首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
赤霉素是最重要的植物生长调节剂之一,在农业生产中得到越来越广泛的应用,具有广阔的市场前景,但其工业化的高生产成本严重制约着它的广泛应用。近年来,利用生物技术提升赤霉素产量日益成为研究热点。赤霉素生物合成是多种酶协同作用的过程,阐明赤霉素的生物合成机制,利用代谢工程策略调控代谢流量,对提高赤霉素产量至关重要。文中综述了当前藤仓赤霉菌赤霉素生物合成途径、关键酶、环境因素、代谢流调控等方面的研究进展,在代谢调控方面进行了展望,以期为实现赤霉素稳产高产提供思路。  相似文献   

2.
ent-15α-Hydroxykaurenoic acid (8) was synthesized and fed to a mycelium suspension of Gibberella fujikuroi in the presence of 1-n-decylimidazole, a gibberellin biosynthesis inhibitor. The metabolites included 15β-hydroxy GA24, GA45 (GA of Pyrus communis), 15β-hydroxy GA15 and 15β-hydroxy GA25. Microbial production of 12α-hydroxy GAs from ent-12β-hydroxykaurene is also described.  相似文献   

3.
The application of small amounts of natural plant growth hormones, such as gibberellins (GAs), can increase the productivity and quality of many vegetable and fruit crops. However, gibberellin growth hormones usage is limited by the high cost of their production, which is currently based on fermentation of a natural fungal producer Fusarium fujikuroi that produces a mix of several GAs. We explored the potential of the oleaginous yeast Yarrowia lipolytica to produce specific profiles of GAs. Firstly, the production of the GA-precursor ent-kaurenoic acid (KA) at 3.75 mg/L was achieved by expression of biosynthetic enzymes from the plant Arabidopsis thaliana and upregulation of the mevalonate (MVA) pathway.We then built a GA4-producing strain by extending the GA-biosynthetic pathway and upregulating the MVA-pathway further, resulting in 17.29 mg/L GA4. Additional expression of the F. fujikoroi GA-biosynthetic enzymes resulted in the production of GA7 (trace amounts) and GA3 (2.93 mg/L). Lastly, through protein engineering and the expression of additional KA-biosynthetic genes, we increased the GA3-production 4.4-fold resulting in 12.81 mg/L. The developed system presents a promising resource for the recombinant production of specific gibberellins, identifying bottlenecks in GA biosynthesis, and discovering new GA biosynthetic genes.ClassificationBiological Sciences, Applied Biological Sciences.  相似文献   

4.
Optimal plant growth performance requires that the presence and action of growth signals, such as gibberellins (GAs), are coordinated with the availability of photo-assimilates. Here, we studied the links between GA biosynthesis and carbon availability, and the subsequent effects on growth. We established that carbon availability, light and dark cues, and the circadian clock ensure the timing and magnitude of GA biosynthesis and that disruption of these factors results in reduced GA levels and expression of downstream genes. Carbon-dependent nighttime induction of gibberellin 3-beta-dioxygenase 1 (GA3ox1) was severely hampered when preceded by reduced daytime light availability, leading specifically to reduced bioactive GA4 levels, and coinciding with a decline in leaf expansion rate during the night. We attributed this decline in leaf expansion mostly to reduced photo-assimilates. However, plants in which GA limitation was alleviated had significantly improved leaf expansion, demonstrating the relevance of GAs in growth control under varying carbon availability. Carbon-dependent expression of upstream GA biosynthesis genes (Kaurene synthase and gibberellin 20 oxidase 1, GA20ox1) was not translated into metabolite changes within this short timeframe. We propose a model in which the extent of nighttime biosynthesis of bioactive GA4 by GA3ox1 is determined by nighttime consumption of starch reserves, thus providing day-to-day adjustments of GA responses.

GA-sugar matching occurs specifically at night and determines day to day adjustment of GA levels and subsequent growth.  相似文献   

5.
The effects of various chemically pure gibberellins and cytokinins on leaf yellowing of Alstroemeria were described. The loss of chlorophyll was measured both in leaves of cut flowering stems and in a model system consisting of detached leaf tips. It was demonstrated that plant growth substances affected chlorophyll loss in both systems to the same extent. Leaf senescence was delayed by various gibberellins and cytokinins. The results demonstrated that some of the gibberellins (GA4 and GA7) are far more effective in delaying chlorophyll loss than GA3, which is commonly used as a postharvest treatment for Alstroemeria cut flowering stems. Immunoassays were used to demonstrate that the effect of gibberellins on leaf yellowing does not involve an increase in the endogenous cytokinin concentrations in the leaves as an intermediate step.Abbreviations GA gibberellin A - HPLC high performance liquid chromatography - GA3Mc GA3-methyl ester - ZR zeatin riboside - IPAR isopentenyl adenine riboside.  相似文献   

6.
The germination of Amaranthus paniculatus seeds was inhibited by applying paclobutrazol, a specific inhibitor of gibberellin biosynthesis. This inhibition was markedly counteracted by gibberellin A3 (GA3), suggesting that endogenous gibberellins are required for germination in this species. The inhibitory effect of paclobutrazol was also overcome by ethephon (2-chloroethylphosphonic acid) or the precursor of ethylene biosynthesis, ACC (1-aminocyclopropane-l-carboxylic acid). Thus the physiological effect of gibberellin can be mimicked by ethylene released from ethephon or synthesised from exogenous ACC. It is suggested, that endogenous gibberellins are involved in germination of Amaranthus paniculatus seeds and that action of GA3 can be substituted by ethylene.Abbreviations ACC 1-aminocyclopropane-l-carboxylic acid - AMO-1618 (2-isopropyl-5methyl-4-trimethylammoniumchloride)-phenyl-l-piperidinium-carboxylate - ancymidol -cyclopropyl--(4-methoxyphenyl)-5-pyrimidine methanol - chloromequat chloride (2-chloroethyl)trimethylammoniumchloride - ethephon 2-chloroethylphosphonic acid - GA gibberellin A3 - paclobutrazol (2RS, 3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-lyl)pentan-3-ol - Phosphon D 2,4,dichlorobenzyl-tributhylphosphoniumchloride - tetcyclacis 5,(4-chlorophenyl)-3,4,5,9,10-pentaaza-tetracyclo)5,4,1,0,Z,6,08,11 dodeca-3,9-diene  相似文献   

7.
The development of sensitive and specific solid-phase enzyme immunoassays for gibberellic acid and gibberellins A4 and A7 is reported. The use of antisera of high apparent affinity (Ka over 1010 l mol-1) in conjunction with alkaline phosphatase-labeled gibberellins allows, with minimum procedural effort, the quantitative determination of sub-picogram amounts of these gibberellins. The assays reported here are applicable to most gibberellins and can be set up with 1–1.5 mg of starting material. They represent the most sensitive methods for gibberellin determination known.Abbreviations GA gibberellin - GA3 gibberellic acid - TLC thin-layer-chromatography  相似文献   

8.
A mutant R-9 of Gibberella fujikuroi has been isolated and shown to be blocked for GA1 and GA3 biosynthesis, but not for GA4, GA7 and other gibberellins. Cultures of this mutant convert low concentrations of [1,2-3H2]-GA1 into GA3 in a radiochemical yield of 2·7 %.  相似文献   

9.
Cell-free preparations from seeds of Marah macrocarpus L. and Malus domestica L. catalyzed the conversion of gibberellin A9 (GA9) and 2,3-dehydroGA9 to GA7; GA9 was also metabolized to GA4 in a branch pathway. The preparation from Marah seeds also metabolized GA5 to GA3 in high yield; GA6 was a minor product and was not metabolized to GA3. Using substrates stereospecifically labeled with deuterium, it was shown that the metabolism of GA5 to GA3 and of 2,3-dehydroGA9 to GA7 occurs with the loss of the 1β-hydrogen. In cultures of Gibberella fujikuroi, mutant B1-41a, [1β,2β-2H2]GA4, was metabolized to [1,2-2H2]GA3 with the loss of the 1α- and 2α-hydrogens. These results provide further evidence that the biosynthetic origin of GA3 and GA7 in higher plants is different from that in the fungus Gibberella fujikuroi.  相似文献   

10.
Petiole growth in Thlaspi arvense L. was stimulated when a basic 8 hour photoperiod (4.20 milliwatts per square centimeter) was extended with low intensity light (0.16 milliwatt per square centimeter) from incandescent lamps. The day length extension was effective only when the light contained high proportions of far red light. Exogenous gibberellin A3 (GA3) could partially substitute for the promotive effect of the extended photoperiod. Moreover, the GA biosynthesis inhibitor 2-chlorocholine chloride inhibited the increase in petiole growth induced by the extended photoperiod. However, evidence was obtained indicating that gibberellins do not mediate the effect of the extended photoperiod. First, petiole growth was greater in plants receiving both exogenous GA3 and a day length extension than the sum of the effects of the two treatments alone. Second, petioles were sensitive to exogenous GA3 only during the early stages of leaf development, whereas mature (but not senescent) leaves continued to respond to an extension of the photoperiod. Third, the cellular basis for growth induced by extending the photoperiod was different from that observed with GA3. It was concluded that light and gibberellins are both important in the overall regulation of petiole growth, but act through independent mechanisms.  相似文献   

11.
Using sensitive and selective immunological assays we have shown that in germinating caryopses of Hordeum vulgare L. cv. Himalaya, the level of gibberellin A4 (GA4) rises approximately 18-to 20-fold shortly (2–4 h) before -amylase activity increases. Gibberellin A4 is the predominant immunoreactive gibberelin during these developmental stages and reaches a peak amount of approximately 9 pmol per caryopsis about 48 h after imbibition. Isolated aleurone layers produce GA4 in the presence of an exogenous gibberellin, such as GA1, which is not a biosynthetic precursor for GA4. Experiments with inhibitors of gibberellin biosynthesis indicate that gibberellin synthesis is required in this tissue for the induction of -amylase. The inductive effect of exogenously applied GA1 is indirect and appears to be mediated by GA4. Embryos form predominantly GA1; however, very little of this material is released by isolated embryos into the incubation medium. The results presented make it unlikely that the role of the embryo in the process of -amylase induction in aleurone layers is to provide gibberellins or gibberellin precursors.Abbreviations ABA abscisic acid - GA gibberellin - GA3 gibberellic acid - RIA radioimmunoassay - TLC thin-layer chromatography  相似文献   

12.
The plant hormone, gibberellin (GA), regulates plant growth and development. It was first isolated as a superelongation-promoting diterpenoid from the fungus, Gibberella fujikuroi. G. fujikuroi uses different GA biosynthetic intermediates from those in plants to produce GA3. Another class of GA-producing fungus, Phaeosphaeria sp. L487, synthesizes GA1 by using the same intermediates as those in plants. A molecular analysis of GA biosynthesis in Phaeosphaeria sp. has revealed that diterpene cyclase and cytochrome P450 monooxygenases were involved in the plant-like biosynthesis of GA1. Fungal ent-kaurene synthase is a bifunctional cyclase. Subsequent oxidation steps are catalyzed by P450s, leading to biologically active GA1. GA biosynthesis in plants is divided into three steps involving soluble enzymes and membrane-bound cytochrome P450. The activation of plant GAs is catalyzed by soluble 2-oxoglutarate-dependent dioxygenases, which is in contrast to the catalysis of fungal GA biosynthesis. This difference suggests that the origin of fungal GA biosynthesis is evolutionally independent of that in plants.  相似文献   

13.
Several isolates of three Fusarium species associated with the Gibberella fujikuroi species complex were characterized for their ability to synthesize gibberellins (GAs): Fusarium sacchari (mating population B), Fusarium konzum (mating population I) and Fusarium subglutinans (mating population E). Of these, F. sacchari is phylogenetically related to Fusarium fujikuroi and is grouped in the Asian clade of the complex, while F. konzum and F. subglutinans are only distantly related to Fusarium fujikuroi and belong to the American clade. Variability was found between the different F. sacchari strains tested. Five isolates (B-12756; B-1732, B-7610, B-1721 and B-1797) were active in GA biosynthesis and accumulated GA3 in the culture fluid (2.76–28.4 μg/mL), while two others (B-3828 and B-1725) were inactive. GA3 levels in strain B-12756 increased by 2.9 times upon complementation with ggs2 and cps-ks genes from F. fujikuroi. Of six F. konzum isolates tested, three (I-10653; I-11616; I-11893) synthesized GAs, mainly GA1, at a low level (less than 0.1 μg/mL). Non-producing F. konzum strains contained no GA oxidase activities as found for the two F. subglutinans strains tested. These results indicate that the ability to produce GAs is present in other species of the G. fujikuroi complex beside F. fujikuroi, but might differ significantly in different isolates of the same species.  相似文献   

14.
Differential screening of aGibberella fujikuroicDNA library was used to successfully clone and identify genes involved in the pathway of gibberellin biosynthesis. Several cDNA clones that hybridized preferentially to a cDNA probe prepared from mycelium induced for gibberellin production were isolated and characterized. The deduced amino acid sequences of two (identical) clones contained the conserved heme-binding motif of cytochrome P450 monooxygenases (FXXGXXXCXG). One of these cDNA fragments was used as a homologous probe for the screening of a genomic library. A hybridizing 6.7-kb genomicSalI fragment was cloned into pUC19. The sequencing of this clone revealed that a second cytochrome P450 monooxygenase gene was closely linked to the first one. Since at least four cytochrome P450 monooxygenase-catalyzed steps are involved in the synthesis of gibberellins, chromosome walking was performed to find a further gene of this family or other genes involved in gibberellin pathway. Next to the two P450 monooxygenase genes, a putative geranylgeranyl diphosphate synthase gene, the copalyl diphosphate synthase gene, which is the first specific gene of the gibberellin pathway, and a third P450 monooxygenase gene were identified. These results suggest that at least some of the genes involved in the biosynthesis of gibberellins are closely linked in a gene cluster inG. fujikuroi,as has been recently found for other “dispensable” pathways in fungi.  相似文献   

15.
Gibberellin A1 (GA1) was identified by combined gas chromatographymass spectrometry as the major biologically active gibberellin (GA) in seeds of wild oat (Avena fatua L.) regardless of the depth of dormany or stage of imbibition. Both unimbibed dormant and nondromant seeds contained similar amounts of GA1 as estimated by the d5-maize bioassay. During imbibition, the level of GA1 declined in both dormant and non-dormant seeds, although the decline was more rapid in dormant seeds. Only in imbibing nondormant seeds did the GA biosynthesis inhibitor, 2-chloroethyltrimethyl ammonium chloride (CCC), cause a reduction in the level of GA1 from that observed in control seeds. These results are interpreted as an indication that while afterripening does not cause a direct change in the levels of GAs during dry storage, it does induce a greater capacity for GA biosynthesis during imbibition.

Nondormant seeds imbibed in the presence of 50 millimolar CCC germinated equally as well as untreated seeds. When wild oat plants were fed CCC throughout the entire life cycle, viable seeds were produced that lacked detectable GA-like substances. These seeds afterripened at a slightly slower rate than the controls. Moreover, completely afterripened (nondormant) seeds from plants fed CCC continuously contained no detectable GA-like substances, and when these seeds germinated, dwarf seedlings were produced, indicating GA biosynthesis was inhibited during and after germination. In total, these results suggest that the increased capacity for GA biosynthesis observed in imbibing nondormant seeds is not a necessary prerequisite for germination. It is therefore possible that GA biosynthesis in imbibing nondormant seeds is one of many coordinated biochemical events that occur during germination rather than an initiator of the processes leading to germination.

  相似文献   

16.
Gibberellin formation in microorganisms   总被引:2,自引:0,他引:2  
Several microorganisms possess the capacity of synthesizing gibberellins (GAs) in axenic culture. GA concentrations in the range of approximately 20 to 200 milligrams per litre of culture filtrate are produced by wild-type strains of the following fungi: Gibberella fujikuroi (GA3, GA4, GA7, GA1 and others), Sphaceloma manihoticola and other species of this genus (GA4, GA9 and others), Phaeosphaeria sp. (GA1, GA4, GA9 and others). Neurospora crassa is capable of producing GA3 in the range of micrograms per kilogram of mycelium. Nanogram amounts per litre of culture are present in fermentations of the bacteria Rhizobium phaseoli (GA1, GA4, GA9, GA20) and in Azospirillum lipoferum and A. brasilense (GA1, GA3). Of the high-producing organisms, G. fujikuroi and the Sphaceloma spp. appear to have an almost identical GA metabolism except that Sphaceloma is, in particular, unable to produce GA7 and GA1. Phaeosphaeria sp. converts GA9 via GA4 or GA20 into GA1, reactions not known from G. fujikuroi. Generally however, GA metabolism in these organisms appears to be very similar to the one known from higher plants. Most likely, the GAs formed play no hormonal or other immediate physiological role in the producing organism and can, thus, be regarded as secondary metabolites. On the other hand, evidence is available that GA-producing microorganisms often induce reactions in host plants which are beneficial to their growth.  相似文献   

17.
In this work, we study the capacity to biosynthesize gibberellins (GA) of ovules (either fertilised or unfertilised), developing seeds and pericarp from fruitlets and their relation with fruit set capacity. Experiments were performed in adult, 12-year-old trees of seeded (Pineapple) and seedless parthenocarpic (Washington navel) sweet orange [Citrus sinensis L. Osbeck] cultivars. The activity of GA20-, GA3- and GA2-oxidases and gibberellin levels were measured in the ovules and pericarp of fruitlets in different development states. The results indicate that ovules are the main sites of gibberellin synthesis in fruitlets during the post-anthesis period. The most intense GA1 synthesis—coincident with the highest expression of GA20ox2, GA3ox1 and GA2ox1—was detected in the ovules of the seeded cultivar, probably induced by fecundation and associated with low early fruitlet abscission rates. By contrast, the low activity detected in the sterile cultivar appears to be rather developmentally or constitutively regulated. As a fruitlet develops, the GA1 concentration is augmented in the pericarp in comparison to ovules or developing seeds, and levels therein did not exhibit noticeable differences between varieties. Furthermore, developing seeds from pineapple had higher GA1 content than the unfertilised abortive ovules from Washington navel. Taken together, data suggest a main role for this hormone in the control of fruitlet abscission, and also demonstrate a function in seed development.  相似文献   

18.
When the fungus Gibberella fujikuroi ATCC 12616 was grown in fermentor cultures, both intracellular kaurene biosynthetic activities and extracellular GA3 accumulation reached high levels when exogenous nitrogen was depleted in the culture. Similar patterns were exhibited by several nonrelated enzymatic activities, such as formamidase and urease, suggesting that all are subject to nitrogen regulation. The behavior of the enzymes involved in nitrogen assimilation (glutamine synthetase, glutamate dehydrogenase, and glutamate synthase) during fungal growth in different nitrogen sources suggests that glutamine is the final product of nitrogen assimilation in G. fujikuroi. When ammonium or glutamine was added to hormone-producing cultures, extracellular GA3 did not accumulate. However, when the conversion of ammonium into glutamine was inhibited by L-methionine-DL-sulfoximine, only glutamine maintained this effect. These results suggest that glutamine may well be the metabolite effector in nitrogen repression of GA3 synthesis, as well as in other nonrelated enzymatic activities in G. fujikuroi.  相似文献   

19.
Fungal endophytes produce a variety of favorable metabolites for plant growth and survival, but there is limited information on their gibberellin (GA) production capacity. In the current study, we isolated eight endophytic fungi from the roots of a drought stressed soybean cultivar Hwangkeumkong, and screened them on waito-c rice for plant growth promotion. Seven fungal isolates promoted plant growth, while one inhibited it. The culture filtrate (CF) of fungal isolate HK-5-2 provided the best results for growth promotion and was thus bioassayed on soybean. HK-5-2 CF enhanced plant length, plant fresh and dry weight and endogenous bioactive GA1 and GA4 contents of soybean as compared to control. The GA analysis of HK-5-2 CF showed the presence of bioactive GA3 (8.38 ng/ml), GA4 (2.16 ng/ml) and GA7 (1.56 ng/ml) in conjunction with physiologically inactive GA5, GA19 and GA24. Gibberella fujikuroi was used as positive control during this experiment. The fungal isolate HK-5-2 was identified as a new strain of Aspergillus fumigatus through molecular and phylogenetic analysis of 18S and 28S rDNA sequences.  相似文献   

20.
Gibberellins A19, A20, and A1 were applied to seedlings of birch (Betula pubescens Ehrh.) and alder (Alnus glutinosa (L.) Gaertn.) in order to test their ability to counteract growth inhibition induced by growth retardants (ancymidol and BX-112) or short day (SD, 12 h) photoperiod. Ancymidol inhibits early and BX-112 inhibits late steps in gibberellin biosynthesis. BX-112 inhibited stem elongation in both species while ancymidol, applied as a soil drench, was effective in alder only. Growth retardants affected stem elongation mainly by inhibiting elongation of internodes. All three gibberellins were equally active when applied to seedlings treated with ancymidol; however, only GA1 was able to counteract the growth inhibition induced by BX-112. SD-induced cessation of elongation growth in birch was counteracted by GA1, and to some degree, by GA20, while GA19 was inactive. SD treatment did not induce cessation of apical growth in alder. These results are consistent with the hypothesis that of gibberellins belonging to the early C-13 hydroxylation pathway, GA1 is the only active gibberellin for stem elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号