首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disrupted circadian rhythms are associated with obesity and metabolic alterations, but little is known about the participation of peripheral circadian clock machinery in these processes. The aim of the present study was to analyze RNA expression of clock genes in subcutaneous (SAT) and visceral (VAT) adipose tissues of male and female subjects in AM (morning) and PM (afternoon) periods, and its interactions with body mass index (BMI). Ninety-one subjects (41 ± 11 yrs of age) presenting a wide range of BMI (21.4 to 48.6 kg/m(2)) were included. SAT and VAT biopsies were obtained from patients undergoing abdominal surgeries. Clock genes expressions were evaluated by qRT-PCR. The only clock gene that showed higher expression (p 相似文献   

2.
The clock gene machinery controls cellular metabolism, proliferation, and key functions, such as DNA damage recognition and repair. Dysfunction of the circadian clock is involved in tumorigenesis, and altered expression of some clock genes has been found in cancer patients. The aim of this study was to evaluate the expression levels of core clock genes in colorectal cancer (CRC). Quantitative real-time polymerase chain reaction (qPCR) was used to examine ARNTL1, CLOCK, PER1, PER2, PER3, CRY1, CRY2, Timeless (TIM), TIPIN, and CSNK1Ε expression levels in the tumor tissue and matched apparently healthy mucosa of CRC patients. In the tumor tissue of CRC patients, compared to their matched healthy mucosa, expression levels of ARNTL1 (p?=?.002), PER1 (p?=?.002), PER2 (p?=?.011), PER3 (p?=?.003), and CRY2 (p?=?.012) were lower, whereas the expression level of TIM (p?=?.044) was higher. No significant difference was observed in the expression levels of CLOCK (p?=?.778), CRY1 (p?=?.600), CSNK1Ε (p?=?.903), and TIPIN (p?=?.136). As to the clinical and pathological features, a significant association was found between low CRY1 expression levels in tumor mucosa and age (p?=?.026), and female sex (p?=?.005), whereas high CRY1 expression levels in tumor mucosa were associated with cancer location in the distal colon (p?=?.015). Moreover, high TIM mRNA levels in the tumor mucosa were prevalent whenever proximal lymph nodes were involved (p?= .013) and associated with TNM stages III–IV (p?=?.005) and microsatellite instability (p?=?.015). Significantly poorer survival rates were evidenced for CRC patients with lower expression in the tumor tissue of PER1 (p?=?.010), PER3 (p?= .010), and CSNKIE (p?=?.024). In conclusion, abnormal expression levels of core clock genes in CRC tissue may be related to the process of tumorigenesis and exert an influence on host/tumor interactions. (Author correspondence: )  相似文献   

3.
Recent studies suggest that the impairment of circadian clock function causes various pathological conditions, such as obesity, diabetes, and alcoholism, and an altered mRNA expression of clock genes was found under these conditions. However, it remains to be determined whether clock gene expression varies depending on metabolic conditions even in healthy people. To address this issue, we investigated the associations of metabolic parameters and alcohol consumption with mRNA expression of clock genes (CLOCK, BMAL1, PER1, PER2, and PER3) in peripheral blood cells obtained from 29 healthy non-obese elderly men (age 51–78 yrs) who adhered to a regular sleep-wake routine, through a single time-of-day venous blood sampling at ~09:00?h. There were significant correlations between (1) waist circumference and mRNA level of PER1 (r?=?0.43), (2) plasma glucose concentration and PER2 (r?=?0.50), (3) ethanol consumption and BMAL1 (r?=?0.43), and (4) serum γ-GTP concentration (a sensitive marker of alcohol consumption) and PER2 (r?=?0.40). These results suggest mRNA expression of clock genes is associated with obesity, glucose tolerance, and ethanol consumption even in healthy people. (Author correspondence: )  相似文献   

4.

Aims

to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V) and subcutaneous (S) adipose tissue (AT) in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX) on positive and negative clock genes expression.

Subjects and Methods

VAT and SAT biopsies were obtained from morbid obese women (body mass index≥40 kg/m2) (n = 6). In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX) and AT explants treated with DEX (2 hours) were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR.

Results

CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element) was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements) in the SAT (situation not present in VAT). A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues.

Conclusions

24 h patterns in CLOCK and BMAL1 (positive clock elements) and PER2 (negative element) mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure.  相似文献   

5.
《Chronobiology international》2013,30(6):1202-1218
Serotonergic neurotransmission and the master circadian CLOCK gene are physiological modulators of the circadian system. In addition, both are involved in the physiopathology of metabolic syndrome (MS). The authors sought to examine the potential effect of the gene-gene interaction between the functional 44-bp insertion/deletion polymorphism in the promoter region (serotonin-transporter-linked promoter region polymorphism or 5-HTTLPR) of the serotonin transporter gene (SLC6A4) and common variants of the gene CLOCK on the genetic risk underlying MS of shift-workers. To test this hypothesis, 856 men were studied; 518 dayworkers were compared with 338 rotating shiftworkers. Medical history, health examination including anthropometric and arterial blood pressure measurements, a questionnaire on health-related behaviors, and biochemical determinations were obtained from every participant. 5-HTTLPR genotypes were determined using polymerase chain reaction followed by gel electrophoresis. Six tag single-nucleotide polymorphisms (SNPs) in the CLOCK gene with a minor allele frequency >10 % (rs1554483 C/G, rs11932595 A/G, rs4580704 C/G, rs6843722 A/C, rs6850524 C/G, and rs4864548 A/G), encompassing 117 kb of chromosome 4 and representing 115 polymorphic sites (r2?>?.8), were genotyped. A significant interaction between the 5-HTTLPR variant and the haplotype rs1554483–rs4864548 of the CLOCK gene was detected for diastolic (p?=?.0058) and systolic blood pressure (p?=?.0014), arterial hypertension (p?=?.033), plasma triglycerides levels (p?=?.033), and number of MS components (p?=?.01). In all these cases, the higher values were observed in rotating shiftworkers homozygous for the SLC6A4 S allele and carrying the haplotype composed by the CLOCK rs1554483 G and rs4864548 A variants. In conclusion, these data suggest a potential interaction (epistatic effect) of serotonin transporter and CLOCK gene variation on the genetic susceptibility to develop MS by rotating shiftworkers. (Author correspondence: or )  相似文献   

6.
《Chronobiology international》2013,30(9):1180-1194
The circadian clock system instructs 24-h rhythmicity on gene expression in essentially all cells, including adipocytes, and epigenetic mechanisms may participate in this regulation. The aim of this research was to investigate the influence of obesity and metabolic syndrome (MetS) features in clock gene methylation and the involvement of these epigenetic modifications in the outcomes. Sixty normal-weight, overweight and obese women followed a 16-weeks weight reduction program. DNA methylation levels at different CpG sites of CLOCK, BMAL1 and PER2 genes were analyzed by Sequenom's MassARRAY in white blood cells obtained before the treatment. Statistical differences between normal-weight and overweight?+?obese subjects were found in the methylation status of different CpG sites of CLOCK (CpGs 1, 5-6, 8 and 11-14) and, with lower statistical significance, in BMAL1 (CpGs 6-7, 8, 15 and 16-17). The methylation pattern of different CpG sites of the three genes showed significant associations with anthropometric parameters such as body mass index and adiposity, and with a MetS score. Moreover, the baseline methylation levels of CLOCK CpG 1 and PER2 CpGs 2-3 and 25 correlated with the magnitude of weight loss. Interestingly, the percentage of methylation of CLOCK CpGs 1 and 8 showed associations with the intake of monounsaturated and polyunsaturated fatty acids. This study demonstrates for the first time an association between methylation status of CpG sites located in clock genes (CLOCK, BMAL1 and PER2) with obesity, MetS and weight loss. Moreover, the methylation status of different CpG sites in CLOCK and PER2 could be used as biomarkers of weight-loss success, particularly CLOCK CPGs 5-6. (Author correspondence: )  相似文献   

7.
8.
Circadian rhythms are endogenously generated cycles involving physiological parameters, such as core body temperature, hormone levels, blood pressure, sleep, and metabolism, with a period length of around 24?h. The circadian clock in mammals is regulated by a set of clock genes that are functionally linked together, and polymorphisms in clock genes could be associated with differences in circadian rhythms. A variable-number tandem repeat (VNTR) in the human clock gene PERIOD3 (PER3) has been suggested to correlate with a morning (lark) versus evening (owl) chronotype as well as with the circadian rhythm sleep disorder “delayed sleep phase disorder” (DSPD). The authors examined 432 healthy Norwegian university students in search of further support for an association between the PER3 polymorphism and diurnal preference. The Horne-Östberg Morningness-Eveningness Questionnaire (MEQ) and Preferences Scale (PS) were used to evaluate subjective chronotype. DNA samples were genotyped with respect to the 4-repeat and 5-repeat alleles of the VNTR PER3 polymorphism, and the genotype distribution was 192 (4-4), 191 (4-5), and 49 (5-5). The authors estimated that the power to detect an association of the 4-allele with preference for morningness or eveningness was 75%. The authors found no association between the PER3 clock gene and chronotype, indicating that the proposed role of PER3 needs further clarification. (Author correspondence: )  相似文献   

9.
The clock gene (CLOCK) is considered to be a good candidate gene for the pathophysiology of mood disorders, including bipolar disorder (BP) and major depressive disorder (MDD). rs1801260 (T3111C) has been detected at position 3111 in the CLOCK mRNA 3' untranslated region, and was reported to be associated with a substantial delay in preferred timing for activity and sleep in a human study. As for function, rs1801260 has been speculated to affect mRNA. Therefore, the authors investigated the association between the three tagging single-nucleotide polymorphisms (SNPs) (rs3736544, rs1801260, and rs3749474) in CLOCK and risk of BP (n?=?867) and MDD (n?=?139) compared to controls (n?=?889) in the Japanese population. In addition, we also performed an updated meta-analysis of nine published, genetic association studies investigating the relationship between rs1801260 and mood disorder risk, comprising 3321 mood disorders cases and 3574 controls. We did not detect any associations between tagging SNPs in CLOCK and BP or MDD in the allele, genotype, or haplotype analysis (global pBP?=?.605 and global pMDD?=?.211). Moreover, rs1801260 was also not associated with BP, MDD, or any mood disorders in the meta-analysis. In conclusion, these data suggest that CLOCK does not play a major role in the pathophysiology of mood disorders. (Author correspondence: )  相似文献   

10.
《Chronobiology international》2013,30(8):1098-1108
The hypothalamus is crucially involved in the circadian timing of the sleep-wake rhythm, yet also accommodates the most important thermoregulatory neuronal network. We have shown before that adults with pituitary insufficiency and history of chiasm compression due to a tumor with suprasellar extension fall asleep later and sleep shorter than those without such history and presumed hypothalamic involvement. To solidify the hypothesized link between vigilance and thermoregulation by the hypothalamus, we aimed to test the hypothesis that the presumed hypothalamic impairment in these patients also affects skin temperature and its association with sleep onset. In a case-control study of 50 patients (54.7?±?14.5 yrs of age, 30 males) with pituitary insufficiency, 33 of whom had a history of chiasm compression, ambulatory distal and proximal skin temperatures were assessed continuously for 24?h. Sleep parameters were assessed via questionnaire. Group differences in mean skin temperature, calculated over the wake and sleep periods separately, and group differences in the strength of association between pre-sleep skin temperature and sleep onset latency were compared. Results showed that patients with a medical history of chiasm compression had lower proximal skin temperature during the day (34.1°C?±?.7°C vs. 34.6°C?±?.7°C, p?=?.045). Additionally, the typical association between sleep onset latency and pre-sleep distal-to-proximal skin temperature gradient was absent in these patients (r?=??.01, p?=?.96), whereas it was unimpaired in those without chiasm compression (r?=??.61, p?=?.02). Thus, patients with history of chiasm compression show impaired skin temperature regulation in association with disturbed sleep. The findings support the hypothesis that a medical history of chiasm compression affects hypothalamic regulation of both vigilance and temperature, possibly by chronically affecting relevant nuclei, including the ventrolateral preoptic area and anterior hypothalamic preoptic area. (Corresponding Author: )  相似文献   

11.
Several studies suggest a link between circadian rhythm disturbances and tumorigenesis. However, the association between circadian clock genes and prognosis in breast cancer has not been systematically studied. Therefore, we examined the expression of 17 clock components in tumors from 766 node-negative breast cancer patients that were untreated in both neoadjuvant and adjuvant settings. In addition, their association with metastasis-free survival (MFS) and correlation to clinicopathological parameters were investigated. Aiming to estimate functionality of the clockwork, we studied clock gene expression relationships by correlation analysis. Higher expression of several clock genes (e.g., CLOCK, PER1, PER2, PER3, CRY2, NPAS2 and RORC) was found to be associated with longer MFS in univariate Cox regression analyses (HR<1 and FDR-adjusted P < 0.05). Stratification according to molecular subtype revealed prognostic relevance for PER1, PER3, CRY2 and NFIL3 in the ER+/HER2- subgroup, CLOCK and NPAS2 in the ER-/HER2- subtype, and ARNTL2 in HER2+ breast cancer. In the multivariate Cox model, only PER3 (HR = 0.66; P = 0.016) and RORC (HR = 0.42; P = 0.003) were found to be associated with survival outcome independent of established clinicopathological parameters. Pairwise correlations between functionally-related clock genes (e.g., PER2-PER3 and CRY2-PER3) were stronger in ER+, HER2- and low-grade carcinomas; whereas, weaker correlation coefficients were observed in ER- and HER2+ tumors, high-grade tumors and tumors that progressed to metastatic disease. In conclusion, loss of clock genes is associated with worse prognosis in breast cancer. Coordinated co-expression of clock genes, indicative of a functional circadian clock, is maintained in ER+, HER2-, low grade and non-metastasizing tumors but is compromised in more aggressive carcinomas.  相似文献   

12.
Thus far, clock genes in the heart have been described only in rodents, and alterations of these genes have been associated with various myocardial malfunctions. In this study, we analyzed the expression of clock genes in human hearts. Left papillary muscles of 16 patients with coronary heart disease, 39 subjects with cardiomyopathy, and 9 healthy donors (52 males and 12 females, mean age 55.7±11.2; 16–70 yrs) were obtained during orthotopic heart transplantation. We assessed the mRNA levels of PER1, PER2, BMAL1, and CRY1 by real time PCR and analyzed their rhythmic expression by sliding means and Cosinor functions. Furthermore, we sought for differences between the three groups (by ANOVAs) for both the total 24 h period and separate time bins. All four clock genes were expressed in human hearts. The acrophases (circadian rhythm peak time) of the PER mRNAs occurred in the morning (PER1: 07:44 h [peak level 187% higher than trough, p?=?.008]; PER2: 09:42 h [peak 254% higher than trough, p?<?.0001], and BMAL1 mRNA in the evening at 21:44 h [peak 438% higher than trough; p?<?.0001]. No differences were found in the rhythmic patterns between the three groups. No circadian rhythm was detected in CRY1 mRNA in any group. PER1, PER2, and BMAL1 mRNAs revealed clear circadian rhythms in the human heart, with their staging being in antiphase to those in rodents. The circadian amplitudes of the mRNA clock gene levels in heart tissue are more distinct than in any other human tissue so far investigated. The acrophase of the myocardial PER mRNAs and the trough of the myocardial BMAL1 coincide to the time of day of most frequent myocardial incidents.  相似文献   

13.
Clock gene expression was associated with different components of metabolic syndrome (MS) in human adipose tissue. However, no study has been done to compare the expression of clock genes in visceral adipose tissue (VAT) from lean and obese subjects and its clinical implications. Therefore, we studied in lean and obese women the endogenous 24 h expression of clock genes in isolated adipocytes and its association with MS components. VAT was obtained from lean (BMI 21–25 kg/m2; n = 21) and morbidly obese women (BMI >40 kg/m2; n = 28). The 24 h pattern of clock genes was analyzed every 6 hours using RT-PCR. Correlation of clinical data was studied by Spearman analysis. The 24 h pattern of clock genes showed that obesity alters the expression of CLOCK, BMAL1, PER1, CRY2 and REV-ERB ALPHA in adipocytes with changes found in CRY2 and REV-ERB ALPHA throughout the 24 h period. The same results were confirmed in VAT and stromal cells (SC) showing an upregulation of CRY2 and REV-ERB ALPHA from obese women. A positive correlation was observed for REV-ERB ALPHA gene expression with BMI and waist circumference in the obese population. Expression of ROR ALPHA was correlated with HDL levels and CLOCK with LDL. Obese subjects with MS exhibited positive correlation in the PER2 gene with LDL cholesterol, whereas REV-ERB ALPHA was correlated with waist circumference. We identified CRY2 and REV-ERB ALPHA as the clock genes upregulated in obesity during the 24 h period and that REV-ERB ALPHA is an important gene associated with MS.  相似文献   

14.
ABSTRACT

In Cushing’s syndrome, the cortisol rhythm is impaired and can be associated with the disruption in the rhythmic expression of clock genes. In this study, we evaluated the expression of CLOCK, BMAL1, CRY1, CRY2, PER1, PER2, PER3 genes in peripheral blood leukocytes of healthy individuals (n = 13) and Cushing’s disease (CD) patients (n = 12). Participants underwent salivary cortisol measurement at 0900 h and 2300 h. Peripheral blood samples were obtained at 0900 h, 1300 h, 1700 h, and 2300 h for assessing clock gene expression by qPCR. Gene expression circadian variations were evaluated by the Cosinor method. In healthy controls, a circadian variation in the expression of CLOCK, BMAL1, CRY1, PER2, and PER3 was observed, whereas the expression of PER1 and CRY2 followed no specific pattern. The expression of PER2 and PER3 in healthy leukocytes presented a late afternoon acrophase, similarly to CLOCK, whereas CRY1 showed night acrophase, similarly to BMAL1. In CD patients, the circadian variation in the expression of clock genes was lost, along with the abolition of cortisol circadian rhythm. However, CRY2 exhibited a circadian variation with acrophase during the dark phase in patients. In conclusion, our data suggest that Cushing’s disease, which is characterized by hypercortisolism, is associated with abnormalities in the circadian pattern of clock genes. Higher expression of CRY2 at night outlines its putative role in the cortisol circadian rhythm disruption.  相似文献   

15.
Circulating hematopoietic stem cells exhibit robust circadian fluctuations, which influence the mobilized cell yield, even during enforced stem cell mobilization. However, alterations in the expression of circadian clock genes during granulocyte colony-stimulating factor (G-CSF)-induced peripheral blood stem cell (PBSC) mobilization are not fully elucidated. Therefore, we measured the expression of these genes in human peripheral blood leukocytes from 21 healthy donors. While CRY1 mRNA expression significantly increased by 3.9-fold (p?<?0.01), the expression of PER3, CRY2 and BMAL1 mRNAs significantly decreased (by 0.2-fold, 0.2-fold, and 0.6-fold, respectively; p?<?0.001) after G-CSF administration. Moreover, CRY1 mRNA expression was inversely correlated with the plasma level of noradrenaline (r?=??0.36, p?<?0.05), while PER3, CRY2, and BMAL1 mRNA expression directly correlated with the plasma level of noradrenaline (r?=?0.55, r?=?0.66, and r?=?0.57, respectively; p?<?0.001). Thus, significant correlations between the levels of circadian clock gene mRNAs and the plasma level of noradrenaline, a sympathetic nervous system neurotransmitter, were established. The modulation of sympathetic activation and of the circadian clock may be novel therapeutic targets for increasing stem cell yields in PBSC donors.  相似文献   

16.
ABSTRACT

Most of the processes that occur in the mind and body follow natural rhythms. Those with a cycle length of about one day are called circadian rhythms. These rhythms are driven by a system of self-sustained clocks and are entrained by environmental cues such as light-dark cycles as well as food intake. In mammals, the circadian clock system is hierarchically organized such that the master clock in the suprachiasmatic nuclei of the hypothalamus integrates environmental information and synchronizes the phase of oscillators in peripheral tissues.

The circadian system is responsible for regulating a variety of physiological and behavioral processes, including feeding behavior and energy metabolism. Studies revealed that the circadian clock system consists primarily of a set of clock genes. Several genes control the biological clock, including BMAL1, CLOCK (positive regulators), CRY1, CRY2, PER1, PER2, and PER3 (negative regulators) as indicators of the peripheral clock.

Circadian has increasingly become an important area of medical research, with hundreds of studies pointing to the body’s internal clocks as a factor in both health and disease. Thousands of biochemical processes from sleep and wakefulness to DNA repair are scheduled and dictated by these internal clocks. Cancer is an example of health problems where chronotherapy can be used to improve outcomes and deliver a higher quality of care to patients.

In this article, we will discuss knowledge about molecular mechanisms of the circadian clock and the role of clocks in physiology and pathophysiology of concerns.  相似文献   

17.
18.
19.
Shiftwork is often associated with metabolic diseases, and in the past few years, several cytokines have been postulated to contribute to various diseases, including insulin resistance. The aim of this study was to compare the concentrations of adiponectin, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in samples of young adult men exposed to a fixed (i) night shift (n?=?9), working from 22:00 to 06:00?h; (ii) early morning shift (n?=?6), working from 06:00 to 14:00?h; and (iii) day shift (n?=?7), working from 08:00 to 17:00?h. The fixed night-shift and early-morning-shift samples were considered collectively as a shiftworker group given their work times. Blood samples were collected during the regular working day at 4-h intervals over the course of 24?h, thus totaling six samples. Morphological and physical activity parameters did not differ between the three groups. Total energy intake was lowest on the early morning shifts (p?<?.03). Both shiftworker groups ingested a significantly higher percentage of fat (p?<?.003) and a lower percentage of carbohydrate (p?<?.0005) than the day group. The early morning group had a lower mean 24-h level of adiponectin than the other two groups (p?=?.016), and both the early morning and night groups exhibited higher mean 24-h levels of TNF-α than the day group (p?=?.0001). The 24-h mean levels of IL-6 did not differ significantly between the groups (p?=?.147). None of the groups exhibited a significant circadian effect on adiponectin (p?=?.829), TNF-α (p?=?.779), or IL-6 (p?=?.979) levels. These results indicate that individuals who are enrolled in shiftwork are susceptible to alterations in the secretion of cytokines that are involved in insulin resistance and cardiovascular disease, both of which are known to affect this population. (Author correspondence: )  相似文献   

20.
Sleep patterns, frequently altered in depression, have been hypothesized to be under genetic control. The circadian locomotor output cycles kaput (CLOCK) T3111C variant has been studied in association with sleep disturbances in depressed patients. The aim of this study was to investigate possible effects of T3111C CLOCK on insomnia, daytime sleepiness, sleep quality, and depression severity in a sample of 100 major depressive disorder patients. Inclusion criteria were: major depressive disorder, drug-free for any antidepressant and/or benzodiazepines for at least four weeks previously to the study, and a minimum score of >17 on the Hamilton Rating Scale for Depression. The Morningness–Eveningness Questionnaire, Epworth Sleepiness Scale, Athens Insomnia Scale, and Pittsburgh Sleep Quality Index were applied. No significant difference was found concerning genotype or allele groups and Hamilton Rating Scale for Depression items or clusters. No difference was found between genotypes and comorbidity, chronotype distribution, Epworth Sleepiness Scale, Athens Insomnia Scale, or Pittsburgh Sleep Quality Index total scores. Overall, the present findings did not support the hypothesis of an effect of the T3111C CLOCK variant on sleep disturbances in major depressive disorder. Further analysis of clock machinery will clarify the contribution of clock genes to the maintenance of mental health. (Author correspondence: )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号