首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
2.
Previous forced desynchrony studies have highlighted the close relationship between the circadian rhythms of core body temperature (CBT) and sleep propensity. In particular, these studies have shown that a “forbidden zone” for sleep exists on the rising limb of the CBT rhythm. In these previous studies, the length of the experimental day was either ultrashort (90?min), short (20?h), or long (28?h), and the ratio of sleep to wake was normal (i.e., 1:2). The aim of the current study was to examine the relative effects of the circadian and homeostatic processes on sleep propensity using a 28-h forced desynchrony protocol in which the ratio of sleep to wake was substantially lower than normal (i.e., 1:5). Twenty-seven healthy males lived in a time-isolation sleep laboratory for 11 consecutive days. Participants completed either a control (n?=?13) or sleep restriction (n?=?14) condition. In both conditions, the protocol consisted of 2?×?24-h baseline days followed by 8?×?28-h forced desynchrony days. On forced desynchrony days, the control group had 9.3?h in bed and 18.7?h of wake, and the sleep restriction group had 4.7?h in bed and 23.3?h of wake. For all participants, each 30-s epoch of time in bed was scored as sleep or wake based on standard polysomnography recordings, and was also assigned a circadian phase (360°?=?24?h) based on a cosine equation fitted to continuously recorded CBT data. For each circadian phase (i.e., 72?×?5° bins), sleep propensity was calculated as the percentage of epochs spent in bed scored as sleep. For the control group, there was a clear circadian rhythm in sleep propensity, with a peak of 98.5% at 5° (~05:20?h), a trough of 64.9% at 245° (~21:20?h), and an average of 82.3%. In contrast, sleep propensity for the sleep restriction group was relatively high at all circadian phases, with an average of 96.7%. For this group, the highest sleep propensity (99.0%) occurred at 60° (~09:00?h), and the lowest sleep propensity (91.3%) occurred at 265° (~22:40?h). As has been shown previously, these current data indicate that with a normal sleep-to-wake ratio, the effect of the circadian process on sleep propensity is pronounced, such that a forbidden zone for sleep exists at a phase equivalent to evening time for a normally entrained individual. However, these current data also indicate that when the ratio of sleep to wake is substantially lower than normal, this circadian effect is masked. In particular, sleep propensity is very high at all circadian phases, including those that coincide with the forbidden zone for sleep. This finding suggests that if the homeostatic pressure for sleep is sufficiently high, then the circadian drive for wakefulness can be overridden. In future studies, it will be important to determine whether or not this masking effect occurs with less severe sleep restriction, e.g., with a sleep-to-wake ratio of 1:3. (Author correspondence: )  相似文献   

3.
It is well known that circadian rhythms modulate human physiology and behavior at various levels. However, chronobiological data concerning mental and sensorimotor states of motor actions are still lacking in the literature. In the present study, we examined the effects of time-of-day on two important aspects of the human motor behavior: prediction and laterality. Motor prediction was experimentally investigated by means of imagined movements and laterality by comparing the difference in temporal performance between right and left arm movements. Ten healthy participants had to actually perform or to imagine performing arm-pointing movements between two targets at different hours of the day (i.e., 08:00, 11:00, 14:00, 17:00, 20:00, and 23:00?h). Executed and imagined movements were accomplished with both the right and left arm. We found that both imagined and executed arm pointing movements significantly fluctuated through the day. Furthermore, the accuracy of motor prediction, investigated by the temporal discrepancy between executed and imagined movements, was significantly better in the afternoon (i.e., 14:00, 17:00, and 20:00?h) than morning (08:00 and 11:00?h) and evening (23:00?h). Our results also revealed that laterality was not stable throughout the day. Indeed, the smallest temporal differences between the two arms appeared at 08:00 and 23:00?h, whereas the largest ones occurred at the end of the morning (11:00?h). The daily variation of motor imagery may suggest that internal predictive models are flexible entities that are continuously updated throughout the day. Likewise, the variations in temporal performance between the right and the left arm during the day may indicate a relative independence of the two body sides in terms of circadian rhythms. In general, our findings suggest that cognitive (i.e., mental imagery) and motor (i.e., laterality) states of human behavior are modulated by circadian rhythms. (Author correspondence: )  相似文献   

4.
Sleep disturbances in alcohol-dependent (AD) individuals may persist despite abstinence from alcohol and can influence the course of the disorder. Although the mechanisms of sleep disturbances of AD are not well understood and some evidence suggests dysregulation of circadian rhythms, dim light melatonin onset (DLMO) has not previously been assessed in AD versus healthy control (HC) individuals in a sample that varied by sex and race. The authors assessed 52 AD participants (mean?±?SD age: 36.0?±?11.0 yrs of age, 10 women) who were 3–12 wks since their last drink (abstinence: 57.9?±?19.3 d) and 19 age- and sex-matched HCs (34.4?±?10.6 yrs, 5 women). Following a 23:00–06:00?h at-home sleep schedule for at least 5 d and screening/baseline nights in the sleep laboratory, participants underwent a 3-h extension of wakefulness (02:00?h bedtime) during which salivary melatonin samples were collected every 30?min beginning at 19:30?h. The time of DLMO was the primary measure of circadian physiology and was assessed with two commonly used methodologies. There was a slower rate of rise and lower maximal amplitude of the melatonin rhythm in the AD group. DLMO varied by the method used to derive it. Using 3 pg/mL as threshold, no significant differences were found between the AD and HC groups. Using 2 standard deviations above the mean of the first three samples, the DLMO in AD occurred significantly later, 21:02?±?00:41?h, than in HC, 20:44?±?00:21?h (t?=??2.4, p?=?.02). Although melatonin in the AD group appears to have a slower rate of rise, using well-established criteria to assess the salivary DLMO did not reveal differences between AD and HC participants. Only when capturing melatonin when it is already rising was DLMO found to be significantly delayed by a mean 18?min in AD participants. Future circadian analyses on alcoholics should account for these methodological caveats. (Author correspondence: )  相似文献   

5.
We investigated the effects of sleep loss and circadian rhythm on number comparison performance. Magnitude comparison of single-digits is robustly characterized by a distance effect: Close numbers (e.g., 5 versus 6) produce longer reaction times than numbers further apart (e.g., 2 versus 8). This distance effect is assumed to reflect the difficulty of a comparison process based on an analogous representation of general magnitude. Twelve male participants were required to stay awake for 40?h in a quasi-constant-routine protocol. Response speed and accuracy deteriorated between 00:00 and 06:00?h but recovered afterwards during the next day, indicating a circadian rhythm of elementary cognitive function (i.e., attention and speed of mental processing). The symbolic distance effect, however, did not increase during the nighttime, indicating that neither cumulative sleep loss nor the circadian clock prolongs numerical comparison processes. The present findings provide first evidence for a relative insensitivity of symbolic magnitude processing against the temporal variation in energy state. (Author correspondence: )  相似文献   

6.
The current study offers a comprehensive assessment of psychosocial functioning and academic performance in relation to circadian phase preference in a US sample of undergraduate college students (N?=?838), aged 17–26 (M?=?19.78, SD?=?1.89). Women had greater morning preference than men, and seniors had greater morning preference than freshmen. Circadian phase preference, fatigue, perceived stress, depression, anxiety, and substance use were assessed cross-sectionally and grade point average (GPA) was assessed prospectively. Evening phase preference was related to higher levels of fatigue, alcohol and caffeine use, and worse academic performance than morning or intermediate phase preferences. (Author correspondence: )  相似文献   

7.
Freshly collected samples of Tylos europaeus from Korba beach (northeast of Tunisia) were housed in an environmental cabinet at controlled temperature (18°C?±?.5°C) and photoperiod. Locomotor activity was recorded under two photoperiodic regimens by infrared actography every 20?min by multichannel data loggers. One regimen simulated the natural light-dark cycle on the day of collection, whereas the second imposed a state of continuous darkness on all individuals. Under entraining conditions, the animals displayed rhythmic activity, in phase with the period of darkness, whereas in continuous darkness these isopods exhibited a strong endogenous rhythm with circadian and semidiurnal components at mean periods of τ (h:min)?=?25:09?±?01:02?h and τ?=?12:32?±?00:26?h, respectively. Under free-running conditions, this endogenous rhythm showed significant intraspecific variability. (Author correspondence: )  相似文献   

8.
《Chronobiology international》2013,30(7):1369-1388
Australian sleepy lizards (Tiliqua rugosa) exhibit marked locomotor activity rhythms in the field and laboratory. Light-dark (LD) and temperature cycles (TCs) are considered important for the entrainment of circadian locomotor activity rhythms and for mediating seasonal adjustments in aspects of these rhythms, such as phase, amplitude, and activity pattern. The relative importance of 24 h LD and TCs in entraining the circadian locomotor activity rhythm in T. rugosa was examined in three experiments. In the first experiment, lizards were held under LD 12:12 and subjected to either a TC of 33:15?°?C in phase with the LD cycle or a reversed TC positioned in antiphase to the LD cycle. Following LD 12:12, lizards were maintained under the same TCs but were subjected to DD. Activity was restricted to the thermophase in LD, irrespective of the lighting regime and during the period of DD that followed, suggesting entrainment by the TC. The amplitude of the TC was lowered by 8?°?C to reduce the intensity and possible masking effect of the TC zeitgeber in subsequent experiments. In the second experiment, lizards were held under LD 12.5:11.5 and subjected to one of three treatments: constant 30?°?C, normal TC (30:20?°?C) in phase with the LD cycle, or reversed TC. Following LD, all lizards were subjected to DD and constant 30?°?C. Post-entrainment free-run records revealed that LD cycles and TCs could both entrain the locomotor rhythms of T. rugosa. In LD, mean activity duration (α) of lizards in the normal TC group was considerably less than that in the constant 30?°?C group. Mean α also increased between LD and DD in lizards in the normal TC group. Although there was large variation in the phasing of the rhythm in relation to the LD cycle in reversed TC lizards, TCs presented in phase with the LD cycle most accurately synchronized the rhythm to the photocycle. In the third experiment, lizards were held in DD at constant 30?°?C before being subjected to a further period of DD and one of four treatments: normal TC (06:00 to 18:00 h thermophase), delayed TC (12:00 to 00:00 h thermophase), advanced TC (00:00 to 12:00 h thermophase), or control (no TC, constant 30?°?C). While control lizards continued to free-run in DD at constant temperature, the locomotor activity rhythms of lizards subjected to TCs rapidly entrained to TCs, whether or not the TC was phase advanced or delayed by 6 h. There was no difference in the phase relationships of lizard activity rhythms to the onset of the thermophase among the normal, delayed, and advanced TC groups, suggesting equally strong entrainment to the TC in each group. The results of this experiment excluded the possibility that masking effects were responsible for the locomotor activity responses of lizards to TCs. The three experiments demonstrated that TCs are important for entraining circadian locomotor activity rhythms of T. rugosa, even when photic cues are conflicting or absent, and that an interaction between LD cycles and TCs most accurately synchronizes this rhythm. (Author correspondence: )  相似文献   

9.
The objective of this study was to compare light exposure and sleep parameters between adolescents with delayed sleep phase disorder (DSPD; n?=?16, 15.3?±?1.8 yrs) and unaffected controls (n?=?22, 13.7?±?2.4 yrs) using a prospective cohort design. Participants wore wrist actigraphs with photosensors for 14 days. Mean hourly lux levels from 20:00 to 05:00?h and 05:00 to 14:00?h were examined, in addition to the 9-h intervals prior to sleep onset and after sleep offset. Sleep parameters were compared separately, and were also included as covariates within models that analyzed associations with specified light intervals. Additional covariates included group and school night status. Adolescent delayed sleep phase subjects received more evening (p?<?.02, 22:00–02:00?h) and less morning (p?<?.05, 08:00–09:00?h and 10:00–12:00?h) light than controls, but had less pre-sleep exposure with adjustments for the time of sleep onset (p?<?.03, 5–7?h prior to onset hour). No differences were identified with respect to the sleep offset interval. Increased total sleep time and later sleep offset times were associated with decreased evening (p?<?.001 and p?=?.02, respectively) and morning (p?=?.01 and p?<?.001, respectively) light exposure, and later sleep onset times were associated with increased evening exposure (p?<?.001). Increased total sleep time also correlated with increased exposure during the 9?h before sleep onset (p?=?.01), and a later sleep onset time corresponded with decreased light exposure during the same interval (p?<?.001). Outcomes persisted regardless of school night status. In conclusion, light exposure interpretation requires adjustments for sleep timing among adolescents with DSPD. Pre- and post-sleep light exposures do not appear to contribute directly to phase delays. Sensitivity to morning light may be reduced among adolescents with DSPD. (Author correspondence: )  相似文献   

10.
《Chronobiology international》2013,30(6):1263-1271
Several studies suggest that the circadian systems of diurnal mammals respond differently to daytime light than those of nocturnal mammals. We hypothesized that the photosensitive “clock” gene Per1 would respond to light exposure during subjective day in the suprachiasmatic nucleus of the diurnal rodent, Octodon degus. Tissue was collected 1.5–2?h after a 30?min light pulse presented at five timepoints across the 24?h day and compared to controls maintained under conditions of constant darkness. Per1 mRNA was quantified using in situ hybridization. Results showed that the rhythmicity and photic responsiveness of Per1 in the degu resembles that of nocturnal animals. (Author correspondence: )  相似文献   

11.
《Chronobiology international》2013,30(8):1021-1035
In the laboratory rat, a number of physiological parameters display seasonal changes even under constant conditions of temperature, lighting, and food availability. Since there is evidence that prolactin (PRL) is, among the endocrine signals, a major mediator of seasonal adaptations, the authors aimed to examine whether melatonin administration in drinking water resembling in length the exposure to a winter photoperiod could affect accordingly the 24-h pattern of PRL synthesis and release and some of their anterior pituitary redox state and circadian clock modulatory mechanisms. Melatonin (3?µg/mL drinking water) or vehicle was given for 1 mo, and rats were euthanized at six time intervals during a 24-h cycle. High concentrations of melatonin (>2000 pg/mL) were detected in melatonin-treated rats from beginning of scotophase (at 21:00?h) to early photophase (at 09:00?h) as compared with a considerably narrower high-melatonin phase observed in controls. By cosinor analysis, melatonin-treated rats had significantly decreased MESOR (24-h time-series average) values of anterior pituitary PRL gene expression and circulating PRL, with acrophases (peak time) located in the middle of the scotophase, as in the control group. Melatonin treatment disrupted the 24-h pattern of anterior pituitary gene expression of nitric oxide synthase (NOS)-1 and -2, heme oxygenase-1 and -2, glutathione peroxidase, glutathione reductase, Cu/Zn- and Mn-superoxide dismutase, and catalase by shifting their acrophases to early/middle scotophase or amplifying the maxima. Only the inhibitory effect of melatonin on pituitary NOS-2 gene expression correlated temporally with inhibition of PRL production. Gene expression of metallothionein-1 and -3 showed maxima at early/middle photophase after melatonin treatment. The 24-h pattern of anterior pituitary lipid peroxidation did not vary after treatment. In vehicle-treated rats, Clock and Bmal1 expression peaked in the anterior pituitary at middle scotophase, whereas that of Per1 and Per2 and of Cry1 and Cry2 peaked at the middle and late photophase, respectively. Treatment with melatonin raised mean expression of anterior pituitary Per2, Cry1, and Cry2. In the case of Per1, decreased MESOR was observed, although the single significant difference found between the experimental groups when analyzed at individual time intervals was increase at early scotophase in the anterior pituitary of melatonin-treated rats. Melatonin significantly phase-delayed expression of Per1, Per2, and Cry1, also phase-delayed the plasma corticosterone circadian rhythm, and increased the amplitude of plasma corticosterone and thyrotropin rhythms. The results indicate that under prolonged duration of a daily melatonin signal, rat anterior pituitary PRL synthesis and release are depressed, together with significant changes in the redox and circadian mechanisms controlling them. (Author correspondence: ; )  相似文献   

12.
This study investigates the possibility of an endogenous circadian rhythm in retinal cone function in humans. A full-field cone electroretinogram (ERG) was performed every 2?h for 24?h under continuous rod-saturating ambient white light (53 ±?30 lux; pupils dilated) in nine healthy subjects. Distinct circadian variations were superimposed upon a gradual decrease in cone responsiveness to light, demonstrated most reliably in the implicit times of b-wave and oscillatory potentials, and to a lesser extent in amplitude and a-wave implicit times. After mathematical correction of the linear trend, the cone response was found to be greatest around 20:00?h and least around 06:00?h. The phase of the ERG circadian rhythm was not synchronized with the phase of the salivary melatonin rhythm measured the previous evening. Melatonin levels measured under constant light on the day of ERG assessments were suppressed by 53% on average compared to melatonin profiles obtained previously under near-total darkness in seven participants. The progressive decline in cone responsiveness to light over the 24?h may reflect an adaptation of the cone-driven retinal system to constant light, although the mechanism is unclear. The endogenous rhythm of cone responsiveness to light may be used as an additional index of central or retinal circadian clock time. (Author correspondence: )  相似文献   

13.
Previous forced desynchrony (FD) studies have shown that neurobehavioral function is affected by circadian phase and duration of prior wakefulness. There is some evidence that neuromuscular function may also be affected by circadian phase and prior wake, but these effects have not been systematically investigated. This study examined the effects of circadian phase and prior wake on two measures of neuromuscular function—postural balance (PB) and maximal grip strength (MGS)—using a 28-h FD protocol. Eleven male participants (mean?±?SD: 22.7?±?2.5 yr) lived in a sound-attenuated, light- and temperature-controlled time-isolation laboratory for 12 days. Following two training days and a baseline day, participants were scheduled to seven 28-h FD days, with the ratio between sleep opportunity and wake spans kept constant (i.e., 9.3?h sleep period and 18.7?h wake period). PB was measured during 1?min of quiet standing on a force platform. MGS of the dominant hand was measured using a dynamometer. These two measures were obtained every 2.5?h during wake. Core body temperature was continuously recorded with rectal thermistors to determine circadian phase. For both measures of neuromuscular function, individual data points were assigned a circadian phase and a level of prior wake. Data were analyzed by repeated-measures analysis of variance (ANOVA) with two within-subjects factors: circadian phase (six phases) and prior wake (seven levels). For MGS, there was a main effect of circadian phase, but no main effect of prior wake. For PB, there were no main effects of circadian phase or prior wake. There were no interactions between circadian phase and prior wake for MGS or PB. The significant effect of circadian phase on muscle strength is in agreement with previous reports in the literature. In terms of prior wake, both MGS and PB remained relatively stable across wake periods, indicating that neuromuscular function may be more robust than neurobehavioral function when the duration of wakefulness is within a normal range (i.e., 18.7?h). (Author correspondence: )  相似文献   

14.
Path analysis was used to examine the relationship between class start times, sleep, circadian preference, and academic performance in college-aged adults. Consistent with observations in middle and high school students, college students with later class start times slept longer, experienced less daytime sleepiness, and were less likely to miss class. Chronotype was an important moderator of sleep schedules and daytime functioning; those with morning preference went to bed and woke up earlier and functioned better throughout the day. The benefits of taking later classes did not extend to academic performance, however; grades were somewhat lower in students with predominantly late class schedules. Furthermore, students taking later classes were at greater risk for increased alcohol consumption, and among all the factors affecting academic performance, alcohol misuse exerted the strongest effect. Thus, these results indicate that later class start times in college, while allowing for more sleep, also increase the likelihood of alcohol misuse, ultimately impeding academic success. (Author correspondence: )  相似文献   

15.
Approximately 10% of employees undertake night work, which is a significant predictor of weight gain, possibly because responses to activity and eating are altered at night. It is known that the appetite-related hormone, acylated ghrelin, is suppressed after an acute bout of exercise during the day, but no researcher has explored whether evening exercise alters acylated ghrelin and other appetite-related outcomes during a subsequent night shift. Six healthy men (mean?±?SD: age 30?±?8 yrs, body mass index 23.1?±?1.1?kg/m2) completed two crossover trials (control and exercise) in random order. Participants fasted from 10:00?h, consumed a test meal at 18:00?h, and then cycled at 50% peak oxygen uptake or rested between 19:00–20:00?h. Participants then completed light activities during a simulated night shift which ended at 05:00?h. Two small isocaloric meals were consumed at 22:00 and 02:00?h. Venous blood samples were drawn via cannulation at 1?h intervals between 19:00–05:00?h for the determination of acylated ghrelin, leptin, insulin, glucose, triglyceride, and non-esterified fatty acids concentrations. Perceived hunger and wrist actimetry were also recorded. During the simulated night shift, mean?±?SD acylated ghrelin concentration was 86.5?±?40.8 pg/ml following exercise compared with 71.7?±?37.7 pg/ml without prior exercise (p?=?0.015). Throughout the night shift, leptin concentration was 263?±?242 pg/ml following exercise compared with 187?±?221 pg/ml without prior exercise (p?=?0.017). Mean levels of insulin, triglyceride, non-esterified fatty acids, and wrist actimetry level were also higher during the night shift that followed exercise (p?<?0.05). These data indicate that prior exercise increases acylated ghrelin and leptin concentrations during a subsequent simulated night shift. These findings differ from the known effects of exercise on acylated ghrelin and leptin during the day, and therefore have implications for energy balance during night work. (Author correspondence: ).  相似文献   

16.
In order to study circadian rhythms and decompression sickness (DCS), we determined: 1) the baseline circadian time structure in noncompressed rats of potential response variables to compression/decompression (C/D), and 2) whether rats subjected to C/D display a circadian time-dependent difference in inflammatory response intensity and biological tolerance. Subgroups of male rats, standardized to a 12?h light/12?h dark schedule, were evaluated every 4?h over 24?h after they were either compressed to 683?kPa (group E) or remained at sea level (group C). During 60?min recovery, evaluation included gross DCS symptoms and pulmonary edema in all E rats, and cell counts, nitric oxide, protein, thromboxane B2, and leukotriene E4 levels in survivors. Chi-square, ANOVA, and 24?h cosinor analyses were used to test for time-of-day effects. C/D exposures near the end of dark/activity or during light/resting were generally better tolerated, with lowest signs of DCS symptoms and lowest responses by most of the variables monitored. More deaths were observed in the first half of the dark/activity span. Of the 16 subsets of inflammatory-associated variables, overall increases were observed in 13 and decreases in 2. Significant or borderline significant circadian time effects were found in 14 variables in group C, 12 variables in group E, and 13 variables in response (E%C). Thus, nearly all baseline indices of DCS demonstrated circadian time-dependencies in the sea-level exposed control rats (group C), and nearly all were modified by the circadian time of C/D. Such time-of-day effects of DCS are potentially relevant to the operational concerns of occupations involving decompression exposures and the investigation of prevention and treatment intervention strategies of DCS. (Author correspondence: ).  相似文献   

17.
Most night workers are unable to adjust their circadian rhythms to the atypical hours of sleep and wake. Between 10% and 30% of shiftworkers report symptoms of excessive sleepiness and/or insomnia consistent with a diagnosis of shift work disorder (SWD). Difficulties in attaining appropriate shifts in circadian phase, in response to night work, may explain why some individuals develop SWD. In the present study, it was hypothesized that disturbances of sleep and wakefulness in shiftworkers are related to the degree of mismatch between their endogenous circadian rhythms and the night-work schedule of sleep during the day and wake activities at night. Five asymptomatic night workers (ANWs) (3 females; [mean?±?SD] age: 39.2?±?12.5 yrs; mean yrs on shift?=?9.3) and five night workers meeting diagnostic criteria (International Classification of Sleep Disorders [ICSD]-2) for SWD (3 females; age: 35.6?±?8.6 yrs; mean years on shift?=?8.4) participated. All participants were admitted to the sleep center at 16:00?h, where they stayed in a dim light (<10 lux) private room for the study period of 25 consecutive hours. Saliva samples for melatonin assessment were collected at 30-min intervals. Circadian phase was determined from circadian rhythms of salivary melatonin onset (dim light melatonin onset, DLMO) calculated for each individual melatonin profile. Objective sleepiness was assessed using the multiple sleep latency test (MSLT; 13 trials, 2-h intervals starting at 17:00?h). A Mann-Whitney U test was used for evaluation of differences between groups. The DLMO in ANW group was 04:42?±?3.25?h, whereas in the SWD group it was 20:42?±?2.21?h (z = 2.4; p?<?.05). Sleep did not differ between groups, except the SWD group showed an earlier bedtime on off days from work relative to that in ANW group. The MSLT corresponding to night work time (01:00–09:00?h) was significantly shorter (3.6?±?.90?min: [M?±?SEM]) in the SWD group compared with that in ANW group (6.8?±?.93?min). DLMO was significantly correlated with insomnia severity (r = ?.68; p < .03), indicating that the workers with more severe insomnia symptoms had an earlier timing of DLMO. Finally, SWD subjects were exposed to more morning light (between 05:00 and 11:00?h) as than ANW ones (798 vs. 180 lux [M?±?SD], respectively z?=??1.7; p?<?.05). These data provide evidence of an internal physiological delay of the circadian pacemaker in asymptomatic night-shift workers. In contrast, individuals with SWD maintain a circadian phase position similar to day workers, leading to a mismatch/conflict between their endogenous rhythms and their sleep-wake schedule. (Author correspondence: )  相似文献   

18.
《Chronobiology international》2013,30(6):1222-1234
We performed a longitudinal study to investigate whether changes in social zeitgebers and age alter sleep patterns in students during the transition from high school to university. Actimetry was performed on 24 high-school students (mean age?±?SD: 18.4?±?0.9 yrs; 12 females) for two weeks. Recordings were repeated in the same subjects 5 yrs later when they were university students. The sleep period duration and its center, the mid-sleep time, and total sleep time were estimated by actimetry. Actigraphic total sleep time was similar when in high school and at the university on school days (6.31?±?0.47 vs. 6.45?±?0.80?h, p?=?ns) and longer on leisure days by 1.10?±?1.10?h (p?<?0.0001 vs. school days) when in high school, but not at the university. Compared to the high school situation, the mid-sleep time was delayed when at the university on school days (03∶11?±?0.6 vs. 03∶55?±?0.7?h, p?<?0.0001), but not on leisure days. Individual mid-sleep times on school and leisure days when in high school were significantly correlated with the corresponding values 5 yrs later when at the university (r?=?0.58 and r?=?0.55, p?<?0.05, respectively). The large differences in total sleep time between school and leisure days when students attended high school and the delayed mid-sleep time on school days when students attended university are consistent with a circadian phase shift due to changes in class schedules, other zeitgebers, and lifestyle preferences. Age-related changes may also have occurred, although some individuality of the sleep pattern was maintained during the 5 yr study span. These findings have important implications for optimizing school and work schedules in students of different age and level of education. (Author correspondence: )  相似文献   

19.
Cloistered monks and nuns adhere to a 10-century-old strict schedule with a common zeitgeber of a night split by a 2- to 3-h-long Office (Matins). The authors evaluated how the circadian core body temperature rhythm and sleep adapt in cloistered monks and nuns in two monasteries. Five monks and five nuns following the split-sleep night schedule for 5 to 46 yrs without interruption and 10 controls underwent interviews, sleep scales, and physical examination and produced a week-long sleep diary and actigraphy, plus 48-h recordings of core body temperature. The circadian rhythm of temperature was described by partial Fourier time-series analysis (with 12- and 24-h harmonics). The temperature peak and trough values and clock times did not differ between groups. However, the temperature rhythm was biphasic in monks and nuns, with an early decrease at 19:39?±?4:30?h (median?±?95% interval), plateau or rise of temperature at 22:35?±?00:23?h (while asleep) lasting 296?±?39?min, followed by a second decrease after the Matins Office, and a classical morning rise. Although they required alarm clocks to wake-up for Matins at midnight, the body temperature rise anticipated the nocturnal awakening by 85?±?15?min. Compared to the controls, the monks and nuns had an earlier sleep onset (20:05?±?00:59?h vs. 00:00?±?00:54?h, median?±?95% confidence interval, p?=?.0001) and offset (06:27?±?0:22?h, vs. 07:37?±?0:33?h, p?=?.0001), as well as a shorter sleep time (6.5?±?0.6 vs. 7.6?±?0.7?h, p?=?.05). They reported difficulties with sleep latency, sleep duration, and daytime function, and more frequent hypnagogic hallucinations. In contrast to their daytime silence, they experienced conversations (and occasionally prayers) in dreams. The biphasic temperature profile in monks and nuns suggests the human clock adapts to and even anticipates nocturnal awakenings. It resembles the biphasic sleep and rhythm of healthy volunteers transferred to a short (10-h) photoperiod and provides a living glance into the sleep pattern of medieval time. (Author correspondence: )  相似文献   

20.
《Chronobiology international》2013,30(7):1430-1442
Many immune parameters exhibit daily and circadian oscillations, including the number of circulating cells and levels of cytokines in the blood. Mice also have a differential susceptibility to lipopolysaccharide (LPS or endotoxin)-induced endotoxic shock, depending on the administration time in the 24?h light-dark (LD) cycle. We replicated these results in LD, but we did not find temporal differences in LPS-induced mortality in constant darkness (DD). Animals challenged with LPS showed only transient effects on their wheel locomotor activity rhythm without modification of circadian period and phase. Levels of several key factors involved in the pathology of sepsis and septic shock were tested in LD. We found that LPS-induced levels of interleukin (IL)-1β, IL-6, JE (MCP-1), and MIP1α were significantly higher at zeitgeber time (ZT) 11 (time of increased mortality) than at ZT19 (ZT12?=?time of lights-off in the animal quarters for the 12L:12D condition). Our results indicate that the differences found in mortality that are dependent on the time of LPS-challenge are not directly related to an endogenous circadian clock, and that some relevant immune factors in the development of sepsis are highly induced at ZT11, the time of higher LPS-induced mortality, compared to ZT19. (Author correspondence: )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号