首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
【背景】开发生物甲烷资源是减轻化石燃料供求紧张的有效措施,而秸秆类原料的预处理及甲烷生产方法需要不断创新,从而进一步满足可持续发展。厌氧真菌与甲烷菌共培养能够通过假根侵入及纤维降解酶双重预处理秸秆并生产甲烷,但目前全世界被报道的骆驼胃肠道来源的厌氧真菌分离培养物仅有1株。【目的】从新疆准噶尔双峰驼瘤胃内容物中分离出新型厌氧真菌和甲烷菌共培养物,研究其在降解秸秆并联合生产生物甲烷方面的应用潜力。【方法】采用Hungate滚管纯化技术将从骆驼胃肠道中分离的厌氧真菌和甲烷菌共培养,对其进行形态学及分子学鉴定,随后厌氧发酵5种底物(稻秸、芦苇、构树叶、苜蓿秆和草木樨),研究产甲烷量、降解效果及主要代谢产物等方面的特性。【结果】筛选到的共培养物中的厌氧真菌为Oontomyces sp. CR1,甲烷菌为Methanobrevibacter sp. CR1。其在降解稻秸时表现出最高的木聚糖酶酶活力(21.64 IU/mL)及甲烷产量(143.39 mL/g-DM),甲烷生产特性较分离自其他动物宿主的厌氧真菌共培养物更优。【结论】共培养厌氧真菌与甲烷菌菌株CR1是一种新型高效降解菌株资源,其在利用木质纤维素生物质生产生物甲烷方面具有良好的应用前景。  相似文献   

2.
The biological pretreatment of lignocellulosic biomass for the production of bioethanol is an environmentally friendly alternative to the most frequently used process, steam explosion (SE). However, this pretreatment can still not be industrially implemented due to long incubation times. The main objective of this work was to test the viability of and optimise the biological pretreatment of lignocellulosic biomass, which uses ligninolytic fungi (Pleurotus eryngii and Irpex lacteus) in a solid-state fermentation of sterilised wheat straw complemented with a mild alkali treatment. In this study, the most important parameters of the mechanical and thermal substrate conditioning processes and the most important parameters of the fungal fermentation process were optimised to improve sugar recovery. The largest digestibilities were achieved with fermentation with I. lacteus under optimised conditions, under which cellulose and hemicellulose digestibility increased after 21 days of pretreatment from 16 to 100 % and 12 to 87 %, respectively. The maximum glucose yield (84 %) of cellulose available in raw material was obtained after only 14 days of pretreatment with an overall ethanol yield of 74 % of the theoretical value, which is similar to that reached with SE.  相似文献   

3.
Future biorefineries will integrate biomass conversion processes to produce fuels, power, heat and value-added chemicals. Due to its low price and wide distribution, lignocellulosic biomass is expected to play an important role toward this goal. Regarding renewable biofuel production, bioethanol from lignocellulosic feedstocks is considered the most feasible option for fossil fuels replacement since these raw materials do not compete with food or feed crops. In the overall process, lignin, the natural barrier of the lignocellulosic biomass, represents an important limiting factor in biomass digestibility. In order to reduce the recalcitrant structure of lignocellulose, biological pretreatments have been promoted as sustainable and environmentally friendly alternatives to traditional physico-chemical technologies, which are expensive and pollute the environment. These approaches include the use of diverse white-rot fungi and/or ligninolytic enzymes, which disrupt lignin polymers and facilitate the bioconversion of the sugar fraction into ethanol. As there is still no suitable biological pretreatment technology ready to scale up in an industrial context, white-rot fungi and/or ligninolytic enzymes have also been proposed to overcome, in a separated or in situ biodetoxification step, the effect of the inhibitors produced by non-biological pretreatments. The present work reviews the latest studies regarding the application of different microorganisms or enzymes as useful and environmentally friendly delignification and detoxification technologies for lignocellulosic biofuel production. This review also points out the main challenges and possible ways to make these technologies a reality for the bioethanol industry.  相似文献   

4.
The main host plants of the butterfly Zerynthia rumina L. (Lepidoptera: Papilionidae) in southern Spain occur in different habitats and in general do not grow sympatrically. Therefore, each single local butterfly population uses the particular host available within its range. Aristolochia longa L. is a tuberous perennial herb available only in the spring, while A. baetica L. is an evergreen perennial vine with indeterminate growth. However, because of the toughness of older leaves, newly hatched larvae feed only on new leaves of A. baetica, and most of these leaves are produced well before the larvae hatch. In laboratory experiments, caterpillars feeding on either new or mature A. longa leaves grew faster and converted food into biomass more efficiently than those feeding on new A. baetica leaves. These differences are related to variation in nutritional quality among the host plants. Estimates of butterfly abundance were lower in sites where Z. rumina uses A. baetica, compared with those where the host is A. longa. The potential differential effect of these two food plants on the densities of local butterfly populations relying on them is discussed here.  相似文献   

5.
Lignocellulosic biomass shows high potential as a renewable feedstock for use in biodiesel production via microbial fermentation. Yarrowia lipolytica, an emerging oleaginous yeast, has been engineered to efficiently convert xylose, the second most abundant sugar in lignocellulosic biomass, into lipids for lignocellulosic biodiesel production. Yet, the lipid yield from xylose or lignocellulosic biomass remains far lower than that from glucose. Here we developed an efficient xylose‐utilizing Y. lipolytica strain, expressing an isomerase‐based pathway, to achieve high‐yield lipid production from lignocellulosic biomass. The newly developed xylose‐utilizing Y. lipolytica, YSXID, produced 12.01 g/L lipids with a maximum yield of 0.16 g/g, the highest ever reported, from lignocellulosic hydrolysates. Consequently, this study shows the potential of isomerase‐based xylose‐utilizing Y. lipolytica for economical and sustainable production of biodiesel and oleochemicals from lignocellulosic biomass.  相似文献   

6.
Lignocellulosic biomass from agricultural crop residues and forest waste represents an abundant renewable resource for bioenergy and future biofuel. The current bottleneck of lignocellulosic biofuel production is the hydrolysis of biomass to sugar. To understand the enzymatic hydrolysis of complex biomasses, in this report, lignocellulolytic enzymes secretion by Phanerochaete chrysosporium cultivated in different natural lignocellulosic biomass such as corn stover, hay, sawdust, sugarcane baggase, wheat bran and wood chips were quantitatively analyzed with the iTRAQ technique using LC-MS/MS. A diverse groups of enzymes, including cellulases, glycoside hydrolases, hemicellulases, lignin degrading enzymes, peroxidases, esterases, lipases, chitinases, peptidases, protein translocating transporter and hypothetical proteins were quantified, of which several were novel lignocellulosic biomass hydrolyzing enzymes. The quantitative expression and regulation of lignocellulolytic enzymes by P. chrysosporium were dependent on the nature and complexity of lignocellulosic biomass as well as physical size of the biomass. The iTRAQ data revealed oxidative and hydrolytic lignin degrading mechanism of P. chrysosporium. Numerous proteins presumed to be involved in natural lignocellulosic biomass transformation and degradation were expressed and produced in variable quantities in response to different agricultural and forest wastes.  相似文献   

7.
A process has been developed that allows a direct conversion of lignocellulosic materials into fungal biomass. The thermotolerant white-rot fungus Sporotichum pulverulentium has been used in continuous laboratory fermentations as well as in a 25 m3 batch fermentation. Fungal cell mass for feeding trials was produced and the economics of the process were estimated. The investigation shows that the process works satisfactorily on the small continuous scale as well as in the large batch culture. The process also seems easy to scale up. The economic evaluations show the conversion of solid lignocellulosic materials to protein feed is not feasible by our process unless the material to be fermented has a certain negative value. A mixed wastewater, such as the white water system in paper and fiber board mills, containing both water soluble mono- and oligosaccharides and solid lignocellulosic material, can, however, be fermented in an economically feasible way due to the combined effect of protein production and water purification. Data on the nutritional value of the product are presented in an accompanying paper.  相似文献   

8.
Objective

The effects of monosaccharide constituents of lignocellulosic materials on exopolysaccharide (EPS) production by Mesorhizobium sp. Semia 816 were studied.

Results

According to the results, by using sugars commonly found in lignocellulosic biomass as carbon sources (glucose, arabinose and xylose), no significant differences were observed in the production of EPS, reaching 3.39 g/L, 3.33 g/L and 3.27 g/L, respectively. Differences were observed in monosaccharide composition, mainly in relation to rhamnose and glucuronic acid contents (1.8 times higher when arabinose was compared with xylose). However, the biopolymers showed no differences in relation to rheological properties, with EPS aqueous-based suspensions (1.0% w/v) presenting pseudoplastic behavior, and a slight difference in degradation temperatures. Using soybean hulls hydrolysate as carbon source, slightly higher values were obtained (3.93 g/L).

Conclusion

The results indicate the potential of the use of lignocellulosic hydrolysates containing these sugars as a source of carbon in the cultivation of Mesorhizobium sp. Semia 816 for the production of EPS with potential industrial applications.

  相似文献   

9.
Xylan 1,4-β-D-xylosidase catalyzes hydrolysis of non-reducing end xylose residues from xylooligosaccharides. The enzyme is currently used in combination with β-xylanases in several large-scale processes for improving baking properties of bread dough, improving digestibility of animal feed, production of d-xylose for xylitol manufacture, and deinking of recycled paper. On a grander scale, the enzyme could find employment alongside cellulases and other hemicellulases in hydrolyzing lignocellulosic biomass so that reaction product monosaccharides can be fermented to biofuels such as ethanol and butanol. Catalytically efficient enzyme, performing under saccharification reactor conditions, is critical to the feasibility of enzymatic saccharification processes. This is particularly important for β-xylosidase which would catalyze breakage of more glycosidic bonds of hemicellulose than any other hemicellulase. In this paper, we review applications and properties of the enzyme with emphasis on the catalytically efficient β-d-xylosidase from Selenomonas ruminantium and its potential use in saccharification of lignocellulosic biomass for producing biofuels.  相似文献   

10.
One of the major challenges faced in commercial production of lignocellulosic bioethanol is the inhibitory compounds generated during the thermo-chemical pre-treatment step of biomass. These inhibitory compounds are toxic to fermenting micro-organisms. The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds formed or released during thermo-chemical pre-treatment step such as acid and steam explosion. This review describes the application and/or effect of biological detoxification (removal of inhibitors before fermentation) or use of bioreduction capability of fermenting yeasts on the fermentability of the hydrolysates. Inhibition of yeast fermentation by the inhibitor compounds in the lignocellulosic hydrolysates can be reduced by treatment with enzymes such as the lignolytic enzymes, for example, laccase and micro-organisms such as Trichoderma reesei, Coniochaeta ligniaria NRRL30616, Trametes versicolor, Pseudomonas putida Fu1, Candida guilliermondii, and Ureibacillus thermosphaericus. Microbial and enzymatic detoxifications of lignocellulosic hydrolysate are mild and more specific in their action. The efficiency of enzymatic process is quite comparable to other physical and chemical methods. Adaptation of the fermentation yeasts to the lignocellulosic hydrolysate prior to fermentation is suggested as an alternative approach to detoxification. Increases in fermentation rate and ethanol yield by adapted micro-organisms to acid pre-treated lignocellulosic hydrolysates have been reported in some studies. Another approach to alleviate the inhibition problem is to use genetic engineering to introduce increased tolerance by Saccharomyces cerevisiae, for example, by overexpressing genes encoding enzymes for resistance against specific inhibitors and altering co-factor balance. Cloning of the laccase gene followed by heterologous expression in yeasts was shown to provide higher enzyme yields and permit production of laccases with desired properties for detoxification of lignocellulose hydrolysates. A combination of more inhibitor-tolerant yeast strains with efficient feed strategies such as fed-batch will likely improve lignocellulose-to-ethanol process robustness.  相似文献   

11.

Background  

Due to its capacity to produce large amounts of cellulases, Trichoderma reesei is increasingly been researched in various fields of white biotechnology, especially in biofuel production from lignocellulosic biomass. The commercial enzyme mixtures produced at industrial scales are not well characterized, and their proteinaceous components are poorly identified and quantified. The development of proteomic methods has made it possible to comprehensively overview the enzymes involved in lignocellulosic biomass degradation which are secreted under various environmental conditions.  相似文献   

12.
Insects are a largely unexploited resource in prospecting for novel cellulolytic enzymes to improve the production of ethanol fuel from lignocellulosic biomass. The cost of lignocellulosic ethanol production is expected to decrease by the combination of cellulose degradation (saccharification) and fermentation of the resulting glucose to ethanol in a single process, catalyzed by the yeast Saccharomyces cerevisiae transformed to express efficient cellulases. While S. cerevisiae is an established heterologous expression system, there are no available data on the functional expression of insect cellulolytic enzymes for this species. To address this knowledge gap, S. cerevisiae was transformed to express the full‐length cDNA encoding an endoglucanase from the red flour beetle, Tribolium castaneum (TcEG1), and evaluated the activity of the transgenic product (rTcEG1). Expression of the TcEG1 cDNA in S. cerevisiae was under control of the strong glyceraldehyde‐3 phosphate dehydrogenase promoter. Cultured transformed yeast secreted rTcEG1 protein as a functional β‐1,4‐endoglucanase, which allowed transformants to survive on selective media containing cellulose as the only available carbon source. Evaluation of substrate specificity for secreted rTcEG1 demonstrated endoglucanase activity, although some activity was also detected against complex cellulose substrates. Potentially relevant to uses in biofuel production rTcEG1 activity increased with pH conditions, with the highest activity detected at pH 12. Our results demonstrate the potential for functional production of an insect cellulase in S. cerevisiae and confirm the stability of rTcEG1 activity in strong alkaline environments.  相似文献   

13.
The production of biofuels from lignocellulosic biomass appears to be attractive and viable due to the abundance and availability of this biomass. The hydrolysis of this biomass, however, is challenging because of the complex lignocellulosic structure. The ability to produce hydrolytic cellulase enzymes in a cost-effective manner will certainly accelerate the process of making lignocellulosic ethanol production a commercial reality. These cellulases may need to be produced aerobically to generate large amounts of protein in a short time or anaerobically to produce biofuels from cellulose via consolidated bioprocessing. Therefore, it is important to identify a promoter that can constitutively drive the expression of cellulases under both aerobic and anaerobic conditions without the need for an inducer. Using lacZ as reporter gene, we analyzed the strength of the promoters of four genes, namely lacZ, gapA, ldhA and pflB, and found that the gapA promoter yielded the maximum expression of the β-galactosidase enzyme under both aerobic and anaerobic conditions. We further cloned the genes for two cellulolytic enzymes, β-1,4-endoglucanase and β-1,4-glucosidase, under the control of the gapA promoter, and we expressed these genes in Escherichia coli, which secreted the products into the extracellular medium. An ethanologenic E. colistrain transformed with the secretory β-glucosidase gene construct fermented cellobiose in both defined and complex medium. This recombinant strain also fermented wheat straw hydrolysate containing glucose, xylose and cellobiose into ethanol with an 85% efficiency of biotransformation. An ethanologenic strain that constitutively secretes a cellulolytic enzyme is a promising platform for producing lignocellulosic ethanol.  相似文献   

14.

Background  

Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of six industrially relevant microorganisms, i.e. two bacteria (Escherichia coli and Corynebacterium glutamicum), two yeasts (Saccharomyces cerevisiae and Pichia stipitis) and two fungi (Aspergillus niger and Trichoderma reesei) were compared for their (i) ability to utilize monosaccharides present in lignocellulosic hydrolysates, (ii) resistance against inhibitors present in lignocellulosic hydrolysates, (iii) their ability to utilize and grow on different feedstock hydrolysates (corn stover, wheat straw, sugar cane bagasse and willow wood). The feedstock hydrolysates were generated in two manners: (i) thermal pretreatment under mild acid conditions followed by enzymatic hydrolysis and (ii) a non-enzymatic method in which the lignocellulosic biomass is pretreated and hydrolyzed by concentrated sulfuric acid. Moreover, the ability of the selected hosts to utilize waste glycerol from the biodiesel industry was evaluated.  相似文献   

15.
Silybum marianum (milk thistle) is currently utilised as a medicinal plant which provides raw material for the production of silymarin. Silymarin is composed of a group of flavonolignans that are well known and studied for their medicinal properties. However, the biomass yield potential and the chemical composition of its biomass suggest opportunities for much broader utilisation of S. marianum. This paper reviews the available literature about S. marianum biomass productivity and composition and about properties of products and byproducts of silymarin extraction. Alternative uses of whole plant biomass include fodder, bioenergy production and phytoremediation. Byproducts of silymarin extraction such as oil and flour have possible applications in food, feed and cosmetics. Moreover, the review explores potential alternative applications of silymarin. We conclude that a pivotal issue for further utilisation of S. marianum is the development of improved cultivars suited for the different possible utilisations.  相似文献   

16.
Currently, microbial conversion of lignocellulose‐derived glucose and xylose to biofuels is hindered by the fact that most microbes (including Escherichia coli [E. coli], Saccharomyces cerevisiae, and Zymomonas mobilis) preferentially consume glucose first and consume xylose slowly after glucose is depleted in lignocellulosic hydrolysates. In this study, E. coli strains are developed that simultaneously utilize glucose and xylose in lignocellulosic biomass hydrolysate using genome‐scale models and adaptive laboratory evolution. E. coli strains are designed and constructed that coutilize glucose and xylose and adaptively evolve them to improve glucose and xylose utilization. Whole‐genome resequencing of the evolved strains find relevant mutations in metabolic and regulatory genes and the mutations’ involvement in sugar coutilization is investigated. The developed strains show significantly improved coconversion of sugars in lignocellulosic biomass hydrolysates and provide a promising platform for producing next‐generation biofuels.  相似文献   

17.
d ‐lactic acid is of great interest because of increasing demand for biobased poly‐lactic acid (PLA). Blending poly‐l ‐lactic acid with poly‐d ‐lactic acid greatly improves PLA's mechanical and physical properties. Corn stover and sorghum stalks treated with 1% sodium hydroxide were investigated as possible substrates for d ‐lactic acid production by both sequential saccharification and fermentation and simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Cellic CTec2) was used for hydrolysis of lignocellulosic biomass and an l ‐lactate‐deficient mutant strain Lactobacillus plantarum NCIMB 8826 ldhL1 and its derivative harboring a xylose assimilation plasmid (ΔldhL1‐pCU‐PxylAB) were used for fermentation. The SSCF process demonstrated the advantage of avoiding feedback inhibition of released sugars from lignocellulosic biomass, thus significantly improving d ‐lactic acid yield and productivity. d ‐lactic acid (27.3 g L?1) and productivity (0.75 g L?1 h?1) was obtained from corn stover and d ‐lactic acid (22.0 g L?1) and productivity (0.65 g L?1 h?1) was obtained from sorghum stalks using ΔldhL1‐pCU‐PxylAB via the SSCF process. The recombinant strain produced a higher concentration of d ‐lactic acid than the mutant strain by using the xylose present in lignocellulosic biomass. Our findings demonstrate the potential of using renewable lignocellulosic biomass as an alternative to conventional feedstocks with metabolically engineered lactic acid bacteria to produce d ‐lactic acid. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:271–278, 2016  相似文献   

18.
近年来,微生物燃料电池已引起了广泛关注,它将低能量废水和木质纤维素生物质等有机废物转化为电能。在将来,微生物电能将成为一种重要的生物能源,因为微生物燃料电池提供了一种复合有机物和可再生生物能源中提取电能的可行性。人们研究了许多物质,以考察其是否能作为微生物电能转化的底物。这些物质包括人工的和天然废物,以及木质纤维素生物质。尽管现在微生物燃料电池提供的电流和功率较低,但是随着技术的发展和对微生物燃料电池系统的深入了解,微生物燃料电池转化的电流和电力将极大增加,从而向世人提供了一种可以将纤维素生物质和废水直接转化为有用能源的有效方法。本文介绍了迄今为止在微生物燃料电池中用到的各种反应底物,并对它们的应用效率和存在的不足进行了分析。  相似文献   

19.
Sugarcane is a prime bioethanol feedstock. Currently, sugarcane ethanol is produced through fermentation of the sucrose, which can easily be extracted from stem internodes. Processes for production of biofuels from the abundant lignocellulosic sugarcane residues will boost the ethanol output from sugarcane per land area. However, unlocking the vast amount of chemical energy stored in plant cell walls remains expensive primarily because of the intrinsic recalcitrance of lignocellulosic biomass. We report here the successful reduction in lignification in sugarcane by RNA interference, despite the complex and highly polyploid genome of this interspecific hybrid. Down‐regulation of the sugarcane caffeic acid O‐methyltransferase (COMT) gene by 67% to 97% reduced the lignin content by 3.9% to 13.7%, respectively. The syringyl/guaiacyl ratio in the lignin was reduced from 1.47 in the wild type to values ranging between 1.27 and 0.79. The yields of directly fermentable glucose from lignocellulosic biomass increased up to 29% without pretreatment. After dilute acid pretreatment, the fermentable glucose yield increased up to 34%. These observations demonstrate that a moderate reduction in lignin (3.9% to 8.4%) can reduce the recalcitrance of sugarcane biomass without compromising plant performance under controlled environmental conditions.  相似文献   

20.
No comprehensive review on the bioconversion of lignocellulosic biomass to hydrogen is presented. This paper provides an up-to-date review on recent research development in biotechnology-based lignocellulosic biomass-to-H2 conversion. Bioconversion of lignocellulosic prehydrolysate, hydrolysate or cellulose to hydrogen was discussed in terms of the involved microorganisms and the bioaugmentation tactics. To achieve fully the utilization of biomass, the integrated approaches composed of coupled dark–photo fermentation and the dark fermentation and bioelectrohydrogenesis were sketched. Additionally, this review sheds light on the perspectives on the lignocellulosic biomass conversion to hydrogen, and on the scientific and technical challenges faced for the lignocelluloses bioconversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号