首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the impact of sleep deprivation on the human circadian system. Plasma melatonin and cortisol levels and leukocyte expression levels of 12 genes were examined over 48?h (sleep vs. no-sleep nights) in 12 young males (mean?±?SD: 23?±?5 yrs). During one night of total sleep deprivation, BMAL1 expression was suppressed, the heat shock gene HSPA1B expression was induced, and the amplitude of the melatonin rhythm increased, whereas other high-amplitude clock gene rhythms (e.g., PER1-3, REV-ERBα) remained unaffected. These data suggest that the core clock mechanism in peripheral oscillators is compromised during acute sleep deprivation.  相似文献   

2.
Most night workers are unable to adjust their circadian rhythms to the atypical hours of sleep and wake. Between 10% and 30% of shiftworkers report symptoms of excessive sleepiness and/or insomnia consistent with a diagnosis of shift work disorder (SWD). Difficulties in attaining appropriate shifts in circadian phase, in response to night work, may explain why some individuals develop SWD. In the present study, it was hypothesized that disturbances of sleep and wakefulness in shiftworkers are related to the degree of mismatch between their endogenous circadian rhythms and the night-work schedule of sleep during the day and wake activities at night. Five asymptomatic night workers (ANWs) (3 females; [mean?±?SD] age: 39.2?±?12.5 yrs; mean yrs on shift?=?9.3) and five night workers meeting diagnostic criteria (International Classification of Sleep Disorders [ICSD]-2) for SWD (3 females; age: 35.6?±?8.6 yrs; mean years on shift?=?8.4) participated. All participants were admitted to the sleep center at 16:00?h, where they stayed in a dim light (<10 lux) private room for the study period of 25 consecutive hours. Saliva samples for melatonin assessment were collected at 30-min intervals. Circadian phase was determined from circadian rhythms of salivary melatonin onset (dim light melatonin onset, DLMO) calculated for each individual melatonin profile. Objective sleepiness was assessed using the multiple sleep latency test (MSLT; 13 trials, 2-h intervals starting at 17:00?h). A Mann-Whitney U test was used for evaluation of differences between groups. The DLMO in ANW group was 04:42?±?3.25?h, whereas in the SWD group it was 20:42?±?2.21?h (z = 2.4; p?<?.05). Sleep did not differ between groups, except the SWD group showed an earlier bedtime on off days from work relative to that in ANW group. The MSLT corresponding to night work time (01:00–09:00?h) was significantly shorter (3.6?±?.90?min: [M?±?SEM]) in the SWD group compared with that in ANW group (6.8?±?.93?min). DLMO was significantly correlated with insomnia severity (r = ?.68; p < .03), indicating that the workers with more severe insomnia symptoms had an earlier timing of DLMO. Finally, SWD subjects were exposed to more morning light (between 05:00 and 11:00?h) as than ANW ones (798 vs. 180 lux [M?±?SD], respectively z?=??1.7; p?<?.05). These data provide evidence of an internal physiological delay of the circadian pacemaker in asymptomatic night-shift workers. In contrast, individuals with SWD maintain a circadian phase position similar to day workers, leading to a mismatch/conflict between their endogenous rhythms and their sleep-wake schedule. (Author correspondence: )  相似文献   

3.
4.
Circadian phase resetting is sensitive to visual short wavelengths (450–480?nm). Selectively filtering this range of wavelengths may reduce circadian misalignment and sleep impairment during irregular light-dark schedules associated with shiftwork. We examined the effects of filtering short wavelengths (<480?nm) during night shifts on sleep and performance in nine nurses (five females and four males; mean age?±?SD: 31.3?±?4.6 yrs). Participants were randomized to receive filtered light (intervention) or standard indoor light (baseline) on night shifts. Nighttime sleep after two night shifts and daytime sleep in between two night shifts was assessed by polysomnography (PSG). In addition, salivary melatonin levels and alertness were assessed every 2?h on the first night shift of each study period and on the middle night of a run of three night shifts in each study period. Sleep and performance under baseline and intervention conditions were compared with daytime performance on the seventh day shift, and nighttime sleep following the seventh daytime shift (comparator). On the baseline night PSG, total sleep time (TST) (p?<?0.01) and sleep efficiency (p?=?0.01) were significantly decreased and intervening wake times (wake after sleep onset [WASO]) (p?=?0.04) were significantly increased in relation to the comparator night sleep. In contrast, under intervention, TST was increased by a mean of 40?min compared with baseline, WASO was reduced and sleep efficiency was increased to levels similar to the comparator night. Daytime sleep was significantly impaired under both baseline and intervention conditions. Salivary melatonin levels were significantly higher on the first (p?<?0.05) and middle (p?<?0.01) night shifts under intervention compared with baseline. Subjective sleepiness increased throughout the night under both conditions (p?<?0.01). However, reaction time and throughput on vigilance tests were similar to daytime performance under intervention but impaired under baseline on the first night shift. By the middle night shift, the difference in performance was no longer significant between day shift and either of the two night shift conditions, suggesting some adaptation to the night shift had occurred under baseline conditions. These results suggest that both daytime and nighttime sleep are adversely affected in rotating-shift workers and that filtering short wavelengths may be an approach to reduce sleep disruption and improve performance in rotating-shift workers. (Author correspondence: casper@lunenfeld.ca)  相似文献   

5.
Since there is less movement during sleep than during wake, the recording of body movements by actigraphy has been used to indirectly evaluate the sleep–wake cycle. In general, most actigraphic devices are placed on the wrist and their measures are based on acceleration detection. Here, we propose an alternative way of measuring actigraphy at the level of the arm for joint evaluation of activity and body position. This method analyzes the tilt of three axes, scoring activity as the cumulative change of degrees per minute with respect to the previous sampling, and measuring arm tilt for the body position inference. In this study, subjects (N?=?13) went about their daily routine for 7 days, kept daily sleep logs, wore three ambulatory monitoring devices and collected sequential saliva samples during evenings for the measurement of dim light melatonin onset (DLMO). These devices measured motor activity (arm activity, AA) and body position (P) using the tilt sensing of the arm, with acceleration (wrist acceleration, WA) and skin temperature at wrist level (WT). Cosinor, Fourier and non-parametric rhythmic analyses were performed for the different variables, and the results were compared by the ANOVA test. Linear correlations were also performed between actimetry methods (AA and WA) and WT. The AA and WA suitability for circadian phase prediction and for evaluating the sleep–wake cycle was assessed by comparison with the DLMO and sleep logs, respectively. All correlations between rhythmic parameters obtained from AA and WA were highly significant. Only parameters related to activity levels, such as mesor, RA (relative amplitude), VL5 and VM10 (value for the 5 and 10 consecutive hours of minimum and maximum activity, respectively) showed significant differences between AA and WA records. However, when a correlation analysis was performed on the phase markers acrophase, mid-time for the 10 consecutive hours of highest (M10) and mid-time for the five consecutive hours of lowest activity (L5) with DLMO, all of them showed a significant correlation for AA (R?=?0.607, p?=?0.028; R?=?0.582, p?=?0.037; R?=?0.620, p?=?0.031, respectively), while for WA, only acrophase did (R?=?0.621, p?=?0.031). Regarding sleep detection, WA showed higher specificity than AA (0.95?±?0.01 versus 0.86?±?0.02), while the agreement rate and sensitivity were higher for AA (0.76?±?0.02 versus 0.66?±?0.02 and 0.71?±?0.03 versus 0.53?±?0.03, respectively). Cohen’s kappa coefficient also presented the highest values for AA (0.49?±?0.04) and AP (0.64?±?0.04), followed by WT (0.45?±?0.06) and WA (0.37?±?0.04). The findings demonstrate that this alternative actigraphy method (AA), based on tilt sensing of the arm, can be used to reliably evaluate the activity and sleep–wake rhythm, since it presents a higher agreement rate and sensitivity for detecting sleep, at the same time allows the detection of body position and improves circadian phase assessment compared to the classical actigraphic method based on wrist acceleration.  相似文献   

6.
The physiological pattern of the sleep–wake cycle is influenced by external synchronizing agents such as light and social patterns, creating variations in each individual’s preferred active and sleep periods. Because of the demands of a 24-h working society, it may be imperative for many people to adapt their sleep patterns (physiologically) to their daily activities. Therefore, we analyzed the difference in sleep patterns and chronobiological parameters between an essentially rural farming and urban small-town populations. We studied 5942 subjects (women, 67.1%, N?=?3985; mean age, 44.3?±?13.1 years), from which the chronotype, circadian sleep pattern, and period of light exposure were collected using the Munich Chronotype Questionnaire (MCTQ). A structured questionnaire was also made for collection of social and demographic information. Compared with the urban population (N?=?3427, 57.7%), the rural population (N?=?2515, 42.3%) presented a more predominantly early sleep pattern, as determined by the mid-sleep phase (rural: 2.26?±?1.16; urban: 3.15?±?1.55; t-test, p?<?0.001). We also found less social jetlag (rural: 0.32; urban: 0.55; Mann–Whitney U test, p?<?0.001) and higher light-exposure (rural: 9.55?±?2.31; urban: 8.46?±?2.85; t test, p?<?0.001) in the rural population. Additionally, the rural population presented a higher prevalence of psychiatric disorders (rural: 156, 6.20%; urban: 165, 4.80%; Chi-square, p?<?0.05), and a lower prevalence of metabolic diseases (rural: 143, 5.70%; urban: 225, 6.60%; Chi-square, p?<?0.05). The significant difference in sleep parameters, chronotype, and light exposure between groups remained after multivariate regression analysis (r2?=?0.41, F?=?297.19, p?<?0.001, β?=?1.208). In this study, there was a significant difference between the rural and urban populations in natural light exposure and sleeping patterns. Because of agricultural work schedules, rural populations spend considerable time outside that is an obligation related to work schedules. Our results emphasize the idea that latitude may not be the main factor influencing individual circadian habits. Rather, circadian physiology adapts to differences in exposure to light (natural and artificial) as well as social and work schedules.  相似文献   

7.
Sleep disturbances in alcohol-dependent (AD) individuals may persist despite abstinence from alcohol and can influence the course of the disorder. Although the mechanisms of sleep disturbances of AD are not well understood and some evidence suggests dysregulation of circadian rhythms, dim light melatonin onset (DLMO) has not previously been assessed in AD versus healthy control (HC) individuals in a sample that varied by sex and race. The authors assessed 52 AD participants (mean?±?SD age: 36.0?±?11.0 yrs of age, 10 women) who were 3–12 wks since their last drink (abstinence: 57.9?±?19.3 d) and 19 age- and sex-matched HCs (34.4?±?10.6 yrs, 5 women). Following a 23:00–06:00?h at-home sleep schedule for at least 5 d and screening/baseline nights in the sleep laboratory, participants underwent a 3-h extension of wakefulness (02:00?h bedtime) during which salivary melatonin samples were collected every 30?min beginning at 19:30?h. The time of DLMO was the primary measure of circadian physiology and was assessed with two commonly used methodologies. There was a slower rate of rise and lower maximal amplitude of the melatonin rhythm in the AD group. DLMO varied by the method used to derive it. Using 3 pg/mL as threshold, no significant differences were found between the AD and HC groups. Using 2 standard deviations above the mean of the first three samples, the DLMO in AD occurred significantly later, 21:02?±?00:41?h, than in HC, 20:44?±?00:21?h (t?=??2.4, p?=?.02). Although melatonin in the AD group appears to have a slower rate of rise, using well-established criteria to assess the salivary DLMO did not reveal differences between AD and HC participants. Only when capturing melatonin when it is already rising was DLMO found to be significantly delayed by a mean 18?min in AD participants. Future circadian analyses on alcoholics should account for these methodological caveats. (Author correspondence: )  相似文献   

8.
Circadian rhythms were recently proposed as a measure of physiological state and prognosis in disorders of consciousness (DOC). So far, melatonin regulation was never assessed in vegetative state (VS). Aim of our research was to investigate the nocturnal melatonin levels and light-induced melatonin suppression in a cohort of VS patients. We assessed six consecutive patients (four men, age 33.3?±?9.3 years) with post-traumatic VS and nine age-matched healthy volunteers (five men, age 34.3?±?8.9 years) on two consecutive nights: one baseline and one light exposure night. During baseline, night subjects were in bed in a dim (<5?lux) room from 10?pm to 8?am. Blood samples were collected hourly 00:30–3:30?am (00:30?=?MLT1; 1:30?=?MLT2; 2:30?=?MLT3; and 3:30?=?MLT4). Identical setting was used for melatonin suppression test night, except for the exposure to monochromatic (470?nm) light from 1:30 to 3:30?am. Plasma melatonin levels were evaluated by radioimmunoassay. Magnitude of melatonin suppression was assessed by melatonin suppression score (caMSS) and suppression rate. We searched for group differences in melatonin levels, differences between repeated samples melatonin concentrations during baseline night and light exposure night, and light-induced suppression of melatonin secretion. During baseline night, controls showed an increase of melatonin (MLT4 vs MLT1, p?=?0.037), while no significant changes were observed in VS melatonin levels (p?=?0.172). Baseline night MLT4 was significantly lower in VS vs controls (p?=?0.036). During light-exposure night, controls displayed a significant suppression of melatonin (MLT3 and MLT4 vs MLT2, p?=?0.016 and 0.002, respectively), while VS patients displayed no significant changes. The magnitude of light-induced suppression of melatonin levels was statistically different between groups considering control adjusted caMSS (p?=?0.000), suppression rate (p?=?0.002) and absolute percentage difference (p?=?0.012). These results demonstrate for the first time that VS patients present an alteration in night melatonin secretion and reduced light-induced melatonin suppression. These findings confirm previous studies demonstrating a disruption of the circadian system in DOC and suggest a possible benefit from melatonin supplementation in VS.  相似文献   

9.
This study investigated the physiological function of suppressed melatonin through thermoregulation in a cold environment. Interactions between thermoregulation directly affected by exposure to a cold environment and indirectly affected by endogenous melatonin suppression by bright-light exposure were examined. Ten male subjects were exposed to two different illumination intensities (30 and 5000 lux) for 4.5?h, and two different ambient temperatures (15 and 27°C) for 2?h before sleep under dark and thermoneutral conditions. Salivary melatonin level was suppressed by bright light (p?<?0.001), although the ambient temperature condition had no significant effect on melatonin. During sleep, significant effects of pre-sleep exposure to a cold ambient temperature (p?<?0.001) and bright light (p?<?0.01) on rectal temperature (Tre) were observed. Pre-sleep, bright-light exposure led to an attenuated fall in Tre during sleep. Moreover, Tre dropped more precipitously after cold exposure than thermoneutral conditions (cold: ?0.54?±?0.07°C/h; thermoneutral: ?0.16?±?0.03°C/h; p?<?0.001). Pre-sleep, bright-light exposure delayed the nadir time of Tre under thermoneutral conditions (p?<?0.05), while cold exposure masked the circadian rhythm with a precipitous decrease in Tre. A significant correlation between the Tre nadir and melatonin level (r?=??0.774, p?<?0.05) indicated that inter-individual differences with higher melatonin levels lead to a reduction in Tre after cold exposure. These results suggest that suppressed endogenous melatonin inhibits the downregulation of the body temperature set-point during sleep. (Author correspondence: )  相似文献   

10.
Cloistered monks and nuns adhere to a 10-century-old strict schedule with a common zeitgeber of a night split by a 2- to 3-h-long Office (Matins). The authors evaluated how the circadian core body temperature rhythm and sleep adapt in cloistered monks and nuns in two monasteries. Five monks and five nuns following the split-sleep night schedule for 5 to 46 yrs without interruption and 10 controls underwent interviews, sleep scales, and physical examination and produced a week-long sleep diary and actigraphy, plus 48-h recordings of core body temperature. The circadian rhythm of temperature was described by partial Fourier time-series analysis (with 12- and 24-h harmonics). The temperature peak and trough values and clock times did not differ between groups. However, the temperature rhythm was biphasic in monks and nuns, with an early decrease at 19:39?±?4:30?h (median?±?95% interval), plateau or rise of temperature at 22:35?±?00:23?h (while asleep) lasting 296?±?39?min, followed by a second decrease after the Matins Office, and a classical morning rise. Although they required alarm clocks to wake-up for Matins at midnight, the body temperature rise anticipated the nocturnal awakening by 85?±?15?min. Compared to the controls, the monks and nuns had an earlier sleep onset (20:05?±?00:59?h vs. 00:00?±?00:54?h, median?±?95% confidence interval, p?=?.0001) and offset (06:27?±?0:22?h, vs. 07:37?±?0:33?h, p?=?.0001), as well as a shorter sleep time (6.5?±?0.6 vs. 7.6?±?0.7?h, p?=?.05). They reported difficulties with sleep latency, sleep duration, and daytime function, and more frequent hypnagogic hallucinations. In contrast to their daytime silence, they experienced conversations (and occasionally prayers) in dreams. The biphasic temperature profile in monks and nuns suggests the human clock adapts to and even anticipates nocturnal awakenings. It resembles the biphasic sleep and rhythm of healthy volunteers transferred to a short (10-h) photoperiod and provides a living glance into the sleep pattern of medieval time. (Author correspondence: )  相似文献   

11.
《Chronobiology international》2013,30(10):1223-1230
The rhythms of activity across the 24-h sleep-wake cycle, determined in part by the circadian clock, change with aging. Few large-scale studies measured the activity rhythm objectively in the general population. The present population-based study in middle-aged and elderly persons evaluated how activity rhythms change with age, and additionally investigated sociodemographics, mental health, lifestyle, and sleep characteristics as determinants of rhythms of activity. Activity rhythms were measured objectively with actigraphy. Recordings of at least 96?h (138?±?14?h, mean?±?SD) were collected from 1734 people (age: 62?±?9.4?yrs) participating in the Rotterdam Study. Activity rhythms were quantified by calculating interdaily stability, i.e., the stability of the rhythm over days, and intradaily variability, i.e., the fragmentation of the rhythm relative to its 24-h amplitude. We assessed age, gender, presence of a partner, employment, cognitive functioning, depressive symptoms, body mass index (BMI), coffee use, alcohol use, and smoking as determinants. The results indicate that older age is associated with a more stable 24-h activity profile (β?=?0.07, p?=?0.02), but also with a more fragmented distribution of periods of activity and inactivity (β?=?0.20, p?<?0.001). Having more depressive symptoms was related to less stable (β?=??0.07, p?=?0.005) and more fragmented (β?=?0.10, p?<?0.001) rhythms. A high BMI and smoking were also associated with less stable rhythms (BMI: β?=??0.11, p?<?0.001; smoking: β?=??0.11, p?<?0.001) and more fragmented rhythms (BMI: β?=?0.09, p?<?0.001; smoking: β?=?0.11, p?<?0.001). We conclude that with older age the 24-h activity rhythm becomes more rigid, whereas the ability to maintain either an active or inactive state for a longer period of time is compromised. Both characteristics appear to be important for major health issues in old age.  相似文献   

12.
《Chronobiology international》2013,30(6):1222-1234
We performed a longitudinal study to investigate whether changes in social zeitgebers and age alter sleep patterns in students during the transition from high school to university. Actimetry was performed on 24 high-school students (mean age?±?SD: 18.4?±?0.9 yrs; 12 females) for two weeks. Recordings were repeated in the same subjects 5 yrs later when they were university students. The sleep period duration and its center, the mid-sleep time, and total sleep time were estimated by actimetry. Actigraphic total sleep time was similar when in high school and at the university on school days (6.31?±?0.47 vs. 6.45?±?0.80?h, p?=?ns) and longer on leisure days by 1.10?±?1.10?h (p?<?0.0001 vs. school days) when in high school, but not at the university. Compared to the high school situation, the mid-sleep time was delayed when at the university on school days (03∶11?±?0.6 vs. 03∶55?±?0.7?h, p?<?0.0001), but not on leisure days. Individual mid-sleep times on school and leisure days when in high school were significantly correlated with the corresponding values 5 yrs later when at the university (r?=?0.58 and r?=?0.55, p?<?0.05, respectively). The large differences in total sleep time between school and leisure days when students attended high school and the delayed mid-sleep time on school days when students attended university are consistent with a circadian phase shift due to changes in class schedules, other zeitgebers, and lifestyle preferences. Age-related changes may also have occurred, although some individuality of the sleep pattern was maintained during the 5 yr study span. These findings have important implications for optimizing school and work schedules in students of different age and level of education. (Author correspondence: )  相似文献   

13.
We evaluated their circadian rhythms using data from electrocardiographic records and examined the change in circadian period related to normal RR intervals for astronauts who completed a long-term (≥6-month) mission in space. The examinees were seven astronauts, five men and two women, from 2009 to 2010. Their mean?±?SD age was 52.0?±?4.2 years (47–59?yr). Each stayed in space for more than 160 days; their average length of stay was 172.6?±?14.6 days (163–199 days). We conducted a 24-h Holter electrocardiography before launch (Pre), at one month after launch (DF1), at two months after launch (DF2), at two weeks before return (DF3), and at three months after landing (Post), comparing each index of frequency-domain analysis and 24-h biological rhythms of the NN intervals (normal RR intervals). Results show that the mean period of Normal Sinus (NN) intervals was within 24?±?4?h at each examination. Inter-individual variability differed among the stages, being significantly smaller at DF3 (Pre versus DF1 versus DF3 versus Post?=?22.36?±?2.50 versus 25.46?±?4.37 versus 22.46?±?1.75 versus 26.16?±?7.18?h, p?<?0.0001). The HF component increased in 2 of 7 astronauts, whereas it decreased in 3 of 7 astronauts and 1 was remained almost unchanged at DF1. During DF3, about 6 months after their stay in space, the HF component of 5 of 7 astronauts recovered from the decrease after launch, with prominent improvement to over 20% in 3 astronauts. Although autonomic nervous functions and circadian rhythms were disturbed until one month had passed in space, well-scheduled sleep and wake rhythms and meal times served as synchronizers.  相似文献   

14.
Epidemiological and cellular biological studies indicate the influence of impaired circadian biological rhythmicity on atherosclerosis. Increased exposure to light at night (LAN) is common in modern life, and LAN exposure is the most important environmental cue for circadian misalignment. However, the association between LAN exposure and atherosclerosis has never been explored in humans. In this cross-sectional study, we measured nighttime light intensity in the bedroom along with the intima-media thickness (IMT) of the common carotid artery using ultrasonography in 700 elderly individuals (mean age 71.6 years). Averages of mean and maximal carotid IMT were 0.88?±?0.15?mm and 1.09?±?0.32?mm, respectively. Median intensity of LAN exposure was 0.74?lux (interquartile range, 0.08–3.34). Both mean and maximal carotid IMT significantly increased across quartiles of increasing LAN intensity (p for trend?=?0.002 and <0.001, respectively). After adjustment for confounding factors, including age, gender, body mass index, current smoking status, hypertension, diabetes, dyslipidemia, sleep medication, estimated glomerular filtration rate, nocturia, bedtime, duration in bed (scotoperiod), day length (photoperiod), urinary 6-sulfatoxymelatonin excretion and daytime and nighttime physical activity, multivariate linear regression models revealed significant associations of LAN exposure with carotid IMT measurements [mean: β, 0.032 (fourth versus first quartiles); 95% confidence intervals (CI), 0.002–0.061; p?=?0.037; maximal: β, 0.100 (fourth versus first quartiles); 95% CI, 0.034–0.165; p?=?0.003]. In conclusion, these results suggested that LAN exposure in home settings is significantly associated with subclinical carotid atherosclerosis in the general elderly population.  相似文献   

15.
16.
The disruption of the circadian timing system (CTS), which rhythmically controls cellular metabolism and proliferation, accelerated experimental cancer progression. A measure of CTS function in cancer patients could thus provide novel prediction information for outcomes, and help to identify novel specific therapies. The rest-activity circadian rhythm is a reliable and non-invasive CTS biomarker, which was monitored using a wrist watch accelerometer for 2 days in 436 patients with metastatic colorectal cancer. The relative percentage of activity in-bed versus out-of-bed (I?<?O) constituted the tested CTS measure, whose prognostic value for overall survival (OS) and progression-free survival (PFS) was determined in a pooled analysis of three patient cohorts with different treatment exposures. Median OS was 21.6 months [17.8–25.5] for patients with I?<?O above the median value of 97.5% as compared to 11.9 months [10.4–13.3] for those with a lower I?<?O (Log-rank p?<?0.001). Multivariate analyses retained continuous I?<?O as a joint predictor of both OS and PFS, with respective hazard ratios (HR) of 0.954 (p?<?0.001) and 0.970 (p?<?0.001) for each 1% increase in I?<?O. HRs had similar values in all the patient subgroups tested. The circadian physiology biomarker I?<?O constitutes a robust and independent quantitative predictor of cancer patient outcomes, that can be easily and cost-effectively measured during daily living. Interventional studies involving 24-h schedules of clock-targeted drugs, light intensity, exercise and/or meals are needed for testing the relevance of circadian synchronization for the survival of patients with disrupted rhythms.  相似文献   

17.
The objective of this study was to quantify daytime sleep in night-shift workers with and without an intervention designed to recover the normal relationship between the endogenous circadian pacemaker and the sleep/wake cycle. Workers of the treatment group received intermittent exposure to full-spectrum bright light during night shifts and wore dark goggles during the morning commute home. All workers maintained stable 8-h daytime sleep/darkness schedules. The authors found that workers of the treatment group had daytime sleep episodes that lasted 7.1?±?.1?h (mean?±?SEM) versus 6.6?±?.2?h for workers in the control group (p?=?.04). The increase in total sleep time co-occurred with a larger proportion of the melatonin secretory episode during daytime sleep in workers of the treatment group. The results of this study showed reestablishment of a phase angle that is comparable to that observed on a day-oriented schedule favors longer daytime sleep episodes in night-shift workers. (Author correspondence: )  相似文献   

18.
The human circadian system is maximally sensitive to short-wavelength (blue) light. In a previous study we found no difference between the magnitude of phase advances produced by bright white versus bright blue-enriched light using light boxes in a practical protocol that could be used in the real world. Since the spectral sensitivity of the circadian system may vary with a circadian rhythm, we tested whether the results of our recent phase-advancing study hold true for phase delays. In a within-subjects counterbalanced design, this study tested whether bright blue-enriched polychromatic light (17000 K, 4000 lux) could produce larger phase delays than bright white light (4100 K, 5000 lux) of equal photon density (4.2×1015 photons/cm2/sec). Healthy young subjects (n?=?13) received a 2 h phase delaying light pulse before bedtime combined with a gradually delaying sleep/dark schedule on each of 4 consecutive treatment days. On the first treatment day the light pulse began 3 h after the dim light melatonin onset (DLMO). An 8 h sleep episode began at the end of the light pulse. Light treatment and the sleep schedule were delayed 2 h on each subsequent treatment day. A circadian phase assessment was conducted before and after the series of light treatment days to determine the time of the DLMO and DLMOff. Phase delays in the blue-enriched and white conditions were not significantly different (DLMO: ?4.45±2.02 versus ?4.48±1.97 h; DLMOff: ?3.90±1.97 versus ?4.35±2.39 h, respectively). These results indicate that at light levels commonly used for circadian phase shifting, blue-enriched polychromatic light is no more effective than the white polychromatic lamps of a lower correlated color temperature (CCT) for phase delaying the circadian clock. (Author correspondence: )  相似文献   

19.
The adequate time to perform physical activity (PA) to maintain optimal circadian system health has not been defined. We studied the influence of morning and evening PA on circadian rhythmicity in 16 women with wrist temperature (WT). Participants performed controlled PA (45?min continuous-running) during 7 days in the morning (MPA) and evening (EPA) and results were compared with a no-exercise-week (C). EPA was characterized by a lower amplitude (evening: 0.028?±?0.01?°C versus control: 0.038?±?0.016?°C; p?<?0.05) less pronounced second-harmonic (power) (evening: 0.41?±?0.47 versus morning: 1.04?±?0.59); and achrophase delay (evening: 06:35?±?02:14?h versus morning: 04:51?±?01:11?h; p?<?0.05) as compared to MPA and C. Performing PA in the late evening might not be as beneficial as in the morning.  相似文献   

20.
The diurnal light cycle has a crucial influence on all life on earth. Unfortunately, modern society has modified this life-governing cycle by stressing maximum production and by giving insufficient attention to the ecological balance and homeostasis of the human metabolism. The aim of this study is to evaluate the effects of exposure or lack of exposure to natural light in a rest/activity rhythm on cortisol and melatonin levels, as well as on psychological variables in humans under natural conditions. This is a cross-sectional study. The subjects were allocated split into two groups according to their workspace (10 employees in the “with window” group and 10 in the “without window” group). All participants were women and wore anactigraph (Actiwatch 2, Philips Respironics), which measures activity and ambient light exposure, for seven days. Concentrations of melatonin and cortisol were measured from the saliva samples. Participants were instructed to collect saliva during the last day of use of the actigraph at 08:00 am, 4:00 pm and 10:00 pm. The subjects answered the Self-Reporting Questionnaire-20 (SRQ-20) to measure the presence of minor psychiatric disorders; the Montgomery-Asberg (MA) scale was used to measure depression symptoms, and the Pittsburgh Sleep Quality Index questionnaire (PSQI) was used to evaluate the quality of sleep. The Rayleigh analysis indicates that the two groups, “with window” an d “without window”, exhibited similar activities and light acrophases. In relation to light exposure, the mesor was significantly higher (t?=??2.651, p?=?0.023) in t he “with window” group (191.04?±?133.36) than in the “without window” group (73.8?±?42.05). Additionally, the “with window” group presented the highest amplitude of light exposure (298.07?±?222.97). Cortisol levels were significantly different between the groups at 10:00 pm (t?=?3.009, p?=?0.008; “without window” (4.01?±?0.91) “with window” (3.10?±?0.30)). In terms of the melatonin levels, the groups differed at two different times of day: 08:00 am (t?=?2.593, p?=?0.018) and 10:00 pm (t?=??2.939, p?=?0.009). The “with window” group had a lower melatonin level at 08:00 am (3.54?±?0.60) but a higher level at 10:00 pm (24.74?±?4.22) than the “without window” group. Higher cortisol levels were positively correlated with minor psychiatric disorders and depressive symptoms (MA) at 10:00 pm. Lower melatonin levels at 10:00 pm were correlated with depressive symptoms and poor quality of sleep (PSQI). Our study demonstrated that not only may light pollution affect human physiology but also lack of exposure to natural light is related to high levels of cortisol and lower levels of melatonin at night, and these, in turn, are related to depressive symptoms and poor quality of sleep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号