首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
通过室内好氧、厌氧2种培养,研究了3种不同填埋年限垃圾渗滤液在红壤和潮土中的生物降解动态.鲜样、天井洼样、水阁样垃圾渗滤液分别为填埋0年、4~5年和12年的垃圾渗滤液.结果表明,垃圾渗滤液在前7 d降解相对较快.在好氧培养条件下,红壤鲜样、天井洼样、水阁样渗滤液在前7 d的表观降解率为88.9%、60.5%、25.0%;潮土中的表观降解率更大,分别为96.6%、80.4%和65.0%;7 d后下降趋势均趋于平缓.在相同土壤中,填埋龄越短的垃圾渗滤液的表观降解率越大,在厌氧培养条件下的情况与此类似,但降解率不如好氧条件下高.在没有土壤介质参与的条件下(如低洼处积存的渗滤液),3种垃圾渗滤液自身降解速率均符合一级动力学方程.鲜样垃圾渗滤液降解的半衰期为12~16 d,其余垃圾渗滤液降解的半衰期为20~30 d.垃圾渗滤液一旦进入土壤环境,降解速率会大大加快.土壤处理垃圾渗滤液有一定的功效.  相似文献   

2.
This paper reviews anaerobic solubilisation of nitrogen municipal solid waste (MSW) and the effect of current waste management practises on nitrogen release. The production and use of synthetically fixed nitrogen fertiliser in food production has more than doubled the flow of excessive nitrogenous material into the community and hence into the waste disposal system. This imbalance in the global nitrogen cycle has led to uncontrolled nitrogen emissions into the atmosphere and water systems. The nitrogen content of MSW is up to4.0% of total solids (TS) and the proteins in MSW have a lower rate of degradation than cellulose. The proteins are hydrolysed through multiple stages into amino acids that are further fermented into volatile fatty acids, carbon dioxides, hydrogen gas, ammonium and reduced sulphur. Anaerobic digestion of MSW putrescibles could solubilise around 50% of the nitrogen. Thus, the anaerobic digestion of putrescibles may become an important method of increasing the rate of nitrogen recycling back to the ecosystem. A large proportion of the nitrogen in MSW continues to end up inland fills; for example, in the EU countries around 2 million tonnes of nitrogen is disposed of annually this way. Nitrogen concentration in the leachates of existing landfills are likely to remain at a high level for decades to come. Under present waste management practices with a relatively low level of efficiency in the source segregation or mechanical sorting of putrescibles from grey waste and with a low level of control over landfill operating procedures, nitrogen solubilisation from landfilled waste will take at least a century. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Two landfill bioreactors were operated under aerobic and anaerobic conditions in a thermo-insulated room at a constant temperature of 32 °C. Reactors were filled with 19.5 kg of shredded synthetic solid waste prepared according to the average municipal solid waste compositions determined in Istanbul and operated under wet-tomb management strategy by using leachate recirculation. Aerobic conditions in the reactor were developed by using an air compressor. The results of experiments indicated that aerobic reactor had higher organic, nitrogen, phosphorus and alkali metal removal efficiencies than the anaerobic one. Furthermore, stabilization time considerably decreased when using aerobic processes with leachate recirculation compared to the anaerobic system with the same recirculation scheme.  相似文献   

4.
Archaeal microbial communities present in municipal solid waste landfill leachates were characterized using a 16S rDNA approach. Phylogenetic affiliations of 239 partial length 16S rDNA sequences were determined. Sequences belonging to the order Methanosarcinales were dominant in the clone library and 65% of the clones belonged to the strictly acetoclastic methanogenic family Methanosaetaceae. Sequences affiliated to the metabolically versatile family Methanosarcinaceae represented 18% of the retrieved sequences. Members of the hydrogenotrophic order Methanomicrobiales were also recovered in limited numbers, especially sequences affiliated to the genera Methanoculleus and Methanofollis. Eleven euryarchaeal and thirteen crenarchaeal sequences (i.e. 10%) were distantly related to any hitherto cultivated microorganisms, showing that archaeal diversity within the investigated samples was limited. Lab-scale incubations were performed with leachates mixed with several methanogenic precursors (acetate, hydrogen, formate, methanol, methylamine). Microbial populations were followed using group specific 16S rRNA targeted fluorescent oligonucleotidic probes. During the incubations with acetate, acetoclastic methanogenesis was rapidly induced and led to the dominance of archaea hybridizing with probe MS1414 which indicates their affiliation to the family Methanosarcinaceae. Hydrogen and formate addition induced an important acetate synthesis resulting from the onset of homoacetogenic metabolism. In these incubations, species belonging to the family Methanosarcinaceae (hybridizing with probe MS1414) and the order Methanomicrobiales (hybridizing with probe EURY496) were dominant. Homoacetogenesis was also recorded for incubations with methanol and methylamines. In the methanol experiment, acetoclastic methanogenesis took place and archaea hybridizing with probe MS821 (specific for Methanosarcina spp.) were observed to be the dominant population. These results confirm that acetoclastic methanogenesis performed by the members of the order Methanosarcinales is predominant over the hydrogenotrophic and methylotrophic pathways in landfill leachates.  相似文献   

5.
垃圾填埋场氧化亚氮排放控制研究进展   总被引:3,自引:0,他引:3  
填埋是国内外城市生活垃圾处理的一种主要方式.垃圾填埋场是温室气体氧化亚氮(N2O)和甲烷(CH4)的重要排放源.作为一种高效痕量的温室气体,N2O具有极高的潜在增温效应,其每分子潜在的增温作用是二氧化碳(CO2)的296倍.而且N2O能在大气中长期稳定存在,对臭氧层具有较强的破坏作用.本文针对垃圾填埋场N2O排放的控制研究,概述了垃圾填埋处理过程中主要排放源的N2O排放及其影响因素,提出了现阶段适应我国垃圾填埋场N2O排放控制的一系列措施,并展望了垃圾填埋场温室气体N2O排放控制理论和技术的研究方向.  相似文献   

6.
Goal and Scope  The potential environmental impacts associated with two landfill technologies for the treatment of municipal solid waste (MSW), the engineered landfill and the bioreactor landfill, were assessed using the life cycle assessment (LCA) tool. The system boundaries were expanded to include an external energy production function since the landfill gas collected from the bioreactor landfill can be energetically valorized into either electricity or heat; the functional unit was then defined as the stabilization of 600 000 tonnes of MSW and the production of 2.56x108 MJ of electricity and 7.81x108 MJ of heat. Methods  Only the life cycle stages that presented differences between the two compared options were considered in the study. The four life cycle stages considered in the study cover the landfill cell construction, the daily and closure operations, the leachate and landfill gas associated emissions and the external energy production. The temporal boundary corresponded to the stabilization of the waste and was represented by the time to produce 95% of the calculated landfill gas volume. The potential impacts were evaluated using the EDIP97 method, stopping after the characterization step. Results and Discussion  The inventory phase of the LCA showed that the engineered landfill uses 26% more natural resources and generates 81% more solid wastes throughout its life cycle than the bioreactor landfill. The evaluated impacts, essentially associated with the external energy production and the landfill gas related emissions, are on average 91% higher for the engineered landfill, since for this option 1) no energy is recovered from the landfill gas and 2) more landfill gas is released untreated after the end of the post-closure monitoring period. The valorization of the landfill gas to electricity or heat showed similar environmental profiles (1% more raw materials and 7% more solid waste for the heat option but 13% more impacts for the electricity option). Conclusion and Recommendations  The methodological choices made during this study, e.g. simplification of the systems by the exclusion of the identical life cycle stages, limit the use of the results to the comparison of the two considered options. The validity of this comparison could however be improved if the systems were placed in the larger context of municipal solid waste management and include activities such as recycling, composting and incineration.  相似文献   

7.
8.
In situ nitrogen removal in phase-separate bioreactor landfill   总被引:1,自引:0,他引:1  
Long Y  Guo QW  Fang CR  Zhu YM  Shen DS 《Bioresource technology》2008,99(13):5352-5361
The feasibility of in situ nitrogen removal in phase-separate bioreactor landfill was investigated. In the experiment, two sets of bioreactor landfill systems, namely conventional two-phase and in situ nitrogen removal bioreactor landfills, were operated. The in situ nitrogen removal bioreactor landfill (NBL) was comprised of a fresh-refuse filled reactor (NBLF), a methanogenic reactor (NBLM) and a nitrifying reactor (NBLN), while the two-phase bioreactor landfill (BL) used as control was comprised of a fresh-refuse filled reactor (BLF) and a methanogenic reactor (BLM). Furthermore, the methanogenic and nitrifying reactors used aged refuse as bulk agents. The results showed that in situ nitrogen removal was viable by phase-separation in the bioreactor landfill. In total 75.8 and 47.5 g of nitrogen were, respectively, removed from the NBL and the BL throughout the experiment. The methanogenic reactor used the aged refuse as medium was highly effective in removing organic matter from the fresh leachate. Furthermore, the aged refuse was also suitable to use as in situ nitrification medium. The degradation of fresh refuse was accelerated by denitrification in the initial stage (namely the initial hydrolyzing stage) despite being delayed by denitrification in a long-term operation.  相似文献   

9.
Biodegradation of organic matter is required to reduce the potential of municipal solid waste for producing gaseous emissions and leaching contaminants. Therefore, we studied leachates of an aerobic-treated waste from municipal solids and a sewage sludge mixture that were re-circulated to decrease the concentration of biodegradable organic matter in laboratory-scale reactors. After 12 months, the total organic C and biological and chemical oxygen demands were reduced, indicating the biodegradation of organic compounds in the leachates. Curie-point pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and pyrolysis-field ionization mass spectrometry (Py-FIMS) revealed that phenols, alkylaromatic compounds, N-containing compounds and carbohydrates were the predominate compounds in the leachates and solid waste. Leachate re-circulation led to a higher thermal stability of the residual organic matter as indicated by temperature-resolved Py-FIMS. Admixture of sewage sludge to solid waste was less effective in removing organic compounds from the leachates. It resulted in drastic higher and more bio-resistant loads of organic matter in the leachates and revealed increased proportions of alkylaromatic compounds. The biodegradation of organic matter in leachates, re-circulated through municipal solid waste, offers the potential for improved aerobic waste treatments and should be investigated on a larger scale.  相似文献   

10.
The effects of leachate recirculation and the recirculation rate on the anaerobic treatment of domestic solid waste was investigated in three simulated landfill anaerobic bioreactors. A single pass reactor was operated without leachate recirculation while the other two reactors were operated with leachate recirculation. The leachate recirculation rate was 9 l/day (13% of the reactor volume) in Reactor9, while the recirculation rate was 21 l/day (30% of the reactor volume), in Reactor21. pH, chemical oxygen demand (COD), volatile fatty acids (VFA), ammonium–nitrogen (NH4–N) total and methane gas measurements in leachate samples were regularly monitored. After 220 days of anaerobic incubation, it was observed that the pH, COD, VFA concentrations, methane gas productions and methane percentages in Reactor9 were better than the single pass reactor and Reactor21. When the leachate recirculation rate was increased to three times a decrease in pH, and an increase in VFA and COD concentrations were observed in Reactor21. The COD values were measured as 47 000, 39 000 and 52 000 mg/l while the VFA concentrations were 15 000, 13 000 and 21 000 mg/l, respectively, in single pass, Reactor9 and Reactor21 after 220 days of anaerobic incubation. The values of pH were 5.89, 6.44 and 6.16, respectively, after anaerobic incubation. The mean methane percentages of single pass reactor, Reactor9 and Reactor21 were 30, 50 and 40%, respectively, after 50 days of incubation. Leachate recirculation reduced the waste stabilization time and was effective in enhancing methane gas production and improving leachate. However, leachate recirculation was not effective in removing ammonia from the leachate. The amounts of COD recovered by methane were 62.9, 162.3 and 94.6 g for single pass, Reactor9 and Reactor21, respectively, at the end of 220 days of anaerobic incubation.  相似文献   

11.
The wide use of municipal sanitary landfills has drawn attention to the leaching effluent generated, this may be problematic to the site's environment, whether by infiltration or other contaminating modes. Anaerobic digestion has been shown to be one of the most efficient systems with which to treat this type of effluent. This article reviews the techniques used by different authors for leachate characterization, specifically related to refractory and toxic components and their effect on anaerobic treatability. In addition, it covers the treatment of refractory organics, organic and inorganic toxic materials and the nutrient balance for adequate system operation. The main conclusions are that there is ample availability of methods by which to identify the different components present in leachates as well as for their toxicity assessment and that nutrients are in general available in sufficient amounts. Treatability studies are presented which are shown to be of general value and can be used in a straightforward manner.  相似文献   

12.
A 16S rDNA-based molecular study was performed to determine the nature of the bacterial constituents of the leachate from a closed municipal solid waste landfill. Total community DNA was extracted and bacterial 16S rRNA genes were subsequently amplified and cloned. Recombinant rDNA clones in the library were randomly selected, and they were sequenced for a single run and then grouped. A total of 76 sequence types representing 138 randomly selected nonchimeric clones were identified. Full-length sequencing and phylogenetic analysis of the sequence types revealed that more than 90% of the screened clones were affiliated with low-G+C gram-positive bacteria (38.4%), Proteobacteria (35.5%), the Cytophaga Flexibacter Bacteroides group (11.6%), and Spirochaetes (5.1%). Minor portions were affiliated with Verrucomicrobia (2.9%), candidate division OP11 (2.2%), and the green nonsulfur bacteria, Cyanobacteria and the Deinococcus Thermus group (each <1.0%). Although some rDNA sequences clustered with genera or taxa that were classically identified within anaerobic treatment systems and expected with known functions, a substantial fraction of the clone sequences showed relatively low levels of similarity with any other reported rDNA sequences and thus were derived from unknown taxa. These results suggest that bacterial communities in landfill environment are far more complex than previously expected and remain largely unexplored.  相似文献   

13.
Li WB  Yao J  Tao PP  Hu H  Fang CR  Shen DS 《Bioresource technology》2011,102(5):4117-4123
The aim of this study was to find a feasible method for the treatment of solid waste generated in the remote rural, where the transportation costs are prohibitive and the resources to construct and maintain conventional treatment plants are not available. This process, consisted of two types of simulated bioreactor landfill (one was recirculated bioreactor landfill, and the other was comprised of fresh and aged refuse reactor) and a soil infiltration system, was operated in ambient temperature for 180 days all together. After treated by the system of fresh and aged refuse reactor, the refuse and leachate reached a strongly degraded and stable state. The remaining leachate can be treated by the soil infiltration system, and 87.5 ± 2.1%, 98.6 ± 1.0% and 95.7 ± 1.7% were achieved by 60 cm soil depths for organic matter, ammonium nitrogen and total nitrogen removal, respectively.  相似文献   

14.
ABSTRACT

The increase in municipal solid waste generation, along with high concentrations of heavy metals in environments near municipal landfill, has led to human health hazards. This study investigated heavy metal contamination in water, sediment, and edible plants near a municipal landfill, including the bioaccumulation factor (BAF) and potential health risks. The heavy metal concentrations in the samples were analyzed using inductively coupled plasma optical emission spectrometry (ICP-OES). The concentrations of arsenic (As), lead (Pb), cadmium (Cd), and chromium (Cr) in water samples were not detected (ND), ND, 0.006 ± 0.01 mg/L, and ND, respectively, and in sediment samples, the concentrations were 1.19 ± 0.44, 3.20 ± 0.62, 0.46 ± 0.21, and 6.97 ± 0.34 mg/kg, respectively. The highest concentrations of As (5.03 ± 0.38), Pb (1.81 ± 0.37), and Cd (1.93 ± 0.13) were found in Marsilea crenata, whereas that of Cr (5.68 ± 0.79) was detected in Ipomoea aquatica. The Cr concentration in all plant species exceeded the standard for vegetables. The BAF values followed the heavy metal concentrations. All plant species have a low potential for accumulating Pb and Cr. The edible plants in this study area might cause health hazards to consumers from As, Pb, and Cd contamination.  相似文献   

15.
氧化亚氮(N2O)是第三大温室气体和最主要的臭氧层破坏气体.填埋是目前城市生活垃圾处理处置的主要方式,而垃圾填埋场是N2O的排放源之一.实验室研究和现场测定均表明,生活垃圾填埋场可以有高的N2O释放通量,但不同填埋场测定数据差异很大.目前,对生活垃圾填埋场N2O排放量的原位准确测定以及排放机理和重要性的认识仍有很多不足.本文概述了生活垃圾填埋场N2O排放研究现状,从垃圾堆体和覆土层两部分探讨了传统厌氧卫生填埋场的N2O产生和排放机理,并就此对新型脱氮型生物反应器填埋场做了相应探讨.最后,就静态箱法、涡度相关法等N2O通量测定方法在填埋场的适用性进行了讨论,并展望了填埋场N2O排放的研究方向.  相似文献   

16.
This paper presents and verifies the computer tool LCA-LAND for estimation of emissions from specific waste products disposed in municipal solid waste landfills in European countries for use in the inventory analysis of LCA. Examples of input data (e.g. distribution of the waste product in different countries, composition of the product and physical/chemical/biological properties of waste product components) and output data (e.g. estimated emissions to atmosphere and water) are given for a fictive waste product made of representative types of components (toluene, cellulose, polyvinylchloride (PVC), copper and chloride). Since waste products from different processes in the product system may be disposed at different landfills where they are mixed with waste originating outside the product system, the estimated emissions from specific waste products cannot be compared with measured emissions from true landfills. Hence, the computer tool is verified in terms of mass balances and sensitivity analyses. The mass balances agree exactly and the sensitivity analyses show that different types of waste product components behave differently in different types of landfills. Emission of e.g. toluene is significantly reduced in the presence of landfill top-cover, landfill gas combustion units and leachate treatment units. Generally, the sensitivity analysis shows good agreement between the relative proportions of various types of emissions (based on properties of the waste and properties of landfills) and good agreement with emission levels that would be expected based on a general understanding of landfill processes.  相似文献   

17.
For the inventory analysis of environmental impacts associated with products in Life Cycle Assessment (LCA) there is a great need for estimates of emissions from waste products disposed at municipal solid waste landfills (product specific emissions). Since product specific emissions can not be calculated or measured directly at the landfills, they must be estimated by modeling of landfill processes. This paper presents a landfill model based on a large number of assumptions and approximations concerning landfill properties, waste product properties and characteristics of various kinds of environmental protection systems (e.g. landfill gas combustion units and leachate treatment units). The model is useful for estimation of emissions from waste products disposed in landfills and it has been made operational in the computer tool LCA-LAND presented in a following paper. In the model, waste products are subdivided into five groups of components: general organic matter (e.g. paper), specific organic compounds (e.g. organic solvents), inert components (e.g. PVC), metals (e.g. cadmium), and inorganic non-metals (e.g. chlorine,) which are considered individually. The assumptions and approximations used in the model are to the extent possible scientifically based, but where scientific information has been missing, qualified estimates have been made to fulfill the aim of a complete tool for estimation of emissions. Due to several rough simplifications and missing links in our present understanding of landfills, the uncertainty associated with the model is relatively high.  相似文献   

18.
Biological treatment of landfill leachate usually results in low treatment efficiencies because of high chemical oxygen demand (COD), high ammonium-N content and also presence of toxic compounds such as heavy metals. A landfill leachate with high COD content was pre-treated by coagulation-flocculation followed by air stripping of ammonia at pH = 12. Pre-treated leachate was biologically treated in an aeration tank operated in fed-batch mode with and without addition of powdered activated carbon (PAC). PAC at 2 g l–1 improved COD and ammonium-N removals resulting in nearly 86% COD and 26% NH4-N removal.  相似文献   

19.
准好氧填埋渗滤液水质变化特性研究   总被引:14,自引:0,他引:14  
在大型模拟填埋试验装置(21 m×3.8 m×6.0 m)上,研究了准好氧填埋渗滤液水质的主要指标CODCr、BOD、NH3+-N和pH的变化特性.结果表明,准好氧填埋结构下渗滤液CODCr、BOD浓度下降很快,没有出现在传统填埋场累积的现象,并且封场后39周分别降为173和30 mg·L-1;NH3+-N浓度下降更为显著,第39周降为1 mg·L-1,下降率达到99.6%,为渗滤液后续处理解决了NH3+-N浓度过高的难题;pH值在前2周略低于7,第3周后一直呈弱碱性.根据实验数据,拟合了准好氧填埋结构渗滤液污染物的衰减方程.  相似文献   

20.
A distributed model of solid waste digestion in a 1-D bioreactor with leachate recirculation and pH adjustment was developed to analyze the balance between the rates of polymer hydrolysis/acidogenesis and methanogenesis during the anaerobic digestion of municipal solid waste (MSW). The model was calibrated on previously published experimental data generated in 2-L reactors filled with shredded refuse and operated with leachate recirculation and neutralization. Based on model simulations, both waste degradation and methane production were stimulated when inhibition was prevented rapidly from the start, throughout the reactor volume, by leachate recirculation and neutralization. An optimal strategy to reduce the time needed for solid waste digestion is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号