首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to compare light exposure and sleep parameters between adolescents with delayed sleep phase disorder (DSPD; n=16, 15.3±1.8 yrs) and unaffected controls (n=22, 13.7±2.4 yrs) using a prospective cohort design. Participants wore wrist actigraphs with photosensors for 14 days. Mean hourly lux levels from 20:00 to 05:00 h and 05:00 to 14:00 h were examined, in addition to the 9-h intervals prior to sleep onset and after sleep offset. Sleep parameters were compared separately, and were also included as covariates within models that analyzed associations with specified light intervals. Additional covariates included group and school night status. Adolescent delayed sleep phase subjects received more evening (p< .02, 22:00-02:00 h) and less morning (p .05, 08:00-09:00 h and 10:00-12:00 h) light than controls, but had less pre-sleep exposure with adjustments for the time of sleep onset (p< .03, 5-7 h prior to onset hour). No differences were identified with respect to the sleep offset interval. Increased total sleep time and later sleep offset times were associated with decreased evening (p< .001 and p= .02, respectively) and morning (p= .01 and p< .001, respectively) light exposure, and later sleep onset times were associated with increased evening exposure (p< .001). Increased total sleep time also correlated with increased exposure during the 9 h before sleep onset (p= .01), and a later sleep onset time corresponded with decreased light exposure during the same interval (p< .001). Outcomes persisted regardless of school night status. In conclusion, light exposure interpretation requires adjustments for sleep timing among adolescents with DSPD. Pre- and post-sleep light exposures do not appear to contribute directly to phase delays. Sensitivity to morning light may be reduced among adolescents with DSPD.  相似文献   

2.
《Chronobiology international》2013,30(8):1602-1612
All light is not equal: blue wavelengths are the most potent portion of the visible electromagnetic spectrum for circadian regulation. Therefore, blocking blue light could create a form of physiologic darkness. Because the timing and quantity of light and darkness both affect sleep, evening use of amber lenses to block blue light might affect sleep quality. Mood is also affected by light and sleep; therefore, mood might be affected by blue light blockade. In this study, 20 adult volunteers were randomized to wear either blue-blocking (amber) or yellow-tinted (blocking ultraviolet only) safety glasses for 3?h prior to sleep. Participants completed sleep diaries during a one-week baseline assessment and two weeks' use of glasses. Outcome measures were subjective: change in overall sleep quality and positive/negative affect. Results demonstrated that sleep quality at study outset was poorer in the amber lens than the control group. Two- by three-way ANOVA revealed significant (p?<?.001) interaction between quality of sleep over the three weeks and experimental condition. At the end of the study, the amber lens group experienced significant (p?<?.001) improvement in sleep quality relative to the control group and positive affect (p?=?.005). Mood also improved significantly relative to controls. A replication with more detailed data on the subjects' circadian baseline and objective outcome measures is warranted. (Author correspondence: )  相似文献   

3.
Melatonin concentration and core body temperature (CBT) follow endogenous circadian biological rhythms. In the evening, melatonin level increases and CBT decreases. These changes are involved in the regulation of the sleep-wake cycle. Therefore, the authors hypothesized that age-related changes in these rhythms affect sleep quality in older people. In a cross-sectional study design, 11 older poor-sleeping women (aged 62–72 yrs) and 9 older good-sleeping women (60–82 yrs) were compared with 10 younger good-sleeping women (23–28 yrs). The older groups were matched by age and body mass index. Sleep quality was assessed by the Pittsburgh Sleep Quality Index questionnaire. As an indicator of CBT, oral temperature was measured at 1-h intervals from 17:00 to 24:00?h. At the same time points, saliva samples were collected for determining melatonin levels by enzyme-linked immunosorbent assay (ELISA). The dim light melatonin onset (DLMO), characterizing the onset of melatonin production, was calculated. Evening changes in melatonin and CBT levels were tested by the Friedman test. Group comparisons were performed with independent samples tests. Predictors of sleep-onset latency (SOL) were assessed by regression analysis. Results show that the mean CBT decreased in the evening from 17:00 to 24:00?h in both young women (from 36.57°C to 36.25°C, p < .001) and older women (from 36.58°C to 35.88°C, p < .001), being lowest in the older poor sleepers (p < .05). During the same time period, mean melatonin levels increased in young women (from 16.2 to 54.1 pg/mL, p < .001) and older women (from 10.0 to 23.5 pg/mL, p < .001), being lowest among the older poor sleepers (from 20:00 to 24:00?h, p < .05 vs. young women). Older poor sleepers also showed a smaller increase in melatonin level from 17:00 to 24:00?h than older good sleepers (mean?±?SD: 7.0?±?9.63 pg/mL vs. 15.6?±?24.1 pg/mL, p = .013). Accordingly, the DLMO occurred at similar times in young (20:10?h) and older (19:57?h) good-sleeping women, but was delayed ~50?min in older poor-sleeping women (20:47?h). Older poor sleepers showed a shorter phase angle between DLMO and sleep onset, but a longer phase angle between CBT peak and sleep onset than young good sleepers, whereas older good sleepers had intermediate phase angles (insignificant). Regression analysis showed that the DLMO was a significant predictor of SOL in the older women (R2?=?0.64, p < .001), but not in the younger women. This indicates that melatonin production started later in those older women who needed more time to fall asleep. In conclusion, changes in melatonin level and CBT were intact in older poor sleepers in that evening melatonin increased and CBT decreased. However, poor sleepers showed a weaker evening increase in melatonin level, and their DLMO was delayed compared with good sleepers, suggesting that it is not primarily the absolute level of endogenous melatonin, but rather the timing of the circadian rhythm in evening melatonin secretion that might be related to disturbances in the sleep-wake cycle in older people. (Author correspondence: )  相似文献   

4.
Electrooculography (EOG) was used to explore performance differences in a sustained attention task during rested wakefulness (RW) and after 7 days of partial sleep deprivation (SD). The RW condition was based on obtaining regular sleep, and the SD condition involved sleep restriction of 3?h/night for a week resulting in a total sleep debt of 21?h. The study used a counterbalanced design with a 2-wk gap between the conditions. Participants performed a sustained attention task for 45?min on four occasions: 10:00–11:00, 14:00–15:00, 18:00–19:00, and 22:00–23:00?h. The task required moving gaze and attention as fast as possible from a fixation point to a target. In each session, 120 congruent and 34 incongruent stimuli were presented, totaling 1232 observations/participant. Correct responses plus errors of omission (lapses) and commission (false responses) were recorded, and the effect of time-of-day on sustained attention following SD was investigated. The analysis of variance (ANOVA) model showed that SD affected performance on a sustained attention task and manifested itself in a higher number of omission errors: congruent stimuli (F(1,64)?=?13.3, p?<?.001) and incongruent stimuli (F(1,64)?=?14.0, p?<?.001). Reaction times for saccadic eye movements did not differ significantly between experimental conditions or by time-of-day. Commission errors, however, exhibited a decreasing trend during the day. The visible prevalence of omissions in SD versus RW was observed during the mid-afternoon hours (the so-called post-lunch dip) for both congruent and incongruent stimuli (F(1,16)?=?5.3, p?=?.04 and F(1,16)?=?5.6, p?=?.03, respectively), and at 18:00?h for incongruent stimuli (F(1,13)?=?5.7, p?=?.03). (Author correspondence: )  相似文献   

5.
This study investigated the physiological function of suppressed melatonin through thermoregulation in a cold environment. Interactions between thermoregulation directly affected by exposure to a cold environment and indirectly affected by endogenous melatonin suppression by bright-light exposure were examined. Ten male subjects were exposed to two different illumination intensities (30 and 5000 lux) for 4.5?h, and two different ambient temperatures (15 and 27°C) for 2?h before sleep under dark and thermoneutral conditions. Salivary melatonin level was suppressed by bright light (p?<?0.001), although the ambient temperature condition had no significant effect on melatonin. During sleep, significant effects of pre-sleep exposure to a cold ambient temperature (p?<?0.001) and bright light (p?<?0.01) on rectal temperature (Tre) were observed. Pre-sleep, bright-light exposure led to an attenuated fall in Tre during sleep. Moreover, Tre dropped more precipitously after cold exposure than thermoneutral conditions (cold: ?0.54?±?0.07°C/h; thermoneutral: ?0.16?±?0.03°C/h; p?<?0.001). Pre-sleep, bright-light exposure delayed the nadir time of Tre under thermoneutral conditions (p?<?0.05), while cold exposure masked the circadian rhythm with a precipitous decrease in Tre. A significant correlation between the Tre nadir and melatonin level (r?=??0.774, p?<?0.05) indicated that inter-individual differences with higher melatonin levels lead to a reduction in Tre after cold exposure. These results suggest that suppressed endogenous melatonin inhibits the downregulation of the body temperature set-point during sleep. (Author correspondence: )  相似文献   

6.
《Chronobiology international》2013,30(9-10):1797-1812
Although evening preference has recently been identified as a risk factor for depression, it has not been substantiated whether evening preference is a direct risk factor for depressive states, or if it is associated secondarily through other factors, such as delayed sleep timing and shortened sleep duration. The objective of this study is to investigate associations in Japanese adult subjects between evening preference and incidence of depressive states, adjusting for various sleep parameters related to depressive states. The Morningness-Eveningness Questionnaire (MEQ), the Pittsburgh Sleep Quality Index (PSQI), and the Center for Epidemiologic Studies Depression Scale (CES-D) were administered to 1170 individuals (493 males/677 females; mean and range 38.5 and 20–59 yrs) to assess their diurnal preferences, sleeping states, and presence of depression symptoms. Subjects were classified into five chronotypes based on MEQ scores. Evening preference was associated with delayed sleep timing, shortened sleep duration, deteriorated subjective sleep quality, and worsened daytime sleepiness. Logistic regression analysis demonstrated that the extreme evening type (odds ratio [OR]?=?1.926, p?=?.018) was associated with increased incidence of depressive states and that the extreme morning type (OR?=?0.342, p?=?.038) was associated with the decreased incidence of depressive states, independent of sleep parameters, such as nocturnal awakening (OR?=?1.844, p?<?.001), subjective sleep quality (OR?=?2.471, p?<?.001), and daytime sleepiness (OR?=?1.895, p?=?.001). However, no significant associations were observed between the incidence of depressive states and sleep duration, sleep timing, and sleep debt (levels of insufficient sleep). Although the findings of this study do not demonstrate a causative relationship between evening preference and depression, they do suggest the presence of functional associations between mood adjustment and biological clock systems that regulate diurnal preference. They also suggest that evening preference might increase susceptibility to the induction of mood disorders. (Author correspondence: )  相似文献   

7.
Most night workers are unable to adjust their circadian rhythms to the atypical hours of sleep and wake. Between 10% and 30% of shiftworkers report symptoms of excessive sleepiness and/or insomnia consistent with a diagnosis of shift work disorder (SWD). Difficulties in attaining appropriate shifts in circadian phase, in response to night work, may explain why some individuals develop SWD. In the present study, it was hypothesized that disturbances of sleep and wakefulness in shiftworkers are related to the degree of mismatch between their endogenous circadian rhythms and the night-work schedule of sleep during the day and wake activities at night. Five asymptomatic night workers (ANWs) (3 females; [mean?±?SD] age: 39.2?±?12.5 yrs; mean yrs on shift?=?9.3) and five night workers meeting diagnostic criteria (International Classification of Sleep Disorders [ICSD]-2) for SWD (3 females; age: 35.6?±?8.6 yrs; mean years on shift?=?8.4) participated. All participants were admitted to the sleep center at 16:00?h, where they stayed in a dim light (<10 lux) private room for the study period of 25 consecutive hours. Saliva samples for melatonin assessment were collected at 30-min intervals. Circadian phase was determined from circadian rhythms of salivary melatonin onset (dim light melatonin onset, DLMO) calculated for each individual melatonin profile. Objective sleepiness was assessed using the multiple sleep latency test (MSLT; 13 trials, 2-h intervals starting at 17:00?h). A Mann-Whitney U test was used for evaluation of differences between groups. The DLMO in ANW group was 04:42?±?3.25?h, whereas in the SWD group it was 20:42?±?2.21?h (z = 2.4; p?<?.05). Sleep did not differ between groups, except the SWD group showed an earlier bedtime on off days from work relative to that in ANW group. The MSLT corresponding to night work time (01:00–09:00?h) was significantly shorter (3.6?±?.90?min: [M?±?SEM]) in the SWD group compared with that in ANW group (6.8?±?.93?min). DLMO was significantly correlated with insomnia severity (r = ?.68; p < .03), indicating that the workers with more severe insomnia symptoms had an earlier timing of DLMO. Finally, SWD subjects were exposed to more morning light (between 05:00 and 11:00?h) as than ANW ones (798 vs. 180 lux [M?±?SD], respectively z?=??1.7; p?<?.05). These data provide evidence of an internal physiological delay of the circadian pacemaker in asymptomatic night-shift workers. In contrast, individuals with SWD maintain a circadian phase position similar to day workers, leading to a mismatch/conflict between their endogenous rhythms and their sleep-wake schedule. (Author correspondence: )  相似文献   

8.
The aim of this study was (i) to evaluate whether homocysteine (Hcy), total antioxidant status (TAS), and biological markers of muscle injury would be affected by time of day (TOD) in football players and (ii) to establish a relationship between diurnal variation of these biomarkers and the daytime rhythm of power and muscle fatigue during repeated sprint ability (RSA) exercise. In counterbalanced order, 12 football (soccer) players performed an RSA test (5?×?[6 s of maximal cycling sprint?+?24 s of rest]) on two different occasions: 07:00–08:30?h and 17:00–18:30?h. Fasting blood samples were collected from a forearm vein before and 3–5?min after each RSA test. Core temperature, rating of perceived exertion, and performances (i.e., Sprint 1, Sprint 2, and power decrease) during the RSA test were significantly higher at 17:00 than 07:00?h (p?<?.001, p?<?.05, and p?<?.05, respectively). The results also showed significant diurnal variation of resting Hcy levels and all biological markers of muscle injury with acrophases (peak times) observed at 17:00?h. These fluctuations persisted after the RSA test. However, biomarkers of antioxidant status' resting levels (i.e., total antioxidant status, uric acid, and total bilirubin) were higher in the morning. This TOD effect was suppressed after exercise for TAS and uric acid. In conclusion, the present study confirms diurnal variation of Hcy, selected biological markers of cellular damage, and antioxidant status in young football players. Also, the higher performances and muscle fatigue showed in the evening during RSA exercise might be due to higher levels of biological markers of muscle injury and lower antioxidant status at this TOD. (Author correspondence: )  相似文献   

9.
The “Bergen Shift Work Sleep Questionnaire” (BSWSQ) was developed to systematically assess discrete sleep problems related to different work shifts (day, evening, night shifts) and rest days. In this study, we assessed the psychometric properties of the BSWSQ using a sample of 760 nurses, all working in a three-shift rotation schedule: day, evening, and night shifts. BSWSQ measures insomnia symptoms using seven questions: >30-min sleep onset latency, >30-min wake after sleep onset, >30-min premature awakenings, nonrestorative sleep, being tired/sleepy at work, during free time on work days, and when not working/on vacation. Symptoms are assessed separately for each work shift and rest days, as “never,” “rarely,” “sometimes,” “often,” “always,” or “not applicable.” We investigated the BSWSQ model fit, reliability (test-retest of a subsample, n?=?234), and convergent and discriminant validity between the BSWSQ and Epworth Sleepiness Scale, Fatigue Questionnaire, and Hospital Anxiety Depression Scale. We also investigated differences in mean scores between the different insomnia symptoms with respect to different work shifts and rest days. BSWSQ demonstrated an adequate model fit using structural equation modeling: root mean square error of approximation?=?.071 (90% confidence interval [CI]?=?.066–.076), comparative fit index?=?.91, and chi-square/degrees of freedom?=?4.41. The BSWSQ demonstrated good reliability (test-retest coefficients p?<?.001). We found good convergent and discriminant validity between BSWSQ and the other scales (all coefficients p?<?.001). There were significant differences between the overall/composite scores of the various work shifts. Night shift showed the highest score compared to day and evening shifts as well as to rest days (all post hoc comparisons p?<?.001). Mean scores of different symptoms also varied significantly within the individual work shifts. We conclude that the BSWSQ meets the necessary psychometric standards, enabling systematic study of discrete insomnia symptoms in different work shifts. (Author correspondence: )  相似文献   

10.
《Chronobiology international》2013,30(7):1438-1453
Increased sensitivity to light-induced melatonin suppression characterizes some, but not all, patients with bipolar illness or seasonal affective disorder. The aim of this study was to test the hypothesis that patients with premenstrual dysphoric disorder (PMDD), categorized as a depressive disorder in Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), have altered sensitivity to 200 lux light during mid-follicular (MF) and late-luteal (LL) menstrual cycle phases compared with normal control (NC) women. As an extension of a pilot study in which the authors administered 500 lux to 8 PMDD and 5 NC subjects, in the present study the authors administered 200 lux to 10 PMDD and 13 NC subjects during MF and LL menstrual cycle phases. Subjects were admitted to the General Clinical Research Center (GCRC) in dim light (<50 lux) to dark (during sleep) conditions at 16:00?h where nurses inserted an intravenous catheter at 17:00?h and collected plasma samples for melatonin at 30-min intervals from 18:00 to 10:00?h, including between 00:00 and 01:00?h for baseline values, between 01:30 and 03:00?h during the 200 lux light exposure administered from 01:00 to 03:00?h, and at 03:30 and 04:00?h after the light exposure. Median % melatonin suppression was significantly greater in PMDD (30.8%) versus NC (?0.2%) women (p?=?.040), and was significantly greater in PMDD in the MF (30.8%) than in the LL (?0.15%) phase (p?=?.047). Additionally, in the LL (but not the MF) phase, % suppression after 200 lux light was significantly positively correlated with serum estradiol level (p ?=? .007) in PMDD patients, but not in NC subjects (p?>?.05). (Author correspondence: )  相似文献   

11.
The first aim of the study was to assess clock-time patterning of work-related injuries (WRIs) of firemen (FM) of Saône et Loire-71 (France) during the 4-yr span of 1 January 2004 to 31 December 2007. FM of this service are legally required to log every WRI and seek its evaluation by the medical service, whether the WRI was the result of worksite duties or exercise/sport activities at the station. WRI was defined specifically as a (nonexercise, nonsport, and nonemotional/stress) work-associated trauma, verified both by log book and medical records. For the corresponding years, the 24-h pattern of emergency calls (Calls) plus road traffic (Traffic) on the main roads of the service area was also assessed. Relative risk (R) of WRI was calculated as the quantity of WRIs/h divided by the quantity of Call responses/h?×?1000, which takes into account the number of at-risk FM/unit time, since each dispatched emergency vehicle is staffed with 4 FM. Comparably trained regular (RFM) and volunteer (VFM) FM experienced a total of 187 WRIs. The 24-h WRI curve patterns of RFM and VFM were correlated (r?=?0.4, p?<?.05), with no histogram difference (p?>?.05). Analysis of variance (ANOVA) validated comparable clock-time patterns in WRIs of RFM and VFM each year and each season (all p?<?.0001). Thus, time series of the RFM and VFM were pooled, revealing a statistical significant 24-h variation in WRIs (ANOVA, p?>?.0006; Cosinor analysis, p?<?.0001), with peak at 16:00?h and trough at 04:00?h. The 24-h pattern in Traffic, which mirrors that of human activity, with peak ~18:00?h and trough ~03:00?h, was also verified (ANOVA, p <?.0001; Cosinor, p?<?.0001). Calls (n?=?112,059) resulting in FM responses also exhibited statistically significant 24-h variation, with peak at ~20:00?h and trough at ~06:00?h. The 24-h pattern of R showed a nocturnal peak at 02:00?h (R?=?2.87?±?0.46; mean?±?SEM) and diurnal trough 14:00?h (R?=?1.30?±?0.05) (t test, p?<?.02); clock-time-related changes in R were further validated by ANOVA (p?=?.0001) and Cosinor (p?<?.0001), with acrophase (peak time, Ø) of 02:43?h?±?68?min (SD). The second aim of the study was to evaluate the relationship between the 24-h patterns of WRIs and lag-time (LT) response (used as a measure of work performance) of FM of the same service to urgent medical calls for out-of-hospital cardiac arrests. Highest R of WRI at 02:00?h corresponded closely to longest LT (raw data at ~02:00?h and Cosinor derived Ø of 02.54?h?±?71?min [SD]), thereby supporting the hypothesis of a common mechanism underlying the two 24-h profiles. A third aim was to determine the relevance of a new concept in work safety, “chronoprevention,” for future FM training programs. (Author correspondence: )  相似文献   

12.
The study focused on chronotype-related differences in subjective load assessment, sleepiness, and salivary cortisol pattern in subjects performing daylong simulated driving. Individual differences in work stress appraisal and psychobiological cost of prolonged load seem to be of importance in view of expanding compressed working time schedules. Twenty-one healthy, male volunteers (mean?±?SD: 27.9?±?4.9 yrs) were required to stay in semiconstant routine conditions. They performed four sessions (each lasting ~2.5?h) of simulated driving, i.e., completed chosen tasks from computer driving games. Saliva samples were collected after each driving session, i.e., at 10:00–11:00, 14:00–15:00, 18:00–19:00, and 22:00–23:00?h as well as 10–30?min after waking (between 05:00 and 06:00?h) and at bedtime (after 00:00?h). Two subgroups of subjects were distinguished on the basis of the Chronotype Questionnaire: morning (M)- and evening (E)-oriented types. Subjective data on sleep need, sleeping time preferences, sleeping problems, and the details of the preceding night were investigated by questionnaire. Subjective measures of task load (NASA Task Load Index [NASA-TLX]), activation (Thayer's Activation-Deactivation Adjective Check List [AD ACL]), and sleepiness (Karolinska Sleepiness Scale [KSS]) were applied at times of saliva samples collection. M- and E-oriented types differed significantly as to their ideal sleep length (6 h 54 min?±?44 versus 8 h 13 min?±?50 min), preferred sleep timing (midpoint at 03:19 versus 04:26), and sleep index, i.e., ‘real-to-ideal’ sleep ratio, before the experimental day (0.88 versus 0.67). Sleep deficit proved to be integrated with eveningness. M and E types exhibited similar diurnal profiles of energy, tiredness, tension, and calmness assessed by AD ACL, but E types estimated higher their workload (NASA-TLX) and sleepiness (KSS). M types exhibited a trend of higher mean cortisol levels than E types (F?=?4.192, p?<?.056) and distinct diurnal variation (F?=?2.950, p?<?.019), whereas E types showed a flattened diurnal curve. Cortisol values did not correlate with subjective assessments of workload, arousal, or sleepiness at any time-of-day. Diurnal cortisol pattern parameters (i.e., morning level, mean level, and range of diurnal changes) showed significant positive correlations with sleep length before the experiment (r?=?.48, .54, and .53, respectively) and with sleep index (r?=?.63, .64, and .56, respectively). The conclusions of this study are: (i) E-oriented types showed lower salivary cortisol levels and a flattened diurnal curve in comparison with M types; (ii) sleep loss was associated with lower morning cortisol and mean diurnal level, whereas higher cortisol levels were observed in rested individuals. In the context of stress theory, it may be hypothesized that rested subjects perceived the driving task as a challenge, whereas those with reduced sleep were not challenged, but bored/exhausted with the experimental situation. (Author correspondence: )  相似文献   

13.
The aim of the study was to assess the group 24-h pattern of lag time (LT) in response by regular and volunteer firemen (RFM and VFM) to calls for medical help (CFMH), specifically calls for out-of-hospital cardiac arrest (OHCA). LT, duration in min between a CFMH and departure of service vehicle equipped with a semiautomated defibrillator and generally staffed with four well-trained and ready-to-go FM, represents the integrated duration of several processes, each with separate reaction and decision-making times. The exact time of each CFHM (in min, h, day, month, yr) was recorded electronically, and the exact departure time from the station of the responding FM vehicle was recorded by an on-duty FM. Overall, CFMH made up 53?±?9% (SEM) of all emergencies calls for aid. To standardize the study methods, the reported findings are based on 568 CFMH specifically regarding OHCA that occurred during the 4-yr study span (January 2005 to December 2008). CFMH exhibited a 24-h pattern with a major peak at 10:00?h (mean?±?SEM: n?=?9.5?±?1.6) and major trough at 01:00?h (n?=?1.3?±?0.3; t test, p?<?.001). From year to year and season to season, a 24-h pattern was detected in the total of CFMH/h with two peaks (~10:00 and ~17:00h) and two troughs (~01:00 and ~15:00?h) (analysis of variance [ANOVA], p?<?.01; Cosinor, p?<?.05 to?<?.003), with neither season- nor year-related differences (χ2, p?>?.05). In CFMH/h pooled time series, ANOVA-detected differences between the hourly means (p?<?.01), and Cosinor analysis validated a 24-h rhythm (p?<?.002). In raw data, the longest LT, indicative of poorest performance, occurred at 05:00?h (8.8?±?0.7?min) and the trough of LT, indicative of best performance, at 16:00?h (4.3?±?0.8?min (t test, p?<?.02). 24-h patterning in LT was validated both by ANOVA of hourly means (p?<?.0006) and Cosinor analysis (p?<?.05), with longest LT ~05:00?h and shortest LT ~16.00?h for data of the individual yearly time-series data. The 24-h LT rhythm was also validated in the pooled time series by Cosinor (p?<?.0001), with the 24-h mean?±?SEM?=?6?±?0.17?min and acrophase (peak) of 03:00?h?±?88?min (SD). Curve patterns of CFMH/h and LT/h differed widely. As a group phenomenon, the LT 24-h rhythm mimics the 24-h pattern of performance, as demonstrated by many laboratory and field investigations. The stability of the LT rhythm between years and seasons and its weak relationship with the CFMH 24-h pattern favors the hypothesis of an endogenous component or origin. The nighttime trough of performance is presumably linked to the elevated risk of work accidents in the same population of FM.  相似文献   

14.
The aim of the present combined field and laboratory study was to assess circadian entrainment in two groups of police officers working seven consecutive 8/8.5-h night shifts as part of a rotating schedule. Eight full-time police officers on patrol (mean age?±?SD: 29.8?±?6.5 yrs) were provided an intervention consisting of intermittent exposure to wide-spectrum bright light at night, orange-tinted goggles at sunrise, and maintenance of a regular sleep/darkness episode in the day. Orange-tinted goggles have been shown to block the melatonin-suppressing effect of light significantly more than neutral gray density goggles. Nine control group police officers (mean age?±?SD: 30.3?±?4.1 yrs) working the same schedule were enrolled. Police officers were studied before, after (in the laboratory), and during (ambulatory) a series of seven consecutive nights. Urine samples were collected at wake time and bedtime throughout the week of night work and during laboratory visits (1?×?/3?h) preceding and following the work week to measure urinary 6-sulfatoxymelatonin (UaMT6s) excretion rate. Subjective alertness was assessed at the start, middle, and end of night shifts. A 10-min psychomotor vigilance task was performed at the start and end of each shift. Both laboratory visits consisted of two 8-h sleep episodes based on the prior schedule. Saliva samples were collected 2?×?/h during waking episodes to assay their melatonin content. Subjective alertness (3?×?/h) and performance (1?×?/2?h) were assessed during wake periods in the laboratory. A mixed linear model was used to analyze the progression of UaMt6s excreted during daytime sleep episodes at home, as well as psychomotor performance and subjective alertness during night shifts. Two-way analysis of variance (ANOVA) (factors: laboratory visit and group) were used to compare peak salivary melatonin and UaMT6s excretion rate in the laboratory. In both groups of police officers, the excretion rate of UaMT6s at home was higher during daytime sleep episodes at the end compared to the start of the work week (p?<?.001). This rate increased significantly more in the intervention than control group (p?=?.032). A significant phase delay of salivary melatonin was observed in both groups at the end of study (p?=?.009), although no significant between-group difference was reached. Reaction speed dropped, and subjective alertness decreased throughout the night shift in both groups (p?<?.001). Reaction speed decreased throughout the work week in the control group (p?≤?.021), whereas no difference was observed in the intervention group. Median reaction time was increased as of the 5th and 6th nights compared to the 2nd night in controls (p?≤?.003), whereas it remained stable in the intervention group. These observations indicate better physiological adaptation in the intervention group compared to the controls. (Author correspondence: )  相似文献   

15.
《Chronobiology international》2013,30(9-10):1778-1796
The aim of the study was to investigate whether women with primary vascular dysregulation (VD; main symptoms of thermal discomfort with cold extremities) and difficulties initiating sleep (DIS) exhibit a disturbed phase of entrainment (Ψ) under everyday life conditions. The authors predicted a phase delay of the distal-proximal skin temperature gradient and salivary melatonin rhythms with respect to the sleep-wake cycle in women with VD and DIS (WVD) compared to controls (CON), similar to that found in their previous constant-routine laboratory data. A total of 41 young healthy women, 20 with WVD and 21 matched CON without VD and normal sleep onset latency (SOL), were investigated under ambulatory conditions (following their habitual bedtimes) during 7 days of continuous recording of skin temperatures, sleep-wake cycles monitored by actimetry and sleep-wake diaries, and single evening saliva collections for determining the circadian marker of dim light melatonin onset (DLMO). Compared to CON, WVD showed increased distal vasoconstriction at midday and in the evening, as indicated by lower distal (DIST; hands and feet) and foot-calf skin temperatures, and distal-proximal skin temperature gradients (p?<?.05). WVD manifested distal vasoconstriction before lights-off that also lasted longer after lights-off than in CON. In parallel, WVD exhibited a longer SOL (p?<?.05). To define internal phase-relationships, cross-correlation analyses were performed using diurnal rhythms of wrist activity and foot skin temperature. WVD showed a phase delay in foot skin temperature (CON versus WVD: 3.57?±?17.28?min versus 38.50?±?16.65?min; p?<?.05) but not in wrist activity. This finding was validated by additional within-subject cross-correlation analyses using the diurnal wrist activity pattern as reference. DLMO and habitual sleep times did not differ between CON and WVD. The authors conclude that WVD exhibit a phase delay of distal vasodilatation with respect to their habitual sleep-wake cycle and other circadian phase markers, such as DLMO. A full factorial design will have to show whether the finding is specific to primary vascular dysregualtion, to DIS, or to their interaction. (Author correspondence: )  相似文献   

16.
17.
The objective of this study was to quantify daytime sleep in night-shift workers with and without an intervention designed to recover the normal relationship between the endogenous circadian pacemaker and the sleep/wake cycle. Workers of the treatment group received intermittent exposure to full-spectrum bright light during night shifts and wore dark goggles during the morning commute home. All workers maintained stable 8-h daytime sleep/darkness schedules. The authors found that workers of the treatment group had daytime sleep episodes that lasted 7.1?±?.1?h (mean?±?SEM) versus 6.6?±?.2?h for workers in the control group (p?=?.04). The increase in total sleep time co-occurred with a larger proportion of the melatonin secretory episode during daytime sleep in workers of the treatment group. The results of this study showed reestablishment of a phase angle that is comparable to that observed on a day-oriented schedule favors longer daytime sleep episodes in night-shift workers. (Author correspondence: )  相似文献   

18.
Approximately 10% of employees undertake night work, which is a significant predictor of weight gain, possibly because responses to activity and eating are altered at night. It is known that the appetite-related hormone, acylated ghrelin, is suppressed after an acute bout of exercise during the day, but no researcher has explored whether evening exercise alters acylated ghrelin and other appetite-related outcomes during a subsequent night shift. Six healthy men (mean?±?SD: age 30?±?8 yrs, body mass index 23.1?±?1.1?kg/m2) completed two crossover trials (control and exercise) in random order. Participants fasted from 10:00?h, consumed a test meal at 18:00?h, and then cycled at 50% peak oxygen uptake or rested between 19:00–20:00?h. Participants then completed light activities during a simulated night shift which ended at 05:00?h. Two small isocaloric meals were consumed at 22:00 and 02:00?h. Venous blood samples were drawn via cannulation at 1?h intervals between 19:00–05:00?h for the determination of acylated ghrelin, leptin, insulin, glucose, triglyceride, and non-esterified fatty acids concentrations. Perceived hunger and wrist actimetry were also recorded. During the simulated night shift, mean?±?SD acylated ghrelin concentration was 86.5?±?40.8 pg/ml following exercise compared with 71.7?±?37.7 pg/ml without prior exercise (p?=?0.015). Throughout the night shift, leptin concentration was 263?±?242 pg/ml following exercise compared with 187?±?221 pg/ml without prior exercise (p?=?0.017). Mean levels of insulin, triglyceride, non-esterified fatty acids, and wrist actimetry level were also higher during the night shift that followed exercise (p?<?0.05). These data indicate that prior exercise increases acylated ghrelin and leptin concentrations during a subsequent simulated night shift. These findings differ from the known effects of exercise on acylated ghrelin and leptin during the day, and therefore have implications for energy balance during night work. (Author correspondence: ).  相似文献   

19.
《Chronobiology international》2013,30(9):1239-1248
During the last few decades, the incidence of sleep-onset insomnia, due to delay of circadian phase, has increased substantially among adolescents all over the world. We wanted to investigate whether a small dose of melatonin given daily, administered in the afternoon, could advance the sleep timing in teenagers. Twenty-one students, aged 14–19 yrs, with sleep-onset difficulties during school weeks were recruited. The study was a randomized, double blind, placebo (PL)-controlled crossover trial, lasting 5 wks. During the first 6 d in wks 2 and 4, the students received either PL or melatonin (1 mg) capsules between 16:30 and 18:00 h. During the first 6 d of wk 5, all students received melatonin. Wks 1 and 3 were capsule-free. In the last evening of each week and the following morning, the students produced saliva samples at home for later melatonin analysis. The samples were produced the same time each week, as late as possible in the evening and as early as possible in the morning. Both the student and one parent received automatic mobile text messages 15 min before saliva sampling times and capsule intake at agreed times. Diaries with registration of presumed sleep, subjective sleepiness during the day (Karolinska Sleepiness Scale, KSS) and times for capsule intake and saliva samplings were completed each day. Primary analysis over 5 wks gave significant results for melatonin, sleep and KSS. Post hoc analysis showed that reported sleep-onset times were advanced after melatonin school weeks compared with PL school weeks (p < .005) and that sleep length was longer (p < .05). After the last melatonin school week, the students fell asleep 68 min earlier and slept 62 min longer each night compared with the baseline week. Morning melatonin values in saliva diminished compared with PL (p < .001) and evening values increased (p < .001), indicating a possible sleep phase advance. Compared with PL school weeks, the students reported less wake up (p < .05), less school daytime sleepiness (p < .05) and increased evening sleepiness (p < .005) during melatonin weeks. We conclude that a small dose of melatonin given daily, administered in the afternoon, could advance the sleep timing and make the students more alert during school days even if they continued their often irregular sleep habits during weekends. (Author correspondence: )  相似文献   

20.
Shiftwork is often associated with metabolic diseases, and in the past few years, several cytokines have been postulated to contribute to various diseases, including insulin resistance. The aim of this study was to compare the concentrations of adiponectin, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in samples of young adult men exposed to a fixed (i) night shift (n?=?9), working from 22:00 to 06:00?h; (ii) early morning shift (n?=?6), working from 06:00 to 14:00?h; and (iii) day shift (n?=?7), working from 08:00 to 17:00?h. The fixed night-shift and early-morning-shift samples were considered collectively as a shiftworker group given their work times. Blood samples were collected during the regular working day at 4-h intervals over the course of 24?h, thus totaling six samples. Morphological and physical activity parameters did not differ between the three groups. Total energy intake was lowest on the early morning shifts (p?<?.03). Both shiftworker groups ingested a significantly higher percentage of fat (p?<?.003) and a lower percentage of carbohydrate (p?<?.0005) than the day group. The early morning group had a lower mean 24-h level of adiponectin than the other two groups (p?=?.016), and both the early morning and night groups exhibited higher mean 24-h levels of TNF-α than the day group (p?=?.0001). The 24-h mean levels of IL-6 did not differ significantly between the groups (p?=?.147). None of the groups exhibited a significant circadian effect on adiponectin (p?=?.829), TNF-α (p?=?.779), or IL-6 (p?=?.979) levels. These results indicate that individuals who are enrolled in shiftwork are susceptible to alterations in the secretion of cytokines that are involved in insulin resistance and cardiovascular disease, both of which are known to affect this population. (Author correspondence: )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号