and ten untrained (NTG) (23.89 ± 3.17 years, 176.8 ± 2.2 cm and 82.24 ± 8.43 kg) – participated in a crossover randomized study. They were asked to perform a 30-s Wingate test during six experimental sessions (three at 08:00 and three at 18:00 h) after different active warm-up (AWU) durations (5 min, 15 min, or 20 min). The AWU consisted of pedaling at a constant pace of 60 rpm against 50% of maximal aerobic power. Rate of perceived exertion (RPE) was recorded after the AWU and again immediately after the Wingate test. Heart rate and temperature (T) were recorded during each session at rest, after AWU and immediately at the end of the Wingate test. During the Wingate test, peak power (PP), mean power (MP), and the fatigue index were recorded. While the RPE estimations were higher in NTG, no time-of-day effect was recorded in either experimental group (morning or evening). T, PP, and MP were higher in the afternoon than in the morning (p < 0.001 for PP and MP; p < 0.05 for T). Similarly, PP and MP during the Wingate test were significantly higher in the TG than in the NTG (p < 0.001). The morning–evening difference of PP and MP was affected by AWU duration; AWU15 was best in the morning for improving lower limb power for both the TG and NTG, whereas reducing this period to 5 min in the evening was appropriate for TG only.  相似文献   

15.
To assess mechanisms leading to the 'dawn phenomenon' in type 1 diabetes mellitus, overnight insulin clearance, hepatic blood flow and insulin sensitivity of glucose metabolism were determined in 9 type 1 diabetic subjects treated with continuous subcutaneous insulin infusions. Glucose clamp studies were performed twice, once after midnight (from 24.00 to 02.00 h), and once in the early morning (from 06.00 to 08.00 h) during insulin infusion at 15 mU/m2/min. Insulin clearance was 482 +/- 57 ml/m2/min during the first, and 528 +/- 56 ml/m2/min during the second clamp (nonsignificant). Hepatic plasma flow assessed by measuring indocyanine green clearance was 984 +/- 115 and 1,040 +/- 163 ml/min, after the first and after the second clamp, respectively (nonsignificant). Glucose uptake during the two clamps was not significantly different. Since hepatic blood flow is known to influence insulin clearance and hepatic glucose metabolism, the data demonstrate that overnight changes in hepatic blood flow and insulin clearance do not contribute to the previously described early morning increase in insulin requirements in type 1 diabetic subjects (dawn phenomenon).  相似文献   

16.
This study analyzed diurnal variations in oxygen (O2) uptake kinetics and efficiency during a moderate cycle ergometer exercise. Fourteen physically active diurnally active male subjects (age 23±5 yrs) not specifically trained at cycling first completed a test to determine their ventilatory threshold (Tvent) and maximal oxygen consumption (VO2max); one week later, they completed four bouts of testing in the morning and evening in a random order, each separated by at least 24 h. For each period of the day (07:00–08:30 h and 19:00–20:30 h), subjects performed two bouts. Each bout was composed of a 5 min cycling exercise at 45 W, followed after 5 min rest by a 10 min cycling exercise at 80% of the power output associated with Tvent. Gas exchanges were analyzed breath‐by‐breath and fitted using a mono‐exponential function. During moderate exercise, the time constant and amplitude of VO2 kinetics were significantly higher in the morning compared to the evening. The net efficiency increased from the morning to evening (17.3±4 vs. 20.5±2%; p<0.05), and the variability of cycling cadence was greater during the morning than evening (+34%; p<0.05). These findings suggest that VO2 responses are affected by the time of day and could be related to variability in muscle activity pattern.  相似文献   

17.
Objective: The objective of this study was to test whether the thermic effect of oral protein is blunted in poorly controlled type 2 diabetes and is corrected by normalization of glycemia with insulin and 28 days of a very‐low‐energy diet. Research Methods and Procedures: Resting energy expenditure (REE) and the thermic effect of 90 g of oral protein were measured, using indirect calorimetry, in nine (five women and four men) obese diabetic people [weight, 108 ± 10 kg; waist circumference, 123 ± 8 cm; body mass index, 40 ± 3 kg/m2] who were hyperglycemic on day 8 or euglycemic with insulin on day 16 of a weight‐maintaining diet and euglycemic on day 28 of a very low energy diet (VLED). Results were compared with those of seven (six women and one man) weight‐ and body mass index‐matched obese nondiabetic subjects with a waist circumference of 111 ± 6 cm. Substrates and hormonal responses were determined concurrently. Results: Fasting glucose was normalized in the diabetic subjects with insulin from day 9 of VLED onward. Weight decreased in both groups by 9.9 ± 0.9 kg with VLED. REE was 8 ± 2% lower with insulin treatment and decreased by another 14 ± 3% with VLED in the diabetic and by 15 ± 1% in the nondiabetic subjects by week 4. After the protein meal, the thermic response was significantly (p < 0.05) less with hyperglycemia than with insulin‐induced euglycemia, as percentage above REE (15.3 ± 1.4 compared with 21.2 ± 1.5%), as percentage of the energy content of the meal (19.5 ± 1.5 compared with 25.2 ± 1.7%), as kilocalories per 405 minutes (86 ± 5 compared with 110 ± 7), and less than in nondiabetic obese controls (21.0 ± 2.2% above REE, 24.4 ± 1.7% of energy of meal). After the VLED, the thermic effect of protein was significantly higher in both groups only as percentage above REE. The initial glucagon response was greater with hyperglycemia compared with euglycemia and post‐VLED but not compared with the nondiabetic subjects. Hyperglycemia was associated with 21 ± 4% greater urinary urea nitrogen excretion and urinary glucose losses of 134 ± 50 mmol/d. Discussion: This study shows a blunted thermic effect of protein in obese hyperglycemic type 2 diabetic subjects compared with matched nondiabetic subjects that can be corrected with insulin‐ or energy restriction‐induced euglycemia.  相似文献   

18.
Due to personal and working necessities, the time for exercise is often short, and scheduled early in the morning or late in the afternoon. Cortisol plays a central role in the physiological and behavioral response to a physical challenge and can be considered as an index of exercise stress. Therefore, the aim of this study was to evaluate the influence of the circadian phenotype classification on salivary cortisol concentration in relation to an acute session of high-intensity interval exercise (HIIE) performed at different times of the day. Based on the morningness–eveningness questionnaire, 12 M-types (N = 12; age 21 ± 2 years; height 179 ± 5 cm; body mass 74 ± 12 kg, weekly training volume 8 ± 1 hours) and 11 E-types (N = 11; age 21 ± 2 years; height 181 ± 11 cm; body mass 76 ± 11 kg, weekly training volume 7 ± 2 hours) were enrolled in a randomized crossover study. All subjects underwent measurements of salivary cortisol secretion before (PRE), immediately after (POST), and 15 min (+15 min), 30 min (+30 min), 45 min (+45 min) and 60 min (+60 min) after the completion of both morning (08.00 am) and evening (08.00 p.m.) high-intensity interval exercise. Two-way analysis of variance with Tuckey’s multiple comparisons test showed significant increments over PRE-cortisol concentrations in POSTcondition both in the morning (4.88 ± 1.19 ng · mL?1 vs 6.60 ± 1.86 ng · mL?1, +26.1%, P < 0.0001, d > 0.8) and in the evening (1.56 ± 0.48 ng · mL?1 vs 2.34 ± 0.37, +33.4%, P = 0.034, d > 0.6) exercise in all the 23 subject that performed the morning and the evening HIIE. In addition, during morning exercise, significant differences in cortisol concentration between M-types and E-types at POST (5.49 ± 0.98 ng · mL?1 versus 8.44 ± 1.08 ng · mL?1, +35%, P < 0.0001, d > 0.8), +15 min (4.52 ± 0.42 ng · mL?1 versus 6.61 ± 0.62 ng · mL?1, +31.6%, P < 0.0001, d > 0.8), +30 min (4.10 ± 1.44 ng · mL?1 versus 6.21 ± 1.60 ng · mL?1, +34.0%, P < 0.0001, d = 0.7), + 45 min (3.78 ± 0.55 ng · mL?1 versus 5.80 ± 0.72 ng · mL?1, +34.9%, P < 0.0001, d = 0.7), and + 60 min condition(3.53 ± 0.45 ng · mL?1 versus 5.78 ± 1.13 ng · mL?1, 38.9%, P = 0.0008, d = 0.7) were noted. No statistical significant differences between M-types and E-types during evening HIIE on post-exercise cortisol concentration were detected. E-types showed a higher morning peak of salivary cortisol respect to M-types when performing a HIIE early in the morning and produced higher salivary cortisol concentrations after the cessation of the exercise. Practical applications suggest that it is increasingly important for the exercise professionals to identify the compatibility between time of day for exercising and chronotype to find the individual’s favorable circadian time to perform a HIIE.  相似文献   

19.
ABSTRACT

Previous findings suggest that performing strength training (ST) in the evening may provide greater benefit for young individuals. However, this may not be optimal for the older population. The purpose of this study was to compare the effects of a 12-week ST program performed in the morning vs. evening on strength, functional capacity, metabolic biomarker and basal hormone concentrations in older women. Thirty-one healthy older women (66 ± 4 years, 162 ± 4 cm, 75 ± 13 kg) completed the study. Participants trained in the morning (M) (07:30, n = 10), in the evening (E) (18:00, n = 10), or acted as a non-training control group (C) (n = 11). Both intervention groups performed whole-body strength training with 3 sets of 10–12 repetitions with 2–3 minutes rest between sets. All groups were measured before and after the 12-week period with; dynamic leg press and seated-row 6-repetition maximum (6-RM) and functional capacity tests (30-second chair stands and arm curl test, Timed Up and Go), as well as whole-body skeletal muscle mass (SMM) (kg) and fat mass (FM-kg, FM%) assessed by bioelectrical impedance (BIA). Basal blood samples (in the intervention groups only) taken before and after the intervention assessed low-density lipoprotein (LDL-C), high-density lipoprotein (HDL-C), blood glucose (GLU), triglycerides (TG), high-sensitive C-reactive protein (hsCRP) concentrations and total antioxidant status (TAS) after a 12 h fast. Hormone analysis included prolactin (PRL), progesterone (P) estradiol (ESTR), testosterone (T), follicle stimulating hormone (FSH), and luteinizing hormone (LH). While C showed no changes in any variable, both M and E significantly improved leg press (+ 46 ± 22% and + 21 ± 12%, respectively; p < 0.001) and seated-row (+ 48 ± 21% and + 42 ± 18%, respectively; p < 0.001) 6-RM, as well as all functional capacity outcomes (p < 0.01) due to training. M were the only group to increase muscle mass (+ 3 ± 2%, p < 0.01). Both M and E group significantly (p < 0.05) decreased GLU (–4 ± 6% and –8 ± 10%, respectively), whereas significantly greater decrease was observed in the E compared to the M group (p < 0.05). Only E group significantly decreased TG (–17 ± 25%, p < 0.01), whereas M group increased (+ 15%, p < 0.01). The difference in TG between the groups favored E compared to M group (p < 0.01). These results suggest that short-term “hypertrophic” ST alone mainly improves strength and functional capacity performance, but it influences metabolic and hormonal profile of healthy older women to a lesser extent. In this group of previously untrained older women, time-of-day did not have a major effect on outcome variables, but some evidence suggests that training in the morning may be more beneficial for muscle hypertrophy (i.e. only M significantly increased muscle mass and had larger effect size (M: g = 2 vs. E: g = 0.5).  相似文献   

20.
Muscle force production and power output in active males, regardless of the site of measurement (hand, leg, or back), are higher in the evening than the morning. This diurnal variation is attributed to motivational, peripheral, and central factors and higher core and, possibly, muscle temperatures in the evening. This study investigated whether decreasing evening resting rectal temperatures to morning values, by immersion in a water tank, leads to muscle force production and power output becoming equal to morning values in motivated subjects. Ten healthy active males (mean?±?SD: age, 22.5?±?1.3 yrs; body mass, 80.1?±?7.8?kg; height, 1.72?±?0.05?m) completed the study, which was approved by the local ethics committee of the university. The subjects were familiarized with the techniques and protocol and then completed three sessions (separated by at least 48?h): control morning (07:30?h) and evening (17:30?h) sessions (with an active 5-min warm-up on a cycle ergometer at 150?W) and then a further session at 17:30?h but preceded by an immersion in cold water (~16.5?°C) to lower rectal temperature (Trec) to morning values. During each trial, three measures of grip strength, isokinetic leg strength measurements (of knee flexion and extension at 1.05 and 4.19?rad?s?1 through a 90° range of motion), and three measures of maximal voluntary contraction (MVC) on an isometric dynamometer (utilizing the twitch-interpolation technique) were performed. Trec, rating of perceived exertion (RPE), and thermal comfort (TC) were also measured after the subjects had reclined for 30?min at the start of the protocol and prior to the measures for grip, isokinetic, and isometric dynamometry. Muscle temperature was taken after the warm-up or water immersion and immediately before the isokinetic and MVC measurements. Data were analyzed using general linear models with repeated measures. Trec values were higher at rest in the evening (by 0.37?°C; p?<?0.05) than the morning, but values were no different from morning values immediately after the passive pre-cooling. However, Trec progressively decreased throughout the experiments, this being reflected in the subjects’ ratings of thermal comfort. Muscle temperatures also displayed significant diurnal variation, with higher values in the evening (by 0.39?°C; p?<?0.05). Right grip strength, isometric peak power, isokinetic knee flexion and extension for peak torque and peak power at 1.05?rad?s?1, and knee extension for peak torque at 4.19?rad?s?1 all showed higher values in the evening (a range of 3–14%), and all other measures of strength or power showed a statistical trend to be higher in the evening (0.10?>?p?>?0.05). Pre-cooling in the evening significantly reduced force or power variables towards morning values. In summary, effects of time of day were seen in some measures of muscle performance, in agreement with past research. However, in this population of motivated subjects, there was evidence that decreasing evening Trec to morning values by coldwater immersion decreased muscle strength to values similar to those found in the morning. It is concluded that diurnal changes in muscle performance are linked to diurnal changes in Trec. (Author correspondence: B.J.Edwards@ljmu.ac.uk)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号