首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A strong stimulus adjusting the circadian clock to the prevailing light-dark cycle is light. However, the circadian clock is reset by light only at specific times of the day. The mechanisms mediating such gating of light input to the CNS are not well understood. There is evidence that Ca2+ ions play an important role in intracellular signaling mechanisms, including signaling cascades stimulated by light. Therefore, Ca2+ is hypothesized to play a role in the light-mediated resetting of the circadian clock. Calbindin-D28k (CB; gene symbol: Calb1) is a Ca2+ binding protein implicated in Ca2+ homeostasis and sensing. The absence of this protein influences Ca2+ buffering capacity of a cell, alters spatio-temporal aspects of intracellular Ca2+ signaling, and hence might alter transmission of light information to the circadian clock in neurons of the suprachiasmatic nuclei (SCN). We tested mice lacking a functional Calb1 gene (Calb1?/?) and found an increased phase-delay response to light applied at circadian time (CT) 14 in these animals. This is accompanied by elevated induction of Per2 gene expression in the SCN. Period length and circadian rhythmicity were comparable between Calb1?/? and wild-type animals. Our findings indicate an involvement of CB in the signaling pathway that modulates the behavioral and molecular response to light. (Author correspondence: )  相似文献   

2.
Circadian rhythms are endogenously generated cycles involving physiological parameters, such as core body temperature, hormone levels, blood pressure, sleep, and metabolism, with a period length of around 24?h. The circadian clock in mammals is regulated by a set of clock genes that are functionally linked together, and polymorphisms in clock genes could be associated with differences in circadian rhythms. A variable-number tandem repeat (VNTR) in the human clock gene PERIOD3 (PER3) has been suggested to correlate with a morning (lark) versus evening (owl) chronotype as well as with the circadian rhythm sleep disorder “delayed sleep phase disorder” (DSPD). The authors examined 432 healthy Norwegian university students in search of further support for an association between the PER3 polymorphism and diurnal preference. The Horne-Östberg Morningness-Eveningness Questionnaire (MEQ) and Preferences Scale (PS) were used to evaluate subjective chronotype. DNA samples were genotyped with respect to the 4-repeat and 5-repeat alleles of the VNTR PER3 polymorphism, and the genotype distribution was 192 (4-4), 191 (4-5), and 49 (5-5). The authors estimated that the power to detect an association of the 4-allele with preference for morningness or eveningness was 75%. The authors found no association between the PER3 clock gene and chronotype, indicating that the proposed role of PER3 needs further clarification. (Author correspondence: )  相似文献   

3.
4.
5.
Circadian clocks use a wide range of environmental cues, including cycles of light, temperature, food, and social interactions, to fine-tune rhythms in behavior and physiology. Although social cues have been shown to influence circadian clocks of a variety of organisms including the fruit fly Drosophila melanogaster, their mechanism of action is still unclear. Here, the authors report the results of their study aimed at investigating if daily cycles of presence and absence (PA) of conspecific male visitors are able to entrain the circadian locomotor activity rhythm of male hosts living under constant darkness (DD). The results suggest that PA cycles may not be able to entrain circadian locomotor activity rhythms of Drosophila. The outcome does not change when male hosts are presented with female visitors, suggesting that PA cycles of either sex may not be effective in bringing about stable entrainment of circadian clocks in D. melanogaster. However, in hosts whose clock phase has already been set by light/dark (LD) cycles, daily PA cycles of visitors can cause measurable change in the phase of subsequent free-running rhythms, provided that their circadian clocks are labile. Thus, the findings of this study suggest that D. melanogaster males may not be using cyclic social cues as their primary zeitgeber (time cue) for entrainment of circadian clocks, although social cues are capable of altering the phase of their circadian rhythms. (Author correspondence: , )  相似文献   

6.
Disrupted circadian rhythms are associated with obesity and metabolic alterations, but little is known about the participation of peripheral circadian clock machinery in these processes. The aim of the present study was to analyze RNA expression of clock genes in subcutaneous (SAT) and visceral (VAT) adipose tissues of male and female subjects in AM (morning) and PM (afternoon) periods, and its interactions with body mass index (BMI). Ninety-one subjects (41?±?11 yrs of age) presenting a wide range of BMI (21.4 to 48.6?kg/m2) were included. SAT and VAT biopsies were obtained from patients undergoing abdominal surgeries. Clock genes expressions were evaluated by qRT-PCR. The only clock gene that showed higher expression (p?<?.0001) in SAT in comparison to VAT was PER1 of female (372%) and male (326%) subjects. Different patterns of expression between the AM and PM periods were observed, in particular REV-ERBα, which was reduced (p?<?.05) at the PM period in SAT and VAT of both women and men (women: ~53% lower; men: ~78% lower), whereas CLOCK expression was not altered. Relationships between clock genes were different in SAT vs. VAT. BMI was negatively correlated with SATPER1 (r?=??.549; p?=?.001) and SATPER2 (r?=??.613; p?=?.0001) and positively with VATCLOCK (r?=?.541; p?=?.001) and VATBMAL1 (r?=?.468; p?=?.007) only in women. These data suggest that the circadian clock machinery of adipose tissue depots differs between female and male subjects, with a sex-specific effect observed for some genes. BMI correlated with clock genes, but at this moment it is not possible to establish the cause-effect relationship. (Author correspondence: )  相似文献   

7.
Circadian disruption accelerates malignant growth; thus, it should be avoided in anticancer therapy. The circadian disruptive effects of irinotecan, a topoisomerase I inhibitor, was investigated according to dosing time and sex. In previous work, irinotecan achieved best tolerability following dosing at zeitgeber time (ZT) 11 in male and ZT15 in female mice, whereas worst toxicity corresponded to treatment at ZT23 and ZT3 in male and female mice, respectively. Here, irinotecan (50?mg/kg intravenous [i.v.]) was delivered at the sex-specific optimal or worst circadian timing in male and female B6D2F1 mice. Circadian disruption was assessed with rest-activity, body temperature, plasma corticosterone, and liver mRNA expressions of clock genes Rev-erbα, Per2, and Bmal1. Baseline circadian rhythms in rest-activity, body temperature, and plasma corticosterone were more prominent in females as compared to males. Severe circadian disruption was documented for all physiology and molecular clock endpoints in female mice treated at the ZT of worst tolerability. Conversely, irinotecan administration at the ZT of best tolerability induced slight alteration of circadian physiology and clock-gene expression patterns in female mice. In male mice, irinotecan produced moderate alterations of circadian physiology and clock-gene expression patterns, irrespective of treatment ZT. However, the average expression of Rev-erbα, Per2, and Bmal1 were down-regulated 2- to 10-fold with irinotecan at the worst ZT, while being minimally or unaffected at the best ZT, irrespective of sex. Corticosterone secretion increased acutely within 2?h with a sex-specific response pattern, resulting in a ZT-dependent phase-advance or -delay in both sex. The mRNA expressions of irinotecan clock-controlled metabolism genes Ce2, Ugt1a1, and Top1 were unchanged or down-regulated according to irinotecan timing and sex. This study shows that the circadian timing system represents an important toxicity target of irinotecan in female mice, where circadian disruption persists after wrongly timed treatment. As a result, the mechanisms underling cancer chronotherapeutics are expectedly more susceptible to disruption in females as compared to males. Thus, the optimal circadian timing of chemotherapy requires precise determination according to sex, and should involve the noninvasive monitoring of circadian biomarkers. (Author correspondence: )  相似文献   

8.
Endogenous circadian clocks are synchronized to the 24-h day by external zeitgebers such as daily light and temperature cycles. Bumblebee foragers show diurnal rhythms under daily light:dark cycles and short-period free-running circadian rhythms in constant light conditions in the laboratory. In contrast, during the continuous light conditions of the arctic summer, they show robust 24-h rhythms in their foraging patterns, meaning that some external zeitgeber must entrain their circadian clocks in the presence of constant light. Although the sun stays above the horizon for weeks during the arctic summer, the light quality, especially in the ultraviolet (UV) range, exhibits pronounced daily changes. Since the photoreceptors and photopigments that synchronize the circadian system of bees are not known, we tested if the circadian clocks of bumblebees (Bombus terrestris) can be entrained by daily cycles in UV light levels. Bumblebee colonies were set up in the laboratory and exposed to 12?h:12?h UV?+?:UV? cycles in otherwise continuous lighting conditions by placing UV filters on their foraging arenas for 12?h each day. The activity patterns of individual bees were recorded using fully automatic radiofrequency identification (RFID). We found that colonies manipulated in such a way showed synchronized 24-h rhythms, whereas simultaneously tested control colonies with no variation in UV light levels showed free-running rhythms instead. The results of our study show that bumblebee circadian rhythms can indeed be synchronized by daily cycles in ambient light spectral composition. (Author correspondence: )  相似文献   

9.
《Chronobiology international》2013,30(10):1312-1328
Robustness is a fundamental property of biological timing systems that is likely to ensure their efficient functioning under a wide range of environmental conditions. Here we report the findings of our study aimed at examining robustness of circadian clocks in fruit fly Drosophila melanogaster populations selected to emerge as adults within a narrow window of time. Previously, we have reported that such flies display enhanced synchrony, accuracy, and precision in their adult emergence and activity/rest rhythms. Since it is expected that accurate and precise circadian clocks may confer enhanced stability in circadian time-keeping, we decided to examine robustness in circadian rhythms of flies from the selected populations by subjecting them to a variety of environmental conditions comprising of a range of photoperiods, light intensities, ambient temperatures, and constant darkness. The results revealed that adult emergence and activity/rest rhythms of flies from the selected stocks were more robust than controls, as they displayed enhanced stability under a wide variety of environmental conditions. These results suggest that selection for adult emergence within a narrow window of time results in the evolution of robustness in circadian timing systems of the fruit fly D. melanogaster. (Author correspondence: or )  相似文献   

10.
Restricted feeding (RF) schedules are potent zeitgebers capable of entraining metabolic and hormonal rhythms in peripheral oscillators in anticipation of food. Behaviorally, this manifests in the form of food anticipatory activity (FAA) in the hours preceding food availability. Circadian rhythms of FAA are thought to be controlled by a food-entrainable oscillator (FEO) outside of the suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals. Although evidence suggests that the FEO and the SCN are capable of interacting functionally under RF conditions, the genetic basis of these interactions remains to be defined. In this study, using dexras1-deficient (dexras1?/?) mice, the authors examined whether Dexras1, a modulator of multiple inputs to the SCN, plays a role in regulating the effects of RF on activity rhythms and gene expression in the SCN. Daytime RF under 12L:12D or constant darkness (DD) resulted in potentiated (but less stable) FAA expression in dexras1?/? mice compared with wild-type (WT) controls. Under these conditions, the magnitude and phase of the SCN-driven activity component were greatly perturbed in the mutants. Restoration to ad libitum (AL) feeding revealed a stable phase displacement of the SCN-driven activity component of dexras1?/? mice by ~2?h in advance of the expected time. RF in the late night/early morning induced a long-lasting increase in the period of the SCN-driven activity component in the mutants but not the WT. At the molecular level, daytime RF advanced the rhythm of PER1, PER2, and pERK expression in the mutant SCN without having any effect in the WT. Collectively, these results indicate that the absence of Dexras1 sensitizes the SCN to perturbations resulting from restricted feeding. (Author correspondence: )  相似文献   

11.
12.
Endogenous circadian rhythms are entrained to the 24-h light/dark cycle by both light and nonphotic stimuli. During the day, nonphotic stimuli, such as novel wheel-induced exercise, produce large phase advances. Neuropeptide Y (NPY) release from the thalamus onto suprachiasmatic nucleus (SCN) neurons at least partially mediates this nonphotic signal. The authors examined the hypothesis that NPY-induced phase advances are accompanied by suppression of PER2 and are mediated by long-term depression of neuronal excitability in a phase-specific manner. First, it was found that NPY-induced phase advances in PER2::LUC SCN cultures are largest when NPY (2.35 µM) is given in the early part of the day (circadian time [CT] 0–6). In addition, PER2::LUC levels in NPY-treated (compared to vehicle-treated) samples were suppressed beginning 6–7?h after treatment. Similar NPY application to organotypic Per1::GFP SCN cultures resulted in long-term suppression of spike rate of green fluorescent protein–positive (GFP+) cells when slices were treated with NPY during the early or middle of the day (zeitgeber time [ZT] 2 or 6), but not during the late day (ZT 10). Furthermore, 1-h bath application of NPY to acute SCN brain slices decreased general neuronal activity measured through extracellular recordings. Finally, NPY-induced phase advances of PER2::LUC rhythms were blocked by latent depolarization with 34.5?mM K+ 3?h after NPY application. These results suggest that NPY-induced phase advances may be mediated by long-term depression of neuronal excitability. This model is consistent with findings in other brain regions that NPY-induced persistent hyperpolarization underlies mechanisms of energy homeostasis, anxiety-related behavior, and thalamocortical synchronous firing. (Author correspondence: )  相似文献   

13.
14.
《Chronobiology international》2013,30(9):1195-1205
Circadian rhythms are established very early during vertebrate development. In fish, environmental cues can influence the initiation and synchronization of different rhythmic processes. Previous studies in zebrafish and rainbow trout have shown that circadian oscillation of clock genes represents one of the earliest detectable rhythms in the developing embryo, suggesting their significance in regulating the coordination of developmental processes. In this study, we analyzed the daily expression of the core clock components Per1, Per2, Per3, and Clock during the first several days of Senegalese sole development (0–4 d post fertilization or dpf) under different lighting regimes, with the aim of addressing when the molecular clock first emerges in this species and how it is affected by different photoperiods. Rhythmic expression of the above genes was detected from 0 to 1 dpf, being markedly affected in the next few days by both constant light (LL) and dark (DD) conditions. A gradual entrainment of the clock machinery was observed only under light-dark (LD) cycles, and robust rhythms with increased amplitudes were established by 4 dpf for all clock genes currently studied. Our results show the existence of an embryonic molecular clock from the 1st d of development in Senegalese sole and emphasize the significance of cycling LD conditions when raising embryos and early larvae. (Author correspondence: ; )  相似文献   

15.
The authors derived early and late populations of fruit flies showing increased incidence of emergence during morning or evening hours by imposing selection for timing of emergence under 12:12?h light/dark (LD) cycles. From previous studies, it was clear that the increased incidence of adult emergence during morning and evening hours in early and late populations was a result of evolution of divergent and characteristic emergence waveforms in these populations. Such characteristic waveforms are henceforth referred to as “evolved emergence waveforms” (EEWs). The early and late populations also evolved different circadian clocks, which is evident from the divergence in their clock period (τ) and photic phase response curve (PRC). Although correlation between emergence waveforms and clock properties suggests functional significance of circadian clocks, τ and PRCs do not satisfactorily explain the early and late emergence phenotypes. In order to understand the functional significance of the PRC for early and late emergence phenotypes, the authors investigated whether circadian clocks of these flies exhibit any difference in photosensitivity under entrained conditions. Such differences would suggest that the light requirement for circadian entrainment of the emergence rhythm in early and late populations is different. To test this, they examined if early and late flies differ in their light utilization behavior, first by assaying their emergence rhythm under complete photoperiod and then in three different skeleton photoperiods. The results showed that early and late populations require different durations of light during the morning and evening to achieve their EEWs, suggesting that for the circadian entrainment of the emergence rhythm, early and late flies utilize light from different parts of the day. (Author correspondence: or )  相似文献   

16.
17.
Recent studies suggest that the impairment of circadian clock function causes various pathological conditions, such as obesity, diabetes, and alcoholism, and an altered mRNA expression of clock genes was found under these conditions. However, it remains to be determined whether clock gene expression varies depending on metabolic conditions even in healthy people. To address this issue, we investigated the associations of metabolic parameters and alcohol consumption with mRNA expression of clock genes (CLOCK, BMAL1, PER1, PER2, and PER3) in peripheral blood cells obtained from 29 healthy non-obese elderly men (age 51–78 yrs) who adhered to a regular sleep-wake routine, through a single time-of-day venous blood sampling at ~09:00?h. There were significant correlations between (1) waist circumference and mRNA level of PER1 (r?=?0.43), (2) plasma glucose concentration and PER2 (r?=?0.50), (3) ethanol consumption and BMAL1 (r?=?0.43), and (4) serum γ-GTP concentration (a sensitive marker of alcohol consumption) and PER2 (r?=?0.40). These results suggest mRNA expression of clock genes is associated with obesity, glucose tolerance, and ethanol consumption even in healthy people. (Author correspondence: )  相似文献   

18.
The suprachiasmatic nucleus (SCN) of the hypothalamus synchronizes circadian rhythms of cells and tissues throughout the body. In SCN neurons, rhythms of clock gene expression are suppressed by manipulations that hyperpolarize the plasma membrane or lower intracellular Ca2+. However, whether clocks in other cells also depend on membrane potential and calcium is unknown. In this study, the authors investigate the effects of membrane potential and intracellular calcium on circadian rhythms in mouse primary fibroblasts. Rhythms of clock gene expression were monitored using a PER2::LUC knockin reporter. Rhythms were lost or delayed at lower (hyperpolarizing) K+ concentrations. Bioluminescence imaging revealed that this loss of rhythmicity in cultures was due to loss of rhythmicity of single cells rather than loss of synchrony among cells. In lower Ca2+ concentrations, rhythms were advanced or had shorter periods. Buffering intracellular Ca2+ by the calcium chelator 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM) or manipulation of inositol triphosphate (IP3)-sensitive intracellular calcium stores by thapsigargin delayed rhythms. These results suggest that the circadian clock in fibroblasts, as in SCN neurons, is regulated by membrane potential and Ca2+. Changes in intracellular Ca2+ may mediate the effects of membrane potential observed in this study. (Author correspondence: )  相似文献   

19.
Due to its disruptive effects on circadian rhythms and sleep deprivation at night, shiftworking is currently recognized as a risk factor for breast cancer (BC). As revealed by the present analysis based on a comparative case-control study of 1679 women, exposure to light-at-night (LAN) in the “sleeping habitat” is significantly associated with BC risk (odds ratio [OR]?=?1.220, 95% confidence interval [CI]?=?1.118–1.311; p?<?.001), controlling for education, ethnicity, fertility, and alcohol consumption. The novelty of the present research is that, to the best of the authors' knowledge, it is the first study to have identified an unequivocal positive association between bedroom-light intensity and BC risk. Thus, according to the results of the present study, not only should artificial light exposure in the working environment be considered as a potential risk factor for BC, but also LAN in the “sleeping habitat.” (Author correspondence: )  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号