首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The daily rhythm of the adrenocortical cyclic nucleotides (cyclic AMP and cyclic GIMP) was studied in infant male and female Wistar rats before and after the establishment of an adult-like daily rhythm of plasma corticosterone. As in this strain the rhythm of corticosterone is known to be present on postnatal day 18, pups of 2 and 3 weeks of age were studied. The dams and the pups as well as the young adult animals were kept on a controlled 12L-12D photoperiod. Groups of 8-10 pups were killed at 4-hr intervals throughout the day. Plasma corticosterone levels and adrenal cyclic AMP and cyclic GMP concentrations were simultaneously measured and the daily patterns established. Pups of 2 weeks of age showed neither plasma corticosterone nor adrenal cyclic AMP rhythms whereas pups of 3 weeks of age exhibited a typical adult-like circadian rhythm for both variables. The patterns for adrenal cyclic GMP differed according to sex: In female pups no cyclic GMP circadian rhythm could be detected at either 2 or 3 wk. In male pups of 3 wk a typical mature rhythm for adrenal cyclic GMP was evident whereas in younger male pups (2 wk) a circadian rhythm was detected. This circadian rhythm, however, differed from mature circadian rhythm in that its peak was located at 1300 hr instead of 0700 hr. These results demonstrate that, unlike that of cyclic AMP the adrenal cyclic GMP circadian rhythm does not appear at the same time as the plasma corticosterone circadian rhythm. Moreover, a circadian rhythmicity for adrenal cyclic GMP can be found in the absence of any corticosterone circadian rhythm. These facts argue against the view of cyclic GMP being a mediator of ACTH-stimulated steroidogenesis.  相似文献   

2.
The time-dependent relationship of corticosterone, lipids and cholesterol over a 48-hr period was studied in the adrenals and blood of rats. In addition an attempt was made to determine whether there was a reciprocal dependence among these compounds and also a correlation between corticosterone and cholesterol in the adrenals and blood.

Corticosterone and cholesterol exhibit a circadian rhythm in the adrenals and blood. The same is true for lipids in the serum. A reciprocal dependence between the compounds in the adrenals and blood could not be demonstrated. Only the time-dependent processes of the corticosterone content in the adrenals and plasma are well correlated with each other. High levels of these steroids in the adrenals are associated with high levels of these steroids in the plasma and vice versa.

An inverse correlation between corticosterone and cholesterol exists in the adrenals and in blood. Maximal levels of corticosterone correspond to minimal levels of cholesterol and vice versa.  相似文献   

3.
The time-dependent relationship of corticosterone, lipids and cholesterol over a 48-hr period was studied in the adrenals and blood of rats. In addition an attempt was made to determine whether there was a reciprocal dependence among these compounds and also a correlation between corticosterone and cholesterol in the adrenals and blood.

Corticosterone and cholesterol exhibit a circadian rhythm in the adrenals and blood. The same is true for lipids in the serum. A reciprocal dependence between the compounds in the adrenals and blood could not be demonstrated. Only the time-dependent processes of the corticosterone content in the adrenals and plasma are well correlated with each other. High levels of these steroids in the adrenals are associated with high levels of these steroids in the plasma and vice versa.

An inverse correlation between corticosterone and cholesterol exists in the adrenals and in blood. Maximal levels of corticosterone correspond to minimal levels of cholesterol and vice versa.  相似文献   

4.
Endothelial cells release prostacyclin (PGI2) and nitric oxide (NO) to inhibit platelet functions. PGI2 and NO effects are mediated by cyclic nucleotides, cAMP- and cGMP-dependent protein kinases (PKA, PKG), and largely unknown PKA and PKG substrate proteins. The small G-protein Rac1 plays a key role in platelets and was suggested to be a target of cyclic nucleotide signaling. We confirm that PKA and PKG activation reduces Rac1-GTP levels. Screening for potential mediators of this effect resulted in the identification of the Rac1-specific GTPase-activating protein ARHGAP17 and the guanine nucleotide exchange factor ARHGEF6 as new PKA and PKG substrates in platelets. We mapped the PKA/PKG phosphorylation sites to serine 702 on ARHGAP17 using Phos-tag gels and to serine 684 on ARHGEF6. We show that ARHGAP17 binds to the actin-regulating CIP4 protein in platelets and that Ser-702 phosphorylation interferes with this interaction. Reduced CIP4 binding results in enhanced inhibition of cell migration by ARHGAP17. Furthermore, we show that ARHGEF6 is constitutively linked to GIT1, a GAP of Arf family small G proteins, and that ARHGEF6 phosphorylation enables binding of the 14-3-3 adaptor protein to the ARHGEF6/GIT1 complex. PKA and PKG induced rearrangement of ARHGAP17- and ARHGEF6-associated protein complexes might contribute to Rac1 regulation and platelet inhibition.  相似文献   

5.
Human erythrocytes are able to incorporate cyclic AMP (cAMP) in amounts larger than those required to saturate cAMP-dependent protein kinase. In contrast to previous observations in avian red blood cells in which cAMP stimulates the Na+/K+ cotransport system, we demonstrate that cAMP inhibits this system in human erythrocytes. The cotransport inhibition is enhanced by addition of phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine to the incubation medium. The cAMP concentration giving half-maximal cotransport inhibition showed a wide variation among different individuals (from 0.1 to 5 mM external cAMP concentration). In contrast to cAMP, cyclic GMP showed little effect on the cotransport system. Ca2+ introduced into the cell interior was an inhibitor of the Na+/K+ cotransport system. These results suggest that in human cells in which endogeneous levels of cAMP and Ca2+ are modulated by hormones, the Na+/K+ cotransport system may be under hormonal regulation.  相似文献   

6.
The intrinsic activity of the C‐terminal catalytic (C) domain of cyclic guanosine monophosphate (cGMP)‐dependent protein kinases (PKG) is inhibited by interactions with the N‐terminal regulatory (R) domain. Selective binding of cGMP to cyclic nucleotide binding (CNB) domains within the R‐domain disrupts the inhibitory R–C interaction, leading to the release and activation of the C‐domain. Affinity measurements of mammalian and plasmodium PKG CNB domains reveal different degrees of cyclic nucleotide affinity and selectivity; the CNB domains adjacent to the C‐domain are more cGMP selective and therefore critical for cGMP‐dependent activation. Crystal structures of isolated CNB domains in the presence and absence of cyclic nucleotides reveal isozyme‐specific contacts that explain cyclic nucleotide selectivity and conformational changes that accompany CNB. Crystal structures of tandem CNB domains identify two types of CNB‐mediated dimeric contacts that indicate cGMP‐driven reorganization of domain–domain interfaces that include large conformational changes. Here, we review the available structural and functional information of PKG CNB domains that further advance our understanding of cGMP mediated regulation and activation of PKG isozymes.  相似文献   

7.
In these Reflections, I describe my perceived role in discoveries made in the cyclic nucleotide field that culminated in the advent of PDE5 inhibitors that treat erectile dysfunction, such as Viagra, Levitra, and Cialis. The discoveries emphasize the critical role of basic science, which often evolves in unpredictable and circuitous paths, in improving human health.  相似文献   

8.
1.  The effect of intracellularly injected cAMP on the amplitude of excitatory postsynaptic potentials was studied using identified neurons of the snailHelix pomatia.
2.  In 25% of the experiments, postsynaptic cAMP elevation caused a pronounced augmentation of the excitatory postsynaptic potential (EPSP) amplitude, lasting up to 15–30 min.
3.  The results suggest that a cAMP increase in the postsynaptic neuron may be involved in the enhancement of synaptic efficiency.
  相似文献   

9.
Improved procedures for isolation of cyclic GMP and cyclic AMP and radioimmunoassay of cyclic GMP with succinylation are described. Procedures involved include modified chromatography on alumina and succinylation of cyclic GMP followed by purification of succinyl cyclic GMP on a Dowex AG 1×8 column. These procedures are convenient and applicable to any volume up to 50 ml of tissue extracts and especially for isotonic incubation mixtures. This assay system is sensitive to 6 femtomoles of cyclic GMP/tube. On radioimmunoassay, free and antibody bound [125I]-labeled cyclic GMP are separated by Millipore filtration. Cyclic GMP levels in several tissue samples were determined in order to show the applicability of the procedures.  相似文献   

10.
Variations of DNA synthesis (DNAS) and mitotic indices along a circadian time span are described in the hepatocyte and sinusoid litoral cell populations of adult intact male mouse liver. Standardized (light from 0600 to 1800) mice were killed in groups of six to nine animals, every 2-4 hr along a circadian time span. Hepatocytes show significant peaks in the synthesis of DNA and the mitotic activity at 0200 and 1400, respectively. These results correspond to those previously described by us in young immature liver, regenerating liver and hepatomas. The phase differences between these peaks and the differences between their absolute values are discussed. Also considered are the practical consequences of our findings for experimental design. The curve of DNA synthesis of sinusoid litoral cells show a peak at 0200. The mitotic index show a bimodal waveform with peaks at 0800 and 2000. The existence of four different cell populations composing the so called sinusoid litoral cells and also the migration into and out of the liver of some macrophages considered as litoral (Kupffer) cells in our counts, makes interpretation of the curves somewhat complicated and deserves further analysis.  相似文献   

11.
Variations of DNA synthesis (DNAS) and mitotic indices along a circadian time span are described in the hepatocyte and sinusoid litoral cell populations of adult intact male mouse liver. Standardized (light from 0600 to 1800) mice were killed in groups of six to nine animals, every 2-4 hr along a circadian time span. Hepatocytes show significant peaks in the synthesis of DNA and the mitotic activity at 0200 and 1400, respectively. These results correspond to those previously described by us in young immature liver, regenerating liver and hepatomas. The phase differences between these peaks and the differences between their absolute values are discussed. Also considered are the practical consequences of our findings for experimental design. The curve of DNA synthesis of sinusoid litoral cells show a peak at 0200. The mitotic index show a bimodal waveform with peaks at 0800 and 2000. The existence of four different cell populations composing the so called sinusoid litoral cells and also the migration into and out of the liver of some macrophages considered as litoral (Kupffer) cells in our counts, makes interpretation of the curves somewhat complicated and deserves further analysis.  相似文献   

12.
Dysregulation of the system of nitric oxide (NO)-cyclic 3',5'-guanosine monophosphate (cGMP) might be involved in the development of hypertension in transgenic hypertensive TGR(mREN2)27 (TGR) rats. The present study was performed to determine possible differences in the day-night pattern and the urinary excretion rates of NO and cGMP in TGR rats in comparison to normotensive Sprague-Dawley (SPRD) controls. In addition, the urinary excretion of creatinine and catecholamines was measured in both rat strains. The day-night excretion patterns of NO, cGMP, catecholamines, and creatinine were preserved in TGR rats. Urinary excretion of NO was significantly decreased in TGR rats, whereas cGMP, the second messenger of NO, was elevated in the transgenic animals. Catecholamines and creatinine excretion rates did not differ between the strains. In conclusion, data suggest that a reduced NO synthesis could contribute to the increased blood pressure in the severely hypertensive rats. However, these data make it unlikely that the disturbances in the nitric oxide-cGMP system and the sympathetic nervous system are mainly responsible for the inverse circadian blood pressure rhythm in TGR rats.  相似文献   

13.
Sleep inertia is a brief period of inferior task performance and/or disori-entation immediately after sudden awakening from sleep. Normally sleep inertia lasts <5 min and has no serious impact on conducting routine jobs. This preliminary study examined whether there are best and worst times to wake up stemming from circadian effects on sleep inertia. Since the process of falling asleep is strongly influenced by circadian time, the reverse process of awakening could be similarly affected. A group of nine subjects stayed awake for a 64-h continuous work period, except for 20-min sleep periods (naps) every 6 h. Another group of 10 subjects stayed awake for 64 h without any sleep. The differences between these two groups in performance degradation are expected to show sleep inertia on the background of sleep deprivation. Sleep inertia was measured with Baddeley's logical reasoning task, which started within 1 min of awakening and lasted for 5 min. There appeared to be no specific circadian time when sleep inertia is either maximal or minimal. An extreme form of sleep inertia was observed, when the process of waking up during the period of the circadian body temperature trough became so traumatic that it created “sleep (nap) aversion.” The findings lead to the conclusion that there are no advantages realized on sleep inertia by waking up from sleep at specific times of day.  相似文献   

14.
In chicken retinas, melatonin levels and the activity of serotonin N-acetyltransferase (NAT), a key regulatory enzyme of melatonin biosynthesis, are expressed as circadian rhythms with peaks of levels and activity occurring at night. In the present study, NAT activity was examined in retinas of embryonic and posthatch chicks to assess the ontogenic development of regulation of the enzyme by light, circadian oscillators, and the second messenger cyclic AMP. During embryonic development, NAT activity was consistently detectable by embryonic day 6 (E6). Significant light-dark differences were first observed on E20, and increased to a maximum amplitude of sixfold by posthatch day 3 (PH3). Circadian rhythmicity of NAT activity appears to develop at or prior to hatching, as evidenced by day-night differences of activity in constant darkness observed in PH1 chicks that had been exposed to a light-dark cycle in ovo only. NAT activity is regulated by a cyclic AMP-dependent mechanism. Activity was significantly increased by incubating retinas with forskolin or dibutyryl cyclic AMP as early as E7, and seven- to ninefold increases were observed following treatment with these agents on E14. Thus, development of the cyclic AMP-dependent mechanism for increasing NAT activity significantly precedes that of rhythmicity, suggesting that the onset of rhythmicity may be related to the onset of photoreception or development of the circadian oscillator in chick retina.  相似文献   

15.
The behavior of a ciliate protozoan, Paramecium, is known to represent the electrical state of the cell membrane, and regulation of the membrane potential and ciliary motion are known to involve cAMP and cGMP. The present study shows the synchrony of circadian changes in motility, resting membrane potential and cyclic nucleotides in P. multimicronucleatum. Using an automated system for tracking isolated single microorganisms, the isolated Paramecium cells are confirmed to swim fast and straight during the day (and subjective day) and slowly, with frequent turning, at night (and subjective night). The resting membrane potential is more negative during the day than at night. cAMP and cGMP concentrations oscillate in a manner, such that both cAMP and cGMP are higher during the day (or subjective day) than at night (or subjective night). The ratio of cGMP to cAMP during the light and dark cycle (LD) fluctuates, paralleling the fluctuation of the resting membrane potential measured during the LD. These results suggest that the Paramecium will provide an excellent model to explore daily and circadian orchestration of second messengers mediating signals from ambient light/dark cycles and circadian pacemaker to ion channels and cilia, directly involved in daily and circadian cellular outputs of resting membrane potential and motility. Accepted: 23 January 1997  相似文献   

16.
Protein kinase G (PKG) is a major receptor of cGMP and controls signaling pathways often distinct from those regulated by cAMP. Hence, the selective activation of PKG by cGMP versus cAMP is critical. However, the mechanism of cGMP-versus-cAMP selectivity is only limitedly understood. Although the C-terminal cyclic nucleotide-binding domain B of PKG binds cGMP with higher affinity than cAMP, the intracellular concentrations of cAMP are typically higher than those of cGMP, suggesting that the cGMP-versus-cAMP selectivity of PKG is not controlled uniquely through affinities. Here, we show that cAMP is a partial agonist for PKG, and we elucidate the mechanism for cAMP partial agonism through the comparative NMR analysis of the apo, cGMP-, and cAMP-bound forms of the PKG cyclic nucleotide-binding domain B. We show that although cGMP activation is adequately explained by a two-state conformational selection model, the partial agonism of cAMP arises from the sampling of a third, partially autoinhibited state.  相似文献   

17.
S-100 Protein level was determined in C6 glioma cells after treatments by norepinephrine. In growing cells norepinephrine induces an important increase of S-100 protein level continuing during the stationary phase to reach a level higher than in untreated quiescent cells. In quiescent, low density, thymidine blocked cells, S-100 protein level is also enhanced by norepinephrine. In high density, contact inhibited cells, S-100 protein level is not modified although cAMP level is much more stimulated by norepinephrine than is low density cells. Exogenous addition of dibutyryl cyclic AMP mimics the effects of norepinephrine.Our results suggest that cyclic AMP level can mudulate S-100 protein level in C6 cells but that in density inhibited cells, a subsequent step involved in the regulation is no more operative.  相似文献   

18.
In a previous report, we showed that the circadian rhythm of cisplatin (cis-diamminedichloroplatinum, CDDP) toxicity in healthy mice was modified by buthionine sulfoximine (BSO), a specific inhibitor of glutathione (GSH) synthesis. In the present study, the effects of BSO on the rhythms of CDDP toxicity and antitumor efficacy were investigated in mice bearing a transplantable pancreatic adenocarcinoma (PO3). B6D2F1 mice were inoculated widi two 4 mm3 tumor fragments, one in each flank, then were synchronized with an alternation of 12h of light (L) and 12h of darkness (D) (LD 12: 12). Three weeks later, a single dose of CDDP (12 mg/kg iv) was injected at 3h, 7h, 11h, 15h, 19h, or 23h after light onset (HALO) with or without prior BSO (450 mg/kg ip 4h earlier). The antitumor activity of CDDP as assessed by tumor weight change and tumor growth delay was weak in this tumor model irrespective of prior BSO administration or CDDP dosing time. Nevertheless, toxic effects of CDDP as gauged by body weight loss or survival varied significantly according to CDDP dosing time. Body weight loss was least in mice receiving CDDP alone at the mid-to-late active span. Survival rate was 97% in mice treated with CDDP alone and 47% in those receiving prior BSO (χ2 = 23.6, p <. 0001). BSO pretreatment further shifted the period of survival or body weight change from 24h to (10 + 24)h, an effect similar to that earlier reported in healthy mice. Thus, PO3 tumor at a measurable stage altered neither the circadian rhythm in CDDP toxicity nor the ultradian rhythm in the toxicity of BSO-CDDP combination. The results suggest that rhythms in target tissues for drug actions can be manipulated with biochemical modulators, thus partly escaping central clock control.  相似文献   

19.
In male Wistar rats [light (L): 07:00–19:00 h, dark (D): 19:00–07:00 h], the effects of the calcium channel blocker amlodipine (1, 3, 10 mg/kg i.p.) on blood pressure, heart rate, and motor activity were studied by telemetric monitoring. Amlodipine was injected either at 07:00 h or at 19:00 h. Systolic and diastolic blood pressure were dose-dependently decreased with more pronounced effects in the dark span, ED50 values in D were about seven times lower than in L. In contrast, the dose-dependent increase in heart rate was more pronounced in L than in D. No significant effects of amlodipine were found on motor activity. The study gives evidence for a circadian phase-dependency in the cardiovascular effects amlodipine in rats.  相似文献   

20.
Light is the most important synchronizer of melatonin rhythms in fish. This paper studies the influence of the characteristics of light on plasma melatonin rhythms in sole. The results revealed that under long‐term exposure to constant light conditions (LL or DD), the total 24 h melatonin production was significantly higher than under LD, but LL and DD conditions influenced the rhythms differently. Under LL, melatonin remained at around 224 pg/ml throughout the 24 h, while under DD a significant elevation (363.6 pg/ml) was observed around the subjective evening. Exposure to 1 h light pulses at MD (mid‐dark) inhibited melatonin production depending on light intensity (3.3, 5.3, 10.3, and 51.9 µW/cm2). The light threshold required to reduce nocturnal plasma melatonin to ML (mid‐light) values was 5.3 µW/cm2. Melatonin inhibition by light also depended on the wavelength of the light pulses: while a deep red light (λ>600 nm) failed to reduce plasma melatonin significantly, far violet light (λmax=368 nm) decreased indoleamine's concentration to ML values. These results suggest that dim light at night (e.g., moonlight) may be perceived and hence affect melatonin rhythms, encouraging synchronization to the lunar cycle. On the other hand, deep red light does not seem to inhibit nocturnal melatonin production, and so it may be used safely during sampling at night.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号