首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nectar is a vital source of energy for bees and other pollinators and pollen represents the only source of protein in the diet of bees. Nectar and pollen quality and quantity can therefore affect foraging choices. Strawberry, Fragaria × ananassa (Rosaceae), is a flowering crop that requires insect pollination for the berries to develop optimally. The solitary red mason bee, Osmia bicornis L. (Hymenoptera: Megachilidae), occurs naturally but like the eusocial western honeybee, Apis mellifera mellifera L. (Hymenoptera: Apidae), it is also a commercially reared pollinator used in strawberry production. We hypothesized that strawberry nectar and pollen quality would affect the foraging choice of these two types of bees. In this study nectar and pollen quality is represented by various levels of sugar and protein content, respectively, as well as the number of open strawberry flowers in the experimental field, would affect the foraging choice of these two types of bees. Consistent with previous studies, we found significant and major differences between strawberry varieties in proportions of sucrose in the nectar sugar and in pollen viability – a proxy for pollen protein content. All measured parameters had a significant effect on red mason bee visitation frequency. Contrary to expectations, honeybee foraging behavior was only affected by the number of open flowers and not by any of the quality parameters measured. Our findings indicate that red mason bees were capable of assessing nectar and pollen quality and prioritize accordingly. The pattern observed indicates that individual red mason bees changed foraging focus between strawberry varieties depending on whether nectar or pollen was collected. Our results suggest that targeted breeding of varieties toward high levels of nectar sugar and sucrose concentrations and high pollen protein content may increase pollination success from red mason bees and possibly other solitary bees.  相似文献   

2.
Abstract.
  • 1 Carpenter bees (Xylocopa californica arizonensis) in west Texas, U.S.A., gather pollen and ‘rob’ nectar from flowers of ocotillo (Fouquieria splendens). When common, carpenter bees are an effective pollen vector for ocotillo. We examined ocotillo's importance as a food source for carpenter bees.
  • 2 The visitation rate of carpenter bees to ocotillo flowers in 1988 averaged 0.51 visits/flower/h and was 4 times greater than that of queen bumble bees (Bombus pennsylvanicus sonorus), the next most common visitor. Nectar was harvested thoroughly and pollen was removed from the majority of flowers. Hummingbird visits were rare.
  • 3 Pollen grains from larval food provisions were identified from sixteen carpenter bee nests. On average, 53% of pollen grains sampled were ocotillo, 39% were mesquite (Prosopis glandulosa), and 8% were Zygophyllaceae (Larrea tridentata or Guaiacum angustifolium). Carpenter bee brood size averaged 5.8 per nest.
  • 4 We measured the number of flowers, and production of pollen and nectar per flower by mature ocotillo plants, as well as the quantity of pollen and sugar in larval provisions. An average plant produced enough pollen and nectar sugar to support the growth of eight to thirteen bee larvae. Ocotillo thus has the potential to contribute significantly to population growth of one of its key pollinators.
  • 5 Although this carpenter bee species, like others, is a nectar parasite of many plant species, it appears to be engaged in a strong mutualism with a plant that serves as both a pollen and as a nectar source during carpenter bee breeding periods.
  相似文献   

3.
Summary Can bees accurately gauge accumulating bodily pollen as they harvest pollen from flowers? Several recent reports conclude that bees fail to assess pollen harvest rates when foraging for nectar and pollen. A native nightshade (Solanum elaeagnifolium Cavanilles) that is visited exclusively for pollen by both solitary and social bees (eg. Ptiloglossa and Bombus) was studied in SE Arizona and SW New Mexico. The flowers have no nectaries. Two experiments were deployed that eliminated pollen feedback to the bees by experimentally manipulating flowers prior to bee visits. The two methods were 1) plugging poricidal anthers with glue and 2) emptying anthers of pollen by vibration prior to bee visitation. Both experiments demonstrated that bees directly assess pollen harvest on a flower-by-flower basis, and significantly tailor their handling times, number of vibratile buzzes per flower and grooming bouts according to the ongoing harvest on a given flower. In comparison to experimental flowers, floral handling times were extended for both Bombus and Ptiloglossa on virgin flowers. Greater numbers of intrafloral buzzes and numbers of times bees groomed pollen and packed it into their scopae while still on the flower were also more frequent at virgin versus experimental flowers. Flowers with glued andreocia received uniformly brief visits from Bombus and Ptiloglossa with fewer sonications and virtually no bouts of grooming. Curtailed handling with few buzzes and grooms also characterized visits to our manually harvested flowers wherein pollen was artificially depleted. Sonicating bees respond positively to pollen-feedback while harvesting from individual flowers, and therefore we expect them to adjust their harvesting tempo according to the currency of available pollen (standing crop) within Solanum floral patches.  相似文献   

4.
The visits of Tetraglossula ventralis (Hymenoptera: Colletidae) and Heterosarellus sp (Hymenoptera: Andrenidae) to collect pollen and nectar on the flowers of Ludwigia elegans (Onagraceae) were visually monitored from November 1989 to October 1991, in two localities of the State of São Paulo, Brazil. These localities are approximately at the same latitude (Mairinque 23° 52’ S and Campos do Jordão 22° 45’ S), but with a difference of 1000m in the altitude between them. As same latitudes ensure similar photoperiods and the difference in altitude, a persistent step in the temperature, the field work was conducted in environmental conditions varying within a known and limited range. Circadian rhythms are described for pollen and nectar harvesting behaviours, which are finely adjusted to the flower’s anthesis and withering. The environmental light/dark cycle is suggested as the main zeitgeber and temperature cycle either as a secondary zeitgeber or as a masking agent. Since these bee species are non-social, the possibility of social synchonization was discarded. We concluded that temporal adaptation plays a central role in the interaction of flowers and its visitors. In addition to specialized structures to collect the pollen of L.elegans, the acrophases of pollen and nectar collection rhythms coincide with the time when the stigma is most receptive and consequently the possibility of pollination increases highly.  相似文献   

5.
  • Analyses of resource presentation, floral morphology and pollinator behaviour are essential for understanding specialised plant‐pollinator systems. We investigated whether foraging by individual bee pollinators fits the floral morphology and functioning of Blumenbachia insignis, whose flowers are characterised by a nectar scale‐staminode complex and pollen release by thigmonastic stamen movements.
  • We described pollen and nectar presentation, analysed the breeding system and the foraging strategy of bee pollinators. We determined the nectar production pattern and documented variations in the longevity of floral phases and stigmatic pollen loads of pollinator‐visited and unvisited flowers.
  • Bicolletes indigoticus (Colletidae) was the sole pollinator with females revisiting flowers in staminate and pistillate phases at short intervals, guaranteeing cross‐pollen flow. Nectar stored in the nectar scale‐staminode complex had a high sugar concentration and was produced continuously in minute amounts (~0.09 μl·h?1). Pushing the scales outward, bees took up nectar, triggering stamen movements and accelerating pollen presentation. Experimental simulation of this nectar uptake increased the number of moved stamens per hour by a factor of four. Flowers visited by pollinators received six‐fold more pollen on the stigma than unvisited flowers, had shortened staminate and pistillate phases and increased fruit and seed set.
  • Flower handling and foraging by Bicolletes indigoticus were consonant with the complex flower morphology and functioning of Blumenbachia insignis. Continuous nectar production in minute quantities but at high sugar concentration influences the pollen foraging of the bees. Partitioning of resources lead to absolute flower fidelity and stereotyped foraging behaviour by the sole effective oligolectic bee pollinator.
  相似文献   

6.
Reproduction is a nutritionally costly activity for many insects, as their eggs are rich in lipids and proteins. That cost seems especially acute for non-social bees, which for their size, lay enormous eggs. All adult female bees visit flowers, most of them to collect pollen and nectar, or sometimes oils, to feed their progeny. For adult bees, the need for pollen feeding has only been detailed for the honey bee, Apis mellifera. To experimentally test for the reproductive value of adult pollen feeding by a non-social bee, Osmia californica (Hymenoptera: Apiformes: Megachilidae), young female bees plus males were released into large glasshouse cages provided with either a male-fertile sunflower cultivar or a pollen-less one. Females regularly visited and drank nectar from flowers of both cultivars. Abundant orange pollen was seen regularly in guts of females confined with the male-fertile sunflowers, indicative of active pollen ingestion. All females’ terminal oocytes (next egg to be laid) were small at emergence. Oocytes of females confined with the pollen-less sunflowers remained small, despite frequent nectaring and exposure to other floral stimuli. In contrast, the basal oocytes of female O. californica with access to pollen had swelled to full size within ten days following emergence, enabling them to lay eggs in provided nest tubes. Adult females of this solitary bee required dietary pollen to reproduce; nitrogen stores acquired as larvae were inadequate. Early and regular pollen feeding in part paces the onset and maximum tempo of solitary bees’ lifetime reproductive output.  相似文献   

7.
1. Genetic polymorphisms of flowering plants can influence pollinator foraging but it is not known whether heritable foraging polymorphisms of pollinators influence their pollination efficacies. Honey bees Apis mellifera L. visit cranberry flowers for nectar but rarely for pollen when alternative preferred flowers grow nearby. 2. Cranberry flowers visited once by pollen‐foraging honey bees received four‐fold more stigmatic pollen than flowers visited by mere nectar‐foragers (excluding nectar thieves). Manual greenhouse pollinations with fixed numbers of pollen tetrads (0, 2, 4, 8, 16, 32) achieved maximal fruit set with just eight pollen tetrads. Pollen‐foraging honey bees yielded a calculated 63% more berries than equal numbers of non‐thieving nectar‐foragers, even though both classes of forager made stigmatic contact. 3. Colonies headed by queens of a pollen‐hoarding genotype fielded significantly more pollen‐foraging trips than standard commercial genotypes, as did hives fitted with permanently engaged pollen traps or colonies containing more larvae. Pollen‐hoarding colonies together brought back twice as many cranberry pollen loads as control colonies, which was marginally significant despite marked daily variation in the proportion of collected pollen that was cranberry. 4. Caloric supplementation of matched, paired colonies failed to enhance pollen foraging despite the meagre nectar yields of individual cranberry flowers. 5. Heritable behavioural polymorphisms of the honey bee, such as pollen‐hoarding, can enhance fruit and seed set by a floral host (e.g. cranberry), but only if more preferred pollen hosts are absent or rare. Otherwise, honey bees' broad polylecty, flight range, and daily idiosyncrasies in floral fidelity will obscure specific pollen‐foraging differences at a given floral host, even among paired colonies in a seemingly uniform agricultural setting.  相似文献   

8.
Heterotrigona itama is a stingless bee species from Meliponini tribe. The bee collects nectar, pollen and resin to produce honey, bee bread, and propolis. The bee is also known to visit and collect nectar from various types of flowers but there are limited studies on why this species of bee prefers to visit certain types of flowers. This study was conducted to identify the nectar concentration in selected flowers favoured by H. itama and the relationship between the bee and the morphology of the flowers. Nectar was obtained from different species of flowers and the concentrations were measured using a digital refractometer. The tube length of each flower species and the tongue length of the bees were also measured. The results revealed that flowers preferred by H. itama have high nectar concentrations. The tube lengths of the preferred flowers were between 2.0 and 4.0 mm, which is compatible with the tongue length of the bee. This study revealed that both nectar concentration and flower morphology are important factors for the bees in choosing their food sources. The results from this study will benefit the beekeepers in the identification of flowers that should be planted in their farms to improve stingless bee beekeeping activities. Understanding the relationship between the bees and their flower preferences could also help us to understand the importance of conserving both the bee colonies and the various species of flowering plants to ensure the sustainability of flora and fauna in the ecosystem.  相似文献   

9.
The Bonin (Ogasawara) Islands are oceanic islands located in the northwest Pacific, and have ten native (nine endemic) bee species, all of which are nonsocial. The European honeybee (Apis mellifera), which was introduced to the islands for apiculture in the 1880s, became naturalized in a few islands shortly after introduction. To detect the impact of the honeybees upon native bee diversity, we analyzed pollen harvest by honeybees and surveyed the relative abundance of honeybees and native bees on flowers on several islands. Both hived and feral honeybee colonies were active throughout the year, harvesting pollen of both native and alien flowers and from both entomophilous and anemophilous flowers. Honeybees strongly depended on the alien plants, especially during winter to spring when native melittophilous flowers were rare. From June to November, honeybees exhaustively utilized native flowers, which had originally been utilized and pollinated by native bees. On Chichi and Haha Islands, where human disturbance of forests has been severe, both native and alien flowers were dominated by honeybees, and native bees were rare or extinct even in well-conserved forests. In contrast, on Ani Island and Haha's satellite islands where primary forests were well conserved and honeybees were still uncommon or absent, native bees remained dominant. These results suggest that competition for nectar and pollen of the native flowers between honeybees and native bees favors honeybees on the disturbed islands, which are thoroughly invaded by alien nectariferous, sometimes aggressive, weedy plants. Received: May 8, 1998 / Accepted: May 6, 1999  相似文献   

10.
《Journal of Asia》2022,25(2):101882
Honey bees and stingless bees are generalist visitors of several wild and cultivated plants. They forage with a high degree of floral fidelity and thereby help in the pollination services of those plants. We hypothesized that pollination efficiency might be influenced by flowering phenology, floral characteristics, and resource collection modes of the worker bees. In this paper, we surveyed the foraging strategies of honey bees (Apis cerana, Apis dorsata, and Apis florea) and stingless bees (Tetragonula iridipennis) concerning their pollination efficiencies. Bees showed different resource gathering strategies, including legitimate (helping in pollination as mixed foragers and specialized foragers) and illegitimate (serving as nectar robbers and pollen thieves) types of flower visitation patterns. Foraging strategies are influenced by the shape of flowers, the timing of the visitation, floral richness, and bee species. Honey bees and stingless bees mainly acted as legitimate visitors in most plants studied. Sometimes honey bees served as nectar robbers in tubular flowers and stingless bees as pollen thieves in large-sized flowers. Among the legitimate categories, mixed foragers have a comparatively lower flower visitation rate than the specialized nectar and pollen foragers. However, mixed foragers have greater abundance and higher values of the single-visit pollination efficiency index (PEi) than nectar and pollen foragers. The value of the combined parameter ‘importance in pollination (PI)’ was thus higher in mixed foragers than in nectar and pollen foragers.  相似文献   

11.
Pollen and nectar are usually lumped together as floral rewards for pollinating bees, but they play totally different roles for flowers and bees (Table 1), as well as in the relationship between them. While flowers are specialized for certain pollinators via nectar, bees specialize on certain flowers via pollen. While flowers need pollen as a prerequisite for pollination, it is the essential larval food in bees. Thus, there is a strong competition between them for pollen. Foraging for pollen must be divided into three phases: uptake in the flower, reloading into and homeward transport within a carrying container. Bees have specializations for transport but hardly any for pollen uptake - and thus for pollination. Bees actively harvesting pollen usually do not pollinate. This only happens as a consequence of contamination of the bee by pollen. From these data a scenario is provided for the evolution of bees and bee flowers. Specialized bee flowers are often characterized by their ability to hide pollen from the bees and at the same time use them as optimal pollinators. If the relationship of bees and flowers is mutualistic at all it is best described as a balanced mutual exploitation.  相似文献   

12.
1. Measurements of pollinator performance are crucial to pollination studies, enabling researchers to quantify the relative value of different pollinator species to plant reproduction. One of the most widely employed measures of pollinator performance is single-visit pollen deposition, the number of conspecific pollen grains deposited to a stigma after one pollinator visit. To ensure a pollen-free stigma, experimenters must first bag flowers before exposing them to a pollinator. 2. Bagging flowers, however, may unintentionally manipulate floral characteristics to which pollinators respond. In this study, we quantified the effect of bagging on nectar volume in watermelon (Citrullus lanatus) flowers, and how this affects pollinator performance and behaviour. 3. Experimental bagging resulted in roughly 30-fold increases in nectar volume relative to unmanipulated, open-pollinated field flowers after only a few hours. Honey bees, but not native bees, consistently displayed elevated handling times and single-visit pollen deposition on unmanipulated bagged flowers relative to those from which we removed nectar to mimic volumes in open-pollinated flowers. 4. Furthermore, we identify specific bee foraging behaviours during a floral visit that account for differences in pollen deposition, and how these differ between honey bees and native bees. 5. Our findings suggest that experimental bagging of flowers, without accounting for artificially accumulated nectar, can lead to biased estimates of pollinator performance in pollinator taxa that respond strongly to nectar volume. We advise that pollination studies be attentive to nectar secretion dynamics in their focal plant species to ensure unbiased estimates of pollinator performance across multiple pollinator species.  相似文献   

13.
I examined relationships between tongue length of orchid bees (Apidae: Euglossini) and nectar spur length of their flowers in the genera Calathea, Costus, and Dimerocostus using phylogenetically independent contrasts. Long‐tubed flowers have specialized on one or several species of long‐tongued euglossine bees, but long‐tongued bees have not specialized on long‐tubed flowers. Whereas long tongues may have evolved to provide access to a wider variety of nectar resources, long nectar spurs may be a mechanism for flowers to conserve nectar resources while remaining attractive to traplining bee visitors.  相似文献   

14.
The foraging behavior of bees is a complex phenomenon that depends on numerous physical features of flowers. Of particular importance are accessibility of floral rewards, floral proportions, symmetry and orientation. The flowers of Roepera are characterized by the presence of staminal scales (SS), which play an important role in nectar protection. We studied two species of Roepera with different symmetry and flower orientation, which are mainly visited by honeybees (Apis mellifera). We aimed to show how the foraging behavior of honey bees is affected by the function of SS, floral symmetry and orientation. The foraging behavior was documented by video photography. Handling time, access to nectar, percentage of pollen/nectar foraging, percentage of pollen contact and pollen deposition site on the honey bee's body were assessed. The morphometric features of the honey bees and flowers were analyzed. We found that the SS restricted pollinator access to nectar. Our results indicated consistency of visitation patterns in zygomorphic, laterally oriented flowers of R. fuscata versus random patterns in actinomorphic, diversely oriented flowers of R. leptopetala. The relative proportions of SS and proboscis length appear to be crucial for the success of pollinators. The directionality of the honey bees' movement, together with the different positioning of reproductive organs, plays an important role in the accuracy of pollen transfer and pollination efficiency.  相似文献   

15.
Honey bees, Apis mellifera, forage readily on flowers of upland cotton, Gossypium hirsutum, to harvest nectar. The abundant pollen gets caught in the haircoat of the bees, but cotton pollen is nevertheless rarely collected. Honey bee pollen collection effectiveness was therefore investigated in a flight room using cotton and five other spheroidal pollen taxa presented in sequence. Honey bees visited all pollen dishes, but okra pollen (Abelmoschus esculentus) was never packed successfully by the bees landing in the pollen dish. Cotton pollen was collected by 16% of the landing foragers, pumpkin pollen (Cucurbita pepo) by 71%, and pollen of corn (Zea mays), pigweed (Amaranthus palmeri), and sunflower (Helianthus annuus) were readily collected by nearly all foragers. The amount of time spent in the pollen dish was always short (1 to 9 seconds) and homogeneous among all pollen taxa, indicating that none of them was strongly repellent to the bees. The reduced effectiveness with which honey bees collected cotton pollen was demonstrated by the longer amount of time needed for pollen grooming and packing between two consecutive landings in the pollen dish and the small size of cotton pollen pellets (averages of 0.42 mg and 8.23 mg per pellet for cotton and corn pollen, respectively). This reduced efficiency in cotton pollen collection was associated primarily with the length of the spines on cotton pollen which physically interfered with the pollen aggregating process used by honey bees.  相似文献   

16.
  • The tropical Melastomataceae are characterized by poricidal anthers which constitute a floral filter selecting for buzz‐pollinating bees. Stamens are often dimorphic, sometimes with discernible feeding and pollinating functions. Rhynchanthera grandiflora produces nectarless flowers with four short stamens and one long stamen; all anthers feature a narrow elongation with an upwards facing pore.
  • We tested pollen transfer by diverse foraging bees and viability of pollen from both stamen types. The impact of anther morphology on pollen release direction and scattering angle was studied to determine the plant's reproductive strategy.
  • Medium‐sized to large bees sonicated flowers in a specific position, and the probability of pollen transfer correlated with bee size even among these legitimate visitors. Small bees acted as pollen thieves or robbers. Anther rostrum and pore morphology serve to direct and focus the pollen jet released by floral sonication towards the pollinator's body. Resulting from the ventral and dorsal positioning of the short and long stamens, respectively, the pollinator's body was widely covered with pollen. This improves the plant's chances of outcrossing, irrespective of which bee body part contacts the stigma. Consequently, R. grandiflora is also able to employ bee species of various sizes as pollen vectors.
  • The strategy of spreading pollen all over the pollinator's body is rather cost‐intensive but counterbalanced by ensuring that most of the released pollen is in fact transferred to the bee. Thus, flowers of R. grandiflora illustrate how specialized morphology may serve to improve pollination by a functional group of pollinators.
  相似文献   

17.
Trees ofMiconia minutiflora produced abundant flowers for only one to three days during mid-April 1983 in the vicinity of Saül, French Guiana. They attracted large numbers of at least 14 species of bees that collected nectar or pollen or both. Nectar production is uncommon in the Melastomataceae and not previously reported forMiconia. Peak bee activity at the trees was in the morning and by afternoon most visits were limited to those bees in search of remnant pollen, especially species ofTrigona. As has been shown for other neotropical plants, heavy rains may trigger flowering in this species. It is suggested that the flowering system ofM. minutiflora promotes outcrossing because of interactions among the numerous species of bees visiting the trees and because of inter-individual variation in nectar and pollen availability. Therefore, bees may fly to other trees instead of becoming satiated with nectar or pollen from a single tree.  相似文献   

18.
Morning floral heat as a reward to the pollinators of the Oncocyclus irises   总被引:2,自引:0,他引:2  
Sapir Y  Shmida A  Ne'eman G 《Oecologia》2006,147(1):53-59
Relationships between flowering plants and their pollinators are usually affected by the amount of reward, mainly pollen or nectar, offered to pollinators by flowers, with these amounts usually positively correlated with floral display. The large Oncocyclus iris flowers, despite being the largest flowers in the East Mediterranean flora, are nectarless and have hidden pollen. No pollinators visit the flowers during daytime, and these flowers are pollinated only by night-sheltering solitary male bees. These iris flowers are partially or fully dark-colored, suggesting that they gather heat by absorbing solar radiation. Here we test the hypothesis that the dark-colored flowers of the Oncocyclus irises offer heat reward to their male solitary bee pollinators. Floral temperature was higher by 2.5°C than ambient air after sunrise. Solitary male bees emerged earlier after sheltering in Oncocyclus flowers than from other experimental shelter types. Pollination tunnels facing east towards the rising sun hosted more male bees than other aspects. We suggest that floral heat reward can explain the evolution of dark floral colors in Oncocyclus irises, mediated by the pollinators’ behavior.  相似文献   

19.
Solitary bees often form specialised mutualisms with particular plant species, while honeybees are considered to be relatively opportunistic foragers. Thus, it may be expected that solitary bees are more effective pollinators than honeybees when foraging on the same floral resource. To test this, we studied two Wahlenbergia species (Campanulaceae) in South Africa that are visited by both social honeybees and solitary bees, and which are shown here to be genetically self-incompatible and thus reliant on pollinator visits for seed production. Contrary to expectation, the solitary bee Lipotriches sp. (Halictidae) and social bee Apis mellifera (Apidae), which were the two most frequent visitors to flowers of the study species, were equally effective pollinators in terms of the consequences of single visits for fruit and seed set. Both bee species preferentially visited female phase flowers, which contain more nectar than male phase flowers. Male solitary bees of several genera frequently shelter overnight in flowers of both Wahlenbergia species, but temporal exclusion experiments showed that this behaviour makes little contribution to either seed production or pollen dispersal (estimated using a dye particle analogue). Manipulation of flower colour using a sunscreen that removed UV reflectance strongly reduced visits by both bee groups, while neither group responded to Wahlenbergia floral odour cues in choice tests. This study indicates that while flowers of Wahlenbergia cuspidata and W. krebsii are pollinated exclusively by bees, they are not under strong selection to specialise for pollination by any particular group of bees.  相似文献   

20.
A saguaro cactus (Cereus giganteus) produces an average of 295 flowers per season, each of which produces 286 mg fresh weight of pollen and 543 mg of nectar containing 24% sugar. At 7600 pollen grains/mg pollen, the yearly output per saguaro plant is 6.4×108 grains. Based on the measured saguaro density of 6.56 plants/ha, 553 g/ha of pollen is produced yearly. The enormous variation among individual plants in terms of flower numbers and floral bloom patterns is documented.Honey bees (Apis mellifera L.), the main collectors of saguaro pollen, collect an average of 12.2 mg pollen per foraging trip and can thus harvest 23.5 pollen loads from one flower. An average honey bee colony collects 290 g of saguaro pollen over the season, which is 24.4% of their total intake. Individual colonies exhibit wide variation in pollen collecting activities with some closely tracking the pollen resource and others almost totally ignoring it. The average for seven colonies indicates that even though variation is great the overall trend is toward closely tracking and exploiting the saguaro pollen resource. Based on the pollen productivity of saguaro and a hypothetical 90% pollen harvesting efficiency of bees, the pollen harvest potential of the saguaro environment is 1.72 colony equivalents of pollen/ha and 0.5/ha for saguaro alone. This is the first quantitative reporting of the total pollen productivity and pollen resource utilization for any plant and an opportunistic pollinator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号