首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-domain antibodies against various antigens are isolated from the unique heavy-chain antibodies of immunized camels and llamas. These minimal sized binders are very robust and bind the antigen with high affinity in a monomeric state. We evaluated the feasibility to produce soluble, functional bispecific and bivalent antibodies in Escherichia coli with camel single-domain antibody fragments as building blocks. Two single-domain antibody fragments were tethered by the structural upper hinge of a natural antibody to generate bispecific molecules. This linker was chosen for its protease resistance in serum and its natural flexibility to reorient the upstream and downstream located domains. The expression levels, ease of purification, and the solubility of the recombinant proteins were comparable with those of the constituent monomers. The individual moieties fully retain the binding capacity and the binding characteristics within the recombinant bispecific constructs. The easy generation steps and the biophysical properties of these bispecific and bivalent constructs based on camel single-domain antibody fragments makes them particularly attractive for use in therapeutic or diagnostic programs.  相似文献   

2.
Signal peptides are short peptides located at the N-terminus of secreted proteins. They characteristically have three domains; a basic region at the N-terminus (n-region), a central hydrophobic core (h-region) and a carboxy-terminal cleavage region (c-region). Although hundreds of different signal peptides have been identified, it has not been completely understood how their features enable signal peptides to influence protein expression. Antibody-derived signal peptides are often used to prepare recombinant antibodies expressed by eukaryotic cells, especially Chinese hamster ovary (CHO) cells. However, when prokaryotic Escherichia coli (E. coli) are utilized in drug discovery processes, such as for phage display selection or antibody humanization, signal peptides have been selected separately due to the differences in the expression systems between the species. In this study, we successfully established a signal peptide that enables a functional antibody to be expressed in both prokaryotic and eukaryotic cells by focusing on the importance of having an Ala residue in the c-region of the signal sequence. We found that changing Ser to Ala at only two positions significantly augmented the anti-HER2 antigen binding fragment (Fab) expression in E. coli. In addition, this altered signal peptide also retained the ability to express functional anti-HER2 antibody in CHO cells. Taken together, the present findings indicate that the signal peptide can promote functional antibody expression in both prokaryotic E. coli and eukaryotic CHO cells. This finding will contribute to the understanding of signal peptides and accelerate therapeutic antibody research.  相似文献   

3.
Phage display technologies have been increasingly utilized for the generation of therapeutic, imaging and purification reagents for a number of biological targets. Using a variety of different approaches, we have developed antibodies with high specificity and affinity for various targets ranging from small peptides to large proteins, soluble or membrane-associated as well as to activated forms of enzymes. We have applied this approach to G-protein coupled receptors (GPCRs), often considered difficult targets for antibody therapeutics and targeting. Here we demonstrate the use of this technology for the identification of human antibodies targeting C5aR, the chemoattractant GPCR receptor for anaphylatoxin C5a. The N-terminal region (residues 1-31) of C5aR, one of the ligand binding sites, was synthesized, biotinylated and used as the target for selection. Three rounds of selection with our proprietary human Fab phage display library were performed. Screening of 768 isolates by phage ELISA identified 374 positive clones. Based on sequence alignment analysis, the positive clones were divided into 22 groups. Representative Fab clones from each group were reformatted into IgGs and tested for binding to C5aR-expressing cells, the differentiated U-937 cells. Flow cytometric analysis demonstrated that nine out of 16 reformatted IgGs bound to cells. Competition with a C5aR monoclonal antibody S5/1 which recognizes the same N-terminal region showed that S5/1 blocked the binding of positive cell binders to the peptide used for selections, indicating that the identified cell binding IgGs were specific to C5aR. These antibody binders represent viable candidates as therapeutic or imaging agents, illustrating that phage display technology provides a rapid means for developing antibodies to a difficult class of targets such as GPCRs.  相似文献   

4.
The humoral immune response of camels, dromedaries and llamas includes functional antibodies formed by two heavy chains and no light chains. The amino acid sequence of the variable domain of the naturally occurring heavy‐chain antibodies reveals the necessary adaptations to compensate for the absence of the light chain. In contrast to the conventional antibodies, a large proportion of the heavy‐chain antibodies acts as competitive enzyme inhibitors. Studies on the dromedary immunoglobulin genes start to shed light on the ontogeny of these heavy‐chain antibodies. The presence of the heavy‐chain antibodies and the possibility of immunizing a dromedary allows for the production of antigen binders consisting of a single domain only. These minimal antigen‐binding fragments are well expressed in bacteria, bind the antigen with affinity in the nM range and are very stable. We expect that such camelid single domain antibodies will find their way into a number of biotechnological or medical applications. The structure of the camelid single domain is homologous to the human VH, however, the antigen‐binding loop structures deviate fundamentally from the canonical structures described for human or mouse VHs. This has two additional advantages: (1) the camel or llama derived single domain antibodies might be an ideal scaffold for anti‐idiotypic vaccinations; and (2) the development of smaller peptides or peptide mimetic drugs derived from of the antigen binding loops might be facilitated due to their less complex antigen binding site. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
Antibody library technology represents a powerful tool for the discovery and design of antibodies with high affinity and specificity for their targets. To extend the technique to the expression and selection of antibody libraries in an eukaryotic environment, we provide here a proof of concept that retroviruses can be engineered for the display and selection of variable single-chain fragment (scFv) libraries. A retroviral library displaying the repertoire obtained after a single round of selection of a human synthetic scFv phage display library on laminin was generated. For selection, antigen-bound virus was efficiently recovered by an overlay with cells permissive for infection. This approach allowed more than 103-fold enrichment of antigen binders in a single selection cycle. After three selection cycles, several scFvs were recovered showing similar laminin-binding activities but improved expression levels in mammalian cells as compared with a laminin-specific scFv selected by the conventional phage display approach. Thus, translational problems that occur when phage-selected antibodies have to be transferred onto mammalian expression systems to exert their therapeutic potential can be avoided by the use of retroviral display libraries.  相似文献   

6.
We demonstrated recently that selective side-chain modification of functional cysteine-rich (Tat(21-40)) and arginine-rich (Tat(53-68)) domains of the HIV-1 Tat protein blocks pathogenic activities of these peptides while retaining their immunological characteristics. In the present study, we have synthesized a multiple-peptide conjugate system comprising modified Tat(21-40) and Tat(53-68) peptides (HIV-1-Tat-MPC). Immunization of mice with this highly homogeneous 10.7 kDa HIV-1-Tat-MPC synthetic construct induced an effective immune response in mice. The antibodies generated against HIV-1-Tat-MPC efficiently suppressed Tat-induced viral replication and significantly reduced HIV-associated cytopathic effects in human monocytes. These results indicate that epitope-specific antibodies directed against functional sites of Tat protein using non-pathogenic peptides inhibit HIV pathogenesis. The HIV-1-Tat-MPC, therefore, has potential for the development of a safe, effective, and economical therapeutic vaccine to reduce the progression of HIV infection.  相似文献   

7.
Raising functional antibodies against G protein-coupled receptors (GPCRs) is challenging due to their low density expression, instability in the absence of the cell membrane's lipid bilayer and frequently short extracellular domains that can serve as antigens. In addition, a particular therapeutic concept may require an antibody to not just bind the receptor, but also act as a functional receptor agonist or antagonist. Antagonizing the glucose-dependent insulinotropic polypeptide (GIP) receptor may open up new therapeutic modalities in the treatment of diabetes and obesity. As such, a panel of monoclonal antagonistic antibodies would be a useful tool for in vitro and in vivo proof of concept studies. The receptor is highly conserved between rodents and humans, which has contributed to previous mouse and rat immunization campaigns generating very few usable antibodies. Switching the immunization host to chicken, which is phylogenetically distant from mammals, enabled the generation of a large and diverse panel of monoclonal antibodies containing 172 unique sequences. Three-quarters of all chicken-derived antibodies were functional antagonists, exhibited high-affinities to the receptor extracellular domain and sampled a broad epitope repertoire. For difficult targets, including GPCRs such as GIPR, chickens are emerging as valuable immunization hosts for therapeutic antibody discovery.  相似文献   

8.
A growing number of research consortia are now focused on generating antibodies and recombinant antibody fragments that target the human proteome. A particularly valuable application for these binding molecules would be their use inside a living cell, e.g., for imaging or functional intervention. Animal-derived antibodies must be brought into the cell through the membrane, whereas the availability of the antibody genes from phage display systems allows intracellular expression. Here, the various technologies to target intracellular proteins with antibodies are reviewed.Key words: protein transfection, profection, cytosolic delivery, intracellular delivery, protein transduction domains, cell penetrating peptides, intracellular antibody, intrabodies, transbodies, live cell imaging  相似文献   

9.
Single domain antibodies (sdAbs) from camels or sharks comprise only the variable heavy chain domain. Human sdAbs comprise the variable domain of the heavy chain (VH) or light chain (VL) and can be selected from human antibodies. SdAbs are stable, nonaggregating molecules in vitro and in vivo compared to complete antibodies and scFv fragments. They are excellent novel inhibitors of cytosolic/nuclear proteins because they are correctly folded inside the cytosol in contrast to scFv fragments. SdAbs are unique because of their excellent specificity and possibility to target posttranslational modifications such as phosphorylation sites, conformers or interaction regions of proteins that cannot be targeted with genetic knockout techniques and are impossible to knockdown with RNAi. The number of inhibiting cytosolic/nuclear sdAbs is increasing and usage of synthetic single pot single domain antibody libraries will boost the generation of these fascinating molecules without the need of immunization. The most frequently selected antigenic epitopes belong to viral and oncogenic proteins, followed by toxins, proteins of the nervous system as well as plant‐ and drosophila proteins. It is now possible to select functional sdAbs against virtually every cytosolic/nuclear protein and desired epitope. The development of new endosomal escape protein domains and cell‐penetrating peptides for efficient transfection broaden the application of inhibiting sdAbs. Last but not least, the generation of relatively new cell‐specific nanoparticles such as polymersomes and polyplexes carrying cytosolic/nuclear sdAb‐DNA or –protein will pave the way to apply cytosolic/nuclear sdAbs for inhibition of viral infection and cancer in the clinic.  相似文献   

10.
High-precision tumor targeting with conventional therapeutics is based on the concept of the ideal drug as a "magic bullet"; this became possible after techniques were developed for production of monoclonal antibodies (mAbs). Innovative DNA technologies have revolutionized this area and enhanced clinical efficiency of mAbs. The experience of applying small-size recombinant antibodies (monovalent binding fragments and their derivatives) to cancer targeting showed that even high-affinity monovalent interactions provide fast blood clearance but only modest retention time on the target antigen. Conversion of recombinant antibodies into multivalent format increases their functional affinity, decreases dissociation rates for cell-surface and optimizes biodistribution. In addition, it allows the creation of bispecific antibody molecules that can target two different antigens simultaneously and do not exist in nature. Different multimerization strategies used now in antibody engineering make it possible to optimize biodistribution and tumor targeting of recombinant antibody constructs for cancer diagnostics and therapy.  相似文献   

11.
Phage display is a well-known technique that facilitates the selection of peptides or proteins that bind to a desired target. Using this tool, binding elements contained in the natural immune repertoires of the source animal or from a synthetically generated collection may be selected. The unpaired variable domain of the llama's heavy-chain-only classes of immunoglobulins represents an ideal source of genetic material to create phage display libraries. Initial panning of a semi-synthetic llama library yielded only one binder to the toxin ricin. In an effort to increase the number of monoclonal phage binders selected, the Luminex xMAP technology (Luminex, Austin, TX, USA) was used in addition to the enzyme-linked immunosorbent assay (ELISA) to screen clonal populations of phage after three rounds of selection. The xMAP technology detected phage displayed single domain antibody (sdAb) bound to ricin immobilized on the surface of microspheres under equilibrium conditions. This enhanced capability led directly to the identification of additional single domain antibodies of interest. The selected sdAbs were expressed, purified, and then evaluated for their specificity as well as enhanced thermal stability in comparison to conventional immunoglobulin G (IgG). We determined equilibrium dissociation constants and demonstrated their use as effective capture molecules in sandwich immunoassays.  相似文献   

12.
《MABS-AUSTIN》2013,5(1):130-142
The development of efficient strategies for generating fully human monoclonal antibodies with unique functional properties that are exploitable for tailored therapeutic interventions remains a major challenge in the antibody technology field. Here, we present a methodology for recovering such antibodies from antigen-encountered human B cell repertoires. As the source for variable antibody genes, we cloned immunoglobulin G (IgG)-derived B cell repertoires from lymph nodes of 20 individuals undergoing surgery for head and neck cancer. Sequence analysis of unselected “LYmph Node Derived Antibody Libraries” (LYNDAL) revealed a naturally occurring distribution pattern of rearranged antibody sequences, representing all known variable gene families and most functional germline sequences. To demonstrate the feasibility for selecting antibodies with therapeutic potential from these repertoires, seven LYNDAL from donors with high serum titers against herpes simplex virus (HSV) were panned on recombinant glycoprotein B of HSV-1. Screening for specific binders delivered 34 single-chain variable fragments (scFvs) with unique sequences. Sequence analysis revealed extensive somatic hypermutation of enriched clones as a result of affinity maturation. Binding of scFvs to common glycoprotein B variants from HSV-1 and HSV-2 strains was highly specific, and the majority of analyzed antibody fragments bound to the target antigen with nanomolar affinity. From eight scFvs with HSV-neutralizing capacity in vitro, the most potent antibody neutralized 50% HSV-2 at 4.5 nM as a dimeric (scFv)2. We anticipate our approach to be useful for recovering fully human antibodies with therapeutic potential.  相似文献   

13.
Intracellular expression of recombinant antibodies (intrabodies) allows to interfere with the functions of oncogenic or viral molecules expressed in different cell compartments and has therefore a vast clinical potential in therapy. Although the use of phage-display libraries has made it possible to select Fab or single chain Fv (scFv) antibody fragments usable for intracellular targeting, a major source of recombinant antibodies for therapeutic use still remains hybridoma B cells producing well-characterized monoclonal antibodies (mAbs). However, the cloning and the intracellular expression of antibody fragments derived from mAbs can be markedly hampered by a number of technical difficulties that include failure of cloning functional variable regions as well as lack of binding of the antibody fragments to the targeted molecule in an intracellular environment. We discuss herein various molecular methods that have been developed to generate functional recombinant antibody fragments usable as anti-tumor triggering agents when expressed in tumor cells. Such antibodies can neutralize or modify the activity of oncogenic molecules when addressed in specific subcellular compartments and/or they can be used to trigger anti-tumor immunity when expressed on tumor cell surface.  相似文献   

14.
Here, we describe a new class of multivalent and multispecific antibody-based reagents for therapy. The molecules, termed “trimerbodies,” use a modified version of the N-terminal trimerization region of human collagen XVIII noncollagenous 1 domain flanked by two flexible linkers as trimerizing scaffold. By fusing single-chain variable fragments (scFv) with the same or different specificity to both N- and C-terminus of the trimerizing scaffold domain, we produced monospecific or bispecific hexavalent molecules that were efficiently secreted as soluble proteins by transfected mammalian cells. A bispecific anti-laminin x anti-CD3 N-/C-trimerbody was found to be trimeric in solution, very efficient at recognizing purified plastic-immobilized laminin and CD3 expressed at the surface of T cells, and remarkably stable in human serum. The bispecificity was further demonstrated in T cell activation studies. In the presence of laminin-rich substrate, the bispecific anti-laminin x anti-CD3 N-/C-trimerbody stimulated a high percentage of human T cells to express surface activation markers. These results suggest that the trimerbody platform offers promising opportunities for the development of the next-generation therapeutic antibodies, i.e., multivalent and bispecific molecules with a format optimized for the desired pharmacokinetics and adapted to the pathological context.  相似文献   

15.
Developing reagents with high affinity and specificity are critical to detect the environmental hormones or toxicants. Ribosome display technology has been widely used in functional protein or peptide screening and in directed evolution of protein molecules in vitro. In this study, single-chain variable fragments (scFvs) against bisphenol A (BPA) were selected from a library constructed from splenocytes of non-immunized mice. After five rounds of selection, the selected scFvs bound to BPA with high affinity. Indirect competitive enzyme-linked immunosorbent assay (ELISA) was introduced to screen the antibody affinity and specificity to BPA. The equilibrium dissociation constants (KDS) of one clone was 1.76 μM as determined by surface plasmon resonance (SPR). This study indicated that ribosome display can isolate binders to small molecules from a non-immunized naive library without any in vivo steps and can generate recombinant antibodies efficiently and rapidly. In addition, this study provides a methodological framework for detection of small molecules using recombinant antibodies.  相似文献   

16.
A therapeutic antibody candidate (AT-19) isolated using multivalent phage display binds native tomoregulin (TR) as a mul-timer not as a monomer. This report raises the importance of screening and selecting phage antibodies on native antigen and reemphasizes the possibility that potentially valuable antibodies are discarded when a monomeric phage display system is used for screening. A detailed live cell panning selection and screening method to isolate multivalently active antibodies is described. AT-19 is a fully human antibody recognizing the cell surface protein TR, a proposed prostate cancer target for therapeutic antibody internalization. AT-19 was isolated from a multivalent single-chain variable fragment (scFv) antibody library rescued with hyperphage. The required multivalency for isolation of AT-19 is supported by fluorescence activated cell sorting data demonstrating binding of the multivalent AT-19 phage particles at high phage concentrations and failure of monovalent particles to bind. Pure monomeric scFv AT-19 does not bind native receptor on cells, whereas dimeric scFv or immunoglobulin G binds with nanomolar affinity. The isolation of AT-19 antibody with obligate bivalent binding activity to native TR is attributed to the use of a multivalent display of scFv on phage and the method for selecting and screening by alternate use of 2 recombinant cell lines.  相似文献   

17.
The development of efficient strategies for generating fully human monoclonal antibodies with unique functional properties that are exploitable for tailored therapeutic interventions remains a major challenge in the antibody technology field. Here, we present a methodology for recovering such antibodies from antigen-encountered human B cell repertoires. As the source for variable antibody genes, we cloned immunoglobulin G (IgG)-derived B cell repertoires from lymph nodes of 20 individuals undergoing surgery for head and neck cancer. Sequence analysis of unselected “LYmph Node Derived Antibody Libraries” (LYNDAL) revealed a naturally occurring distribution pattern of rearranged antibody sequences, representing all known variable gene families and most functional germline sequences. To demonstrate the feasibility for selecting antibodies with therapeutic potential from these repertoires, seven LYNDAL from donors with high serum titers against herpes simplex virus (HSV) were panned on recombinant glycoprotein B of HSV-1. Screening for specific binders delivered 34 single-chain variable fragments (scFvs) with unique sequences. Sequence analysis revealed extensive somatic hypermutation of enriched clones as a result of affinity maturation. Binding of scFvs to common glycoprotein B variants from HSV-1 and HSV-2 strains was highly specific, and the majority of analyzed antibody fragments bound to the target antigen with nanomolar affinity. From eight scFvs with HSV-neutralizing capacity in vitro, the most potent antibody neutralized 50% HSV-2 at 4.5 nM as a dimeric (scFv)2. We anticipate our approach to be useful for recovering fully human antibodies with therapeutic potential.  相似文献   

18.
Single domain camel antibodies: current status   总被引:19,自引:0,他引:19  
The antigen-binding capacity of the paired variable domains of an antibody is well established. The observation that the isolated heavy chains of anti-hapten antibodies retain some antigen-binding capacity in the absence of light chains led to attempts to obtain an even smaller antigen-binding unit in a VH format. Unfortunately, the poor solubility, the reduced affinity for the antigen and the irreproducible outcome showed that additional protein engineering would be required to successfully generate single-domain antibody fragments. By serendipity, it was discovered that this engineering is already performed continuously in nature. Part of the humoral immune response of camels and llamas is based largely on heavy-chain antibodies where the light chain is totally absent. These unique antibody isotypes interact with the antigen by virtue of only one single variable domain, referred to as VHH. Despite the absence of the VH-VL combinatorial diversity, these heavy-chain antibodies exhibit a broad antigen-binding repertoire by enlarging their hypervariable regions. Methods are described to tap the VHH repertoire of an immunised dromedary or llama. These VHH libraries contain a high titre of intact antigen-specific binders that were matured in vivo. Synthetic libraries of a 'camelised' human VH, a mouse VH or a camelid VHH scaffold with a randomised CDR3 could constitute a valid alternative to immune libraries to retrieve useful single-domain antigen binders. The recombinant VHH that are selected from such libraries are well expressed, highly soluble in aqueous environments and very robust. Some in vivo matured VHH were also shown to be potent enzyme inhibitors, and the low complexity of the antigen-binding site is an asset in the design of peptide mimetics. Because of their smaller size and the above properties, the VHH clearly offer added-value over conventional antibody fragments. They are expected to open perspectives as enzyme inhibitors and intrabodies, as modular building units for multivalent or multifunctional constructs, or as immuno-adsorbents and detection units in biosensors.  相似文献   

19.
Antibody production by molecular farming in plants   总被引:7,自引:0,他引:7  
"Molecular farming" is the production of pharmaceutical proteins in transgenic plants and has great potential for the production of therapeutic anti-cancer antibodies and recombinant therapeutic proteins. Plants make fully functional recombinant human or animal antibodies. Cultivating transgenic plants on an agricultural scale will produce almost unlimited supplies of recombinant proteins for uses in medicine. Combinatorial library technology is a key tool for the generation and optimisation of therapeutic antibodies ahead of their expression in plants. Optimised antibody expression can be rapidly verified using transient expression assays in plants before creation of transgenic suspension cells or plant lines. Subcellular targeting signals that increase expression levels and optimise protein stability can be identified and exploited using transient expression to create high expresser plant lines. When high expresser lines have been selected, the final step is the development of efficient purification methods to retrieve functional antibody. Antibody production on an industrial scale is then possible using plant suspension cell culture in fermenters, or by the propagation of stably transformed plant lines in the field. Recombinant proteins can be produced either in whole plants or in seeds and tubers, which can be used for the long-term storage of both the protein and its production system. The review will discuss these developments and how we are moving toward the molecular farming of therapeutic antibodies becoming an economic and clinical reality.  相似文献   

20.
A method is described to generate and validate antibodies based on mapping the linear epitopes of a polyclonal antibody followed by sequential epitope-specific capture using synthetic peptides. Polyclonal antibodies directed towards four proteins RBM3, SATB2, ANLN, and CNDP1, potentially involved in human cancers, were selected and antibodies to several non-overlapping epitopes were generated and subsequently validated by Western blot, immunohistochemistry, and immunofluorescence. For all four proteins, a dramatic difference in functionality could be observed for these monospecific antibodies directed to the different epitopes. In each case, at least one antibody was obtained with full functionality across all applications, while other epitope-specific fractions showed no or little functionality. These results present a path forward to use the mapped binding sites of polyclonal antibodies to generate epitope-specific antibodies, providing an attractive approach for large-scale efforts to characterize the human proteome by antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号