首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melatonin, which is able to enter all tissues and all compartments of the cell, acts in a highly pleiotropic fashion. Some melatonin effects are mediated by membrane receptors, others are receptor independent. Melatonin is produced in the pineal gland and various extrapineal organs of vertebrates, but is also found in invertebrates, angiosperms, and unicells. In mammals, melatonin elicits various secondary humoral responses, e.g., in the immune system via interleukin-4 and other cytokines and in the brain by modulation of NO formation. Melatonin is also a powerful radical scavenger, terminating free radical reaction chains initiated by photooxidants, hydroxyl or peroxyl radicals. The protective potency of this indoleamine is demonstrated by various experiments.  相似文献   

2.
Melatonin is a potent endogenous free radical scavenger, actions that are independent of its many receptor-mediated effects. In the last several years, hundreds of publications have confirmed that melatonin is a broad-spectrum antioxidant. Melatonin has been reported to scavenge hydrogen peroxide (H(2)O(2)), hydroxyl radical (HO(.)), nitric oxide (NO(.)), peroxynitrite anion (ONOO(-)), hypochlorous acid (HOCl), singlet oxygen ((1)O(2)), superoxide anion (O(2)(-).) and peroxyl radical (LOO(.)), although the validity of its ability to scavenge O(2)(-). and LOO(.) is debatable. Regardless of the radicals scavenged, melatonin prevents oxidative damage at the level of cells, tissues, organs and organisms. The antioxidative mechanisms of melatonin seem different from classical antioxidants such as vitamin C, vitamin E and glutathione. As electron donors, classical antioxidants undergo redox cycling; thus, they have the potential to promote oxidation as well as prevent it. Melatonin, as an electron-rich molecule, may interact with free radicals via an additive reaction to form several stable end-products which are excreted in the urine. Melatonin does not undergo redox cycling and, thus, does not promote oxidation as shown under a variety of experimental conditions. From this point of view, melatonin can be considered a suicidal or terminal antioxidant which distinguishes it from the opportunistic antioxidants. Interestingly, the ability of melatonin to scavenge free radicals is not in a ratio of mole to mole. Indeed, one melatonin molecule scavenges two HO. Also, its secondary and tertiary metabolites, for example, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine, N-acetyl-5-methoxykynuramine and 6-hydroxymelatonin, which are believed to be generated when melatonin interacts with free radicals, are also regarded as effective free radical scavengers. The continuous free radical scavenging potential of the original molecule (melatonin) and its metabolites may be defined as a scavenging cascade reaction. Melatonin also synergizes with vitamin C, vitamin E and glutathione in the scavenging of free radicals. Melatonin has been detected in vegetables, fruits and a variety of herbs. In some plants, especially in flowers and seeds (the reproductive organs which are most vulnerable to oxidative insults), melatonin concentrations are several orders of magnitude higher than measured in the blood of vertebrates. Melatonin in plants not only provides an alternative exogenous source of melatonin for herbivores but also suggests that melatonin may be an important antioxidant in plants which protects them from a hostile environment that includes extreme heat, cold and pollution, all of which generate free radicals.  相似文献   

3.
The oxidant/antioxidant network: role of melatonin   总被引:13,自引:0,他引:13  
Melatonin is now known to be a multifaceted free radical scavenger and antioxidant. It detoxifies a variety of free radicals and reactive oxygen intermediates including the hydroxyl radical, peroxynitrite anion, singlet oxygen and nitric oxide. Additionally, it reportedly stimulates several antioxidative enzymes including glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and superoxide dismutase; conversely, it inhibits a prooxidative enzyme, nitric oxide synthase. Melatonin also crosses all morphophysiological barriers, e.g., the blood-brain barrier, placenta, and distributes throughout the cell; these features increase the efficacy of melatonin as an antioxidant. Melatonin has been shown to markedly protect both membrane lipids and nuclear DNA from oxidative damage. In every experimental model in which melatonin has been tested, it has been found to resist macromolecular damage and the associated dysfunction associated with free radicals.  相似文献   

4.
Actions of melatonin in the reduction of oxidative stress   总被引:18,自引:0,他引:18  
Melatonin was discovered to be a direct free radical scavenger less than 10 years ago. Besides its ability to directly neutralize a number of free radicals and reactive oxygen and nitrogen species, it stimulates several antioxidative enzymes which increase its efficiency as an antioxidant. In terms of direct free radical scavenging, melatonin interacts with the highly toxic hydroxyl radical with a rate constant equivalent to that of other highly efficient hydroxyl radical scavengers. Additionally, melatonin reportedly neutralizes hydrogen peroxide, singlet oxygen, peroxynitrite anion, nitric oxide and hypochlorous acid. The following antioxidative enzymes are also stimulated by melatonin: superoxide dismutase, glutathione peroxidase and glutathione reductase. Melatonin has been widely used as a protective agent against a wide variety of processes and agents that damage tissues via free radical mechanisms.  相似文献   

5.
Melatonin is a pineal hormone that has a capacity to lower intraocular pressure; it exhibits neuroprotective and antioxidant properties that make it possible to use melatonin in the therapy of glaucoma. Melatonin analogs demonstrating affinity to melatonin receptors are promising candidates for application as antiglaucomatous agents. Chemical modification of the melatonin structure can increase efficiency, bioavailability, and selectivity of melatonin analogs. We have designed and synthesized a number of new 2-oxindole derivatives, the ligands of melatonin MT3 receptors; these analogs are characterized by the ability to lower intraocular pressure in normotensive rabbits and high antioxidant activity against hydroxyl radical and superoxide anion-radical. New ligands significantly exceeding melatonin in antioxidant activity can be also applicable for the development of therapeutic agents for treatment of oxidative stress. The maximal hypotensive effect of the analogs was comparable to and lasted longer than that of melatonin. Combination of these properties suggests potential used of the analyzed melatonin analogs in complex therapy of glaucoma.  相似文献   

6.
Melatonin is widely involved in plant growth and stress responses as a master regulator. Melatonin treatment alters the levels of endogenous nitric oxide (NO) and NO affects endogenous melatonin content. Melatonin and NO may induce various plant physiological behavior through interaction mechanism. However, the interactions between melatonin and NO in plants are largely unknown. The review presented the metabolism of endogenous melatonin and NO and their relationship in plants. The interactions between melatonin and NO in plant growth and development and responses to environmental stress were summarized. The molecular mechanisms of interaction between melatonin and NO in plants were also proposed.  相似文献   

7.
Melatonin oxidative stress and neurodegenerative diseases   总被引:3,自引:0,他引:3  
Oxidative Stress is implicated as one of the primary factors that contribute to the development of neurodegenerative diseases like Alzheimer's Disease, Parkinsonism and neurological conditions like epileptic seizures, stroke, brain damage, neurotrauma etc. The increased formation and release of oxygen free radicals coupled with the rather low antioxidative potential of the central nervous system are the major reasons that account for the enhanced oxidative stress seen in neuronal cells. In addition to this, brain is also enriched with polyunsaturated fatty acids that render neuronal cells easily vulnerable to oxidative attack. The fact that there is increased incidence of neurodegenerative disorders in aged individuals, has prompted many investigators to search for a common factor whose progressive decline with increase in age could account for increased oxidative stress resulting in senescence and age associated degenerative diseases. Since melatonin, the hormone secreted from the pineal gland has a remarkable anti-oxidant property and whose rate of production declines with increase in age, has prompted many to suggest that this hormone plays a crucial role in the genesis of neurodegenerative diseases. Melatonin cannot only scavenges oxygen free radicals like super oxide radical (O2-), hydroxyl radical (*OH), peroxyl radical (LOO*) and peroxynitrite anion (ONOO-), but can also enhance the antioxidative potential of the cell by stimulating the synthesis of antioxidative enzymes like super oxide dismutase (SOD), glutathione peroxidase (GPX), and also the enzymes that are involved in the synthesis of glutathione. In many instances, melatonin increases the expression of m RNA's of the antioxidative enzymes. Melatonin administration has been shown to be effective in counteracting the neurodegenerative conditions both in experimental models of neurodegenerative diseases and in patients suffering from such diseases. A disturbance of melatonin rhythm and secretion also has been noted in patients suffering from certain neurodegenerative diseases. From all these, it is evident that melatonin has a neuroprotective role.  相似文献   

8.
Melatonin as antioxidant, geroprotector and anticarcinogen   总被引:5,自引:0,他引:5  
The effect of the pineal indole hormone melatonin on the life span of mice, rats and fruit flies has been studied using various approaches. It has been observed that in female CBA, SHR, SAM and transgenic HER-2/neu mice long-term administration of melatonin was followed by an increase in the mean life span. In rats, melatonin treatment increased survival of male and female rats. In D. melanogaster, supplementation of melatonin to nutrient medium during developmental stages produced contradictory results, but and increase in the longevity of fruit flies has been observed when melatonin was added to food throughout the life span. In mice and rats, melatonin is a potent antioxidant both in vitro and in vivo. Melatonin alone turned out neither toxic nor mutagenic in the Ames test and revealed clastogenic activity at high concentration in the COMET assay. Melatonin has inhibited mutagenesis and clastogenic effect of a number of indirect chemical mutagens. Melatonin inhibits the development of spontaneous and 7-12-dimethlbenz(a)anthracene (DMBA)- or N-nitrosomethylurea-induced mammary carcinogenesis in rodents; colon carcinogenesis induced by 1,2-dimethylhydrazine in rats, N-diethylnitrosamine-induced hepatocarcinogenesis in rats, DMBA-induced carcinogenesis of the uterine cervix and vagina in mice; benzo(a)pyrene-induced soft tissue carcinogenesis and lung carcinogenesis induced by urethan in mice. To identify molecular events regulated by melatonin, gene expression profiles were studied in the heart and brain of melatonin-treated CBA mice using cDNA gene expression arrays (15,247 and 16,897 cDNA clone sets, respectively). It was shown that genes controlling the cell cycle, cell/organism defense, protein expression and transport are the primary effectors for melatonin. Melatonin also increased the expression of some mitochondrial genes (16S, cytochrome c oxidases 1 and 3 (COX1 and COX3), and NADH dehydrogenases 1 and 4 (ND1 and ND4)), which agrees with its ability to inhibit free radical processes. Of great interest is the effect of melatonin upon the expression of a large number of genes related to calcium exchange, such as Cul5, Dcamkl1 and Kcnn4; a significant effect of melatonin on the expression of some oncogenesis-related genes was also detected. Thus, we believe that melatonin may be used for the prevention of premature aging and carcinogenesis.  相似文献   

9.
Melatonin in Chinese medicinal herbs   总被引:13,自引:0,他引:13  
Chen G  Huo Y  Tan DX  Liang Z  Zhang W  Zhang Y 《Life sciences》2003,73(1):19-26
Melatonin is a highly conserved molecule that not only exists in animals, but also is present in bacteria, unicellular organisms and in plants. Since melatonin is an antioxidant, in plants melatonin was speculated to protect them from intrinsic and environmental oxidative stress. More importantly, melatonin in edible plants inevitably enters animals and human through feed and food. In this study, more than 100 Chinese medicinal herbs were analyzed using the methods of solid phase extraction and HPLC-FD on-line with MS to determine whether melatonin is present in these commonly used herbs. Melatonin was detected in majority of these plants. Sixty-four of them contain melatonin in excess of 10 ng per gram dry mass. Melatonin levels in several herbs are in excess of 1000 ng/g. It is well known that normal average physiological plasma levels of melatonin are only 10-60 pg/mL. These high level-melatonin containing plants are traditionally used to treat diseases which presumably involve free radical damage. The current study provides new information concerning one potentially effective constituent present in a large number of medicinal herbs. The results suggest that these herbs should be reevaluated in reference to their nutritional and medicinal value.  相似文献   

10.
Although many theories relating the pineal secretory product melatonin to aging have been put forward, the role of this agent in the aging process is not clear. However, there are several reasons to postulate a role for melatonin in this process. Melatonin levels fall gradually over the life-span. Melatonin is a potent free radical scavenger. Melatonin deficiency is related to suppressed immunocompetence. In at least one animal model melatonin supplementation increased life-span although several other studies have failed. The aging process is multifactorial, and no single element seems to be of basic importance. It seems, however, that although melatonin can not be univocally recognized as a substance delaying aging, some of its actions may be beneficial for the process of aging. However, the precise role of melatonin in the aging process remains to be determined.  相似文献   

11.
Melatonin is an endogenously generated molecule with free radical scavenging and antioxidant properties. Here, we studied the antiproliferative role of melatonin and other antioxidants on transformed Chinese hamster ovarian cells. Melatonin reduces cell proliferation in a dose- and time-dependent manner. Natural antioxidants which appear in edible plants including resveratrol and vitamin E mimicked the effect of melatonin. Flow cytometer analysis revealed that melatonin treatment reduces the number of cells in S-phase and increases cells in both G0/G1 and G2/M gaps. In addition, melatonin, as well as trolox, caused a clear morphological change by inducing the cells to become spindle shaped and fibroblast-like. Its effect is a reversible phenomenon that disappeared when melatonin was withdrawn from the culture medium. GSH levels are increased after melatonin treatment but pharmacologically blockade of GSH synthesis did not abolish melatonin's antiproliferative effect. Reduction of cell proliferation and the apparent induction of cell differentiation overlapped with melatonin's ability to change the intracellular redox state of CHO cells. We conclude that the cellular redox state may be involved in cellular transformation caused by antioxidants such as melatonin and trolox.  相似文献   

12.
Endogenously produced metabolites of ground state oxygen are highly reactive and destructive to intracellular and extracellular molecules. The resulting damage, referred to as oxidative stress, leads to molecular and cellular dysfunction. The destruction of essential macromolecules by oxygen-based reactants is the basis of some diseases and is believed to be involved in the processes of aging. Free radical scavengers and antioxidants neutralize and/or metabolically remove reactive species from cells before they carry out their destructive activities. Melatonin is a highly ubiquitous direct free radical scavenger and indirect antioxidant. This brief report summarizes the interactions of melatonin with reactive species and identifies the resulting products. The paper also defines the melatonin antioxidant cascade wherein not only melatonin but at least one of the products, i.e., N(1)-acetyl-N(2)-formyl-5-methoxykynuramine, formed as a result of melatonin scavenging hydrogen peroxide is also a potent scavenger. The review summarizes the data which shows that melatonin is not only a pharmacologically useful free radical scavenger but that it functions in this capacity at physiological concentrations as well. Finally, this report identifies high oxidative stress situations in humans where melatonin has proven effective in reducing the severity of the disease state. In the last decade there have been hundreds of publications documenting melatonin's protective actions against a vast array of conditions, e.g., ischemia/reperfusion injury, toxin exposure, lipopolysaccharide exposure, etc., where free radical damage is a component of the condition.  相似文献   

13.
褪黑素最初是在动物中发现的一种吲哚类小分子,具有昼夜节律调节、清除自由基等多种生理功能,还具有改善睡眠的保健作用。后来在植物中也检测到了褪黑素,这表明植物也能合成褪黑素。随着对植物褪黑素的深入研究,发现褪黑素在调控植物生长发育、耐受干旱、高温、低温、高盐、重金属等非生物胁迫、抵御细菌和真菌病害方面具有重要作用。从植物褪黑素合成途径、生长发育调控和胁迫应答反应方面的研究进展进行了综述,以期为植物褪黑素研究提供参考。  相似文献   

14.
Melatonin is a ubiquitous molecule and widely distributed in nature, with functional activity occurring in unicellular organisms, plants, fungi and animals. In most vertebrates, including humans, melatonin is synthesized primarily in the pineal gland and is regulated by the environmental light/dark cycle via the suprachiasmatic nucleus. Pinealocytes function as 'neuroendocrine transducers' to secrete melatonin during the dark phase of the light/dark cycle and, consequently, melatonin is often called the 'hormone of darkness'. Melatonin is principally secreted at night and is centrally involved in sleep regulation, as well as in a number of other cyclical bodily activities. Melatonin is exclusively involved in signaling the 'time of day' and 'time of year' (hence considered to help both clock and calendar functions) to all tissues and is thus considered to be the body's chronological pacemaker or 'Zeitgeber'. Synthesis of melatonin also occurs in other areas of the body, including the retina, the gastrointestinal tract, skin, bone marrow and in lymphocytes, from which it may influence other physiological functions through paracrine signaling. Melatonin has also been extracted from the seeds and leaves of a number of plants and its concentration in some of this material is several orders of magnitude higher than its night-time plasma value in humans. Melatonin participates in diverse physiological functions. In addition to its timekeeping functions, melatonin is an effective antioxidant which scavenges free radicals and up-regulates several antioxidant enzymes. It also has a strong antiapoptotic signaling function, an effect which it exerts even during ischemia. Melatonin's cytoprotective properties have practical implications in the treatment of neurodegenerative diseases. Melatonin also has immune-enhancing and oncostatic properties. Its 'chronobiotic' properties have been shown to have value in treating various circadian rhythm sleep disorders, such as jet lag or shift-work sleep disorder. Melatonin acting as an 'internal sleep facilitator' promotes sleep, and melatonin's sleep-facilitating properties have been found to be useful for treating insomnia symptoms in elderly and depressive patients. A recently introduced melatonin analog, agomelatine, is also efficient for the treatment of major depressive disorder and bipolar affective disorder. Melatonin's role as a 'photoperiodic molecule' in seasonal reproduction has been established in photoperiodic species, although its regulatory influence in humans remains under investigation. Taken together, this evidence implicates melatonin in a broad range of effects with a significant regulatory influence over many of the body's physiological functions.  相似文献   

15.
从生物进化看褪黑素的功能意义   总被引:5,自引:0,他引:5  
李经才  王芳  霍艳  刘东春 《生命科学》2000,12(3):130-133
褪黑素在生物发布极为广泛,从低等原核生物到高5等脊椎动物,乃至植物体内均发现褪黑素。在漫长的生物进化过程中,它作为了种古老多效性的分子而保留至今。生物中门类浩繁,形态、功能千差万别,但体内的褪黑素却有相似的作用:(1)传递光暗信号,使生物的各种内源性节律与环境周期保持同步。(2)有铲清除生物体内的自由基。使机体免受氧化损伤。(3)褪黑素与钙调蛋白结合,调节细胞骨架的机能状态,以执行特定的功能、褪黑  相似文献   

16.
Manchester LC  Tan DX  Reiter RJ  Park W  Monis K  Qi W 《Life sciences》2000,67(25):3023-3029
The seeds of plants represent the anlage of the next generation and are vital to their existence. Melatonin has been identified in the leaves and flowers of plants but not in seeds. In this study, we examined the seeds of 15 edible plants for the presence of melatonin which was extracted using cold ethanol. Melatonin was initially identified by radioimmunoassay and subsequently quantified and confirmed using high performance liquid chromatography. The physiological concentrations of melatonin in the 15 seeds studied ranged from 2 to 200 ng/g dry weight. The highest concentrations of melatonin were observed in white and black mustard seeds. This level of melatonin is much higher than the known physiological concentrations in the blood of many vertebrates. Since the seed, particularly its germ tissue, is highly vulnerable to oxidative stress and damage, we surmise that melatonin, a free radical scavenger, might be present as an important component of its antioxidant defense system. Thus, melatonin in seeds may be essential in protecting germ and reproductive tissues of plants from oxidative damage due to ultraviolet light, drought, extremes in temperature, and environmental chemical pollutants.  相似文献   

17.
The gastrointestinal tract (GIT) is a major source of extrapineal melatonin. In some animals, tissue concentrations of melatonin in the GIT surpass blood levels by 10-100 times and the digestive tract contributes significantly to melatonin concentrations in the peripheral blood, particularly during the day. Some melatonin found in the GIT may originate from the pineal gland, as the organs of the digestive system contain binding sites, which in some species exhibit circadian variation. Unlike the production of pineal melatonin, which is under the photoperiodic control, release of GI melatonin seems to be related to periodicity of food intake. Melatonin and melatonin binding sites were localized in all GI tissues of mammalian and avian embryos. Postnatally, melatonin was localized in the GIT of newborn mice and rats. Phylogenetically, melatonin and melatonin binding sites were detected in GIT of numerous mammals, birds and lower vertebrates. Melatonin is probably produced in the serotonin-rich enterochromaffin cells (EC) of the GI mucosa and can be released into the portal vein postprandially. In addition, melatonin can act as an autocrine or a paracrine hormone affecting the function of GI epithelium, lymphatic tissues of the immune system and the smooth muscles of the digestive tube. Finally, melatonin may act as a luminal hormone, synchronizing the sequential digestive processes. Higher peripheral and tissue levels of melatonin were observed not only after food intake but also after a long-term food deprivation. Such melatonin release may have a direct effect on the various GI tissues but may also act indirectly via the CNS; such action might be mediated by sympathetic or parasympathetic nerves. Melatonin can protect GI mucosa from ulceration by its antioxidant action, stimulation of the immune system and by fostering microcirculation and epithelial regeneration. Melatonin may reduce the secretion of pepsin and the hydrochloric acid and influence the activity of the myoelectric complexes of the gut via its action in the CNS. Tissue or blood levels of melatonin may serve as a marker of GI lesions or tumors. Clinically, melatonin has a potential for a prevention or treatment of colorectal cancer, ulcerative colitis, irritable bowel syndrome, children colic and diarrhea.  相似文献   

18.
Melatonin (N-acetyl-5-methoxytryptamine) is the chief secretory product of the pineal gland and synthesized enzymatically from serotonin (5-hydroxytryptamine). These indoleamine derivatives play an important role in the prevention of oxidative damage. In the present study, DMPD radical scavenging and cupric ion (Cu(2+)) reducing ability of melatonin and serotonin as trolox equivalent antioxidant activity (TEAC) was investigated. Melatonin and serotonin demonstrated 73.5 and 127.4 microg/mL trolox equivalent DMPD( radical+) scavenging activity at the concentration of 100 microg/mL. Also, at the same concentration, melatonin and serotonin showed 14.41 and 116.09 microg/mL trolox equivalent cupric ion (Cu(2+)) reducing ability. These results showed that melatonin and serotonin had marked DMPD(radical+) radical scavenging and cupric ions (Cu(2+)) reducing ability. Especially, serotonin had higher DMPD radical scavenging and cupric ions (Cu(2+)) reducing activity than melatonin because of its phenolic group.  相似文献   

19.
Toll-like receptors (TLRs) are crucial activators of inflammatory responses, they are considered immune receptors. TLRs are of fundamental importance in the pathophysiology of disorders related to inflammation including neurodegenerative diseases and cancer. Melatonin is a beneficial agent in the treatment of inflammatory and immune disorders. Melatonin is potent anti-inflammatory hormone that regulates various molecular pathways. Withal, limited studies have evaluated the inhibitory role of melatonin on TLRs. This review summarizes the current knowledge related to the effects of melatonin on TLRs in some common inflammatory and immunity disorders.  相似文献   

20.
Melatonin is a hormone produced in terrestrial vertebrates and humans in the pineal organ, an endocrine gland. It was established that one of the major functions of melatonin is the synchronization of the function of all organs and the regulation of seasonal and diurnal rhythms of their physiological activity. The synchronization function and rhythm regulation are performed in accordance with the circadian rhythm of melatonin expression, depending on the length of day and night. Melatonin is able to influence the growth, development, and physiological activity of different types of cells, affecting the mechanisms of signaling pathways and cascades similarly to growth factors. It was confirmed that the processes of conception, pregnancy, and childbirth directly depend on the rhythm and secretion profile of the epiphyseal hormone melatonin in the body. In this review, we attempt to combine the available published data on the involvement of melatonin in various physiological processes during the preimplantation and postimplantation periods of life of the organism and its positive and negative effects at the stages of puberty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号