首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Light is the main entraining signal of the central circadian clock, which drives circadian organization of activity. When food is made available during only certain parts of the day, it can entrain the clock in the liver without changing the phase of the central circadian clock. Although a hallmark of food entrainment is a behavioral anticipation of food availability, the extent of behavioral alterations in response to food availability has not been fully characterized. The authors have investigated interactions between light and temporal food availability in the timing of activity in the common vole. Temporally restricted food availability enhanced or attenuated re-entrainment to a phase advance in light entrainment when it was shifted together with the light or remained at the same time of day, respectively. When light-entrained behavior was challenged with temporal food availability cycles with a different period, two distinct activity components were observed. More so, the present data indicate that in the presence of cycles of different period length of food and light, an activity component emerged that appeared to be driven by a free-running (light-entrainable) clock. Because the authors have previously shown that in the common vole altering activity through running-wheel availability can alter the effectiveness of food availability to entrain the clock in the liver, the authors included running-wheel availability as a parameter that alters the circadian/ultradian balance in activity. In the current protocols, running-wheel availability enhanced the entraining potential of both light and food availability in a differential way. The data presented here show that in the vole activity is a complex of individually driven components and that this activity is, itself, an important modulator of the effectiveness of entraining signals such as light and food.  相似文献   

2.
Circadian clocks use a wide range of environmental cues, including cycles of light, temperature, food, and social interactions, to fine-tune rhythms in behavior and physiology. Although social cues have been shown to influence circadian clocks of a variety of organisms including the fruit fly Drosophila melanogaster, their mechanism of action is still unclear. Here, the authors report the results of their study aimed at investigating if daily cycles of presence and absence (PA) of conspecific male visitors are able to entrain the circadian locomotor activity rhythm of male hosts living under constant darkness (DD). The results suggest that PA cycles may not be able to entrain circadian locomotor activity rhythms of Drosophila. The outcome does not change when male hosts are presented with female visitors, suggesting that PA cycles of either sex may not be effective in bringing about stable entrainment of circadian clocks in D. melanogaster. However, in hosts whose clock phase has already been set by light/dark (LD) cycles, daily PA cycles of visitors can cause measurable change in the phase of subsequent free-running rhythms, provided that their circadian clocks are labile. Thus, the findings of this study suggest that D. melanogaster males may not be using cyclic social cues as their primary zeitgeber (time cue) for entrainment of circadian clocks, although social cues are capable of altering the phase of their circadian rhythms. (Author correspondence: , )  相似文献   

3.
The Drosophila circadian clock is an ideal model system for teasing out the molecular mechanisms of circadian behavior and the means by which animals synchronize to day-night cycles. The clock that drives behavioral rhythms, located in the lateral neurons in the central brain, consists of a feedback loop of the circadian genes period (per) and timeless (tim). The molecular cycle, roughly 24 h long, is constantly reset by the environment. This review focuses on the main input pathways of the dominant circadian zeitgeber, light. Light acts directly on the clock primarily through cryptochrome (cry), a deep brain blue-light photoreceptor. CRY activation causes rapid TIM degradation, which is a predicted means of resetting the clock both on a daily basis at dawn and on an acute basis following an entraining light pulse during the night hours. In the absence of cry, the clock can still be driven by photic input through the visual system, though the mechanisms underlying this entrainment are unclear. Temperature can also entrain the clock, although the mechanisms by which this occurs are also unclear.  相似文献   

4.
The master circadian clock, located in the mammalian suprachiasmatic nuclei (SCN), generates and coordinates circadian rhythmicity, i.e., internal organization of physiological and behavioral rhythms that cycle with a near 24-h period. Light is the most powerful synchronizer of the SCN. Although other nonphotic cues also have the potential to influence the circadian clock, their effects can be masked by photic cues. The purpose of this study was to investigate the ability of scheduled feeding to entrain the SCN in the absence of photic cues in four lines of house mouse (Mus domesticus). Mice were initially housed in 12:12-h light/dark cycle with ad libitum access to food for 6 h during the light period followed by 4-6 mo of constant dark under the same feeding schedule. Wheel running behavior suggested and circadian PER2 protein expression profiles in the SCN confirmed entrainment of the master circadian clock to the onset of food availability in 100% (49/49) of the line 2 mice in contrast to only 4% (1/24) in line 3 mice. Mice from line 1 and line 4 showed intermediate levels of entrainment, 57% (8/14) and 39% (7/18), respectively. The predictability of entrainment vs. nonentrainment in line 2 and line 3 and the novel entrainment process provide a powerful tool with which to further elucidate mechanisms involved in entrainment of the SCN by scheduled feeding.  相似文献   

5.
《Chronobiology international》2013,30(7):1273-1289
Food is critical for all animal species. Its temporal availability is a relevant signal for organizing behavioral and physiological parameters. When food is restricted to a few hours per day, rats, mice, and other mammals exhibit anticipatory activity before mealtime (food-anticipatory activity). There is considerable evidence suggesting that this anticipation is mediated by a food-entrainable oscillator (FEO) with circadian properties, but located outside the suprachiasmatic nucleus of the hypothalamus (the light-entrainable oscillator). However, the locus of the FEO as well as the mechanisms by which food entrainment occurs is unclear. In this review, we summarize data about the potential input pathways to the FEO and propose a model for understanding it as a network of interconnected brain structures entrained by fluctuation of different humoral signals. (Author correspondence: ).  相似文献   

6.
What makes the Arabidopsis clock tick on time? A review on entrainment   总被引:5,自引:1,他引:5  
Entrainment, the synchronization of a circadian clock with the external environment, is a crucial step in daily life. Although many signals contribute to entrainment, light and temperature are typically the strongest resetting cues. Much progress has been made concerning light resetting in the model plant Arabidopsis thaliana. Multiple photoreceptors (phytochromes, cryptochromes, LOV-domain proteins) are involved in light perception. The clock genes CCA1, LHY and TOC1 are all probable targets of light signalling, although the details of these pathways are not completely established. Temperature can entrain the clock, but little is known about the mechanism underlying this resetting; no obvious clock gene candidate for temperature resetting has been identified. Although circadian research has emphasized oscillations in free-running conditions, in the real world the circadian clock is entrained. During entrainment, short or long period mutants exhibit a 24-h period, but a mutant phenotype is often manifested as an altered phase relationship with the entraining cycle; short and long period mutants show leading and lagging phases, respectively, and this may be detrimental under some conditions. Arrhythmic CCA1-overexpressing plants display increased lethality under very short photoperiods, consistent with the circadian clock being of adaptive significance to life on a rotating world.  相似文献   

7.
When rodents have free access to a running wheel in their home cage, voluntary use of this wheel will depend on the time of day1-5. Nocturnal rodents, including rats, hamsters, and mice, are active during the night and relatively inactive during the day. Many other behavioral and physiological measures also exhibit daily rhythms, but in rodents, running-wheel activity serves as a particularly reliable and convenient measure of the output of the master circadian clock, the suprachiasmatic nucleus (SCN) of the hypothalamus. In general, through a process called entrainment, the daily pattern of running-wheel activity will naturally align with the environmental light-dark cycle (LD cycle; e.g. 12 hr-light:12 hr-dark). However circadian rhythms are endogenously generated patterns in behavior that exhibit a ~24 hr period, and persist in constant darkness. Thus, in the absence of an LD cycle, the recording and analysis of running-wheel activity can be used to determine the subjective time-of-day. Because these rhythms are directed by the circadian clock the subjective time-of-day is referred to as the circadian time (CT). In contrast, when an LD cycle is present, the time-of-day that is determined by the environmental LD cycle is called the zeitgeber time (ZT).Although circadian rhythms in running-wheel activity are typically linked to the SCN clock6-8, circadian oscillators in many other regions of the brain and body9-14 could also be involved in the regulation of daily activity rhythms. For instance, daily rhythms in food-anticipatory activity do not require the SCN15,16 and instead, are correlated with changes in the activity of extra-SCN oscillators17-20. Thus, running-wheel activity recordings can provide important behavioral information not only about the output of the master SCN clock, but also on the activity of extra-SCN oscillators. Below we describe the equipment and methods used to record, analyze and display circadian locomotor activity rhythms in laboratory rodents.  相似文献   

8.
The periodic light-dark cycle is the dominant environmental synchronizer used by humans to entrain to the geophysical 24-h day. Entrainment is a fundamental property of circadian systems by which the period of the internal clock (tau) is synchronized to the period of the entraining stimuli (T cycle). An important aspect of entrainment in humans is the maintenance of an appropriate phase relationship between the circadian system, the timing of sleep and wakefulness, and environmental time (a.k.a. the phase angle of entrainment) to maintain wakefulness throughout the day and consolidated sleep at night. In this article, we review these concepts and the methods for assessing circadian phase and period in humans, as well as discuss findings on the phase angle of entrainment in healthy adults. We review findings from studies that examine how the phase, intensity, duration, and spectral characteristics of light affect the response of the human biological clock and discuss studies on entrainment in humans, including recent studies of the minimum light intensity required for entrainment. We briefly review conditions and disorders in which failure of entrainment occurs. We provide an integrated perspective on circadian entrainment in humans with respect to recent advances in our knowledge of circadian period and of the effects of light on the biological clock in humans.  相似文献   

9.
《Chronobiology international》2013,30(8):1532-1545
African mole-rats (family Bathyergidae) are strictly subterranean rodent species that are rarely exposed to environmental light. Morphological and physiological adaptations to the underground environment include a severely reduced eye size and regressed visual system. Responses of the circadian system to light, however, appear to be intact, since mole-rats are able to entrain their circadian activity rhythms to the light-dark cycle and light induces Fos expression in the suprachiasmatic nucleus (SCN). Social organization varies from solitary species to highly elaborated eusocial structures, characterized by a distinct division of labor and in which one reproductive female regulates the behavior and reproductive physiology of other individuals in the colony. The authors studied light-induced Fos expression in the SCN to increasing light intensities in four mole-rat species, ranging from strictly solitary to highly social. In the solitary Cape mole-rat, light induces significant Fos expression in the SCN, and the number of Fos-immunopositive cells increases with increasing light intensity. In contrast, Fos induction in the SCN of social species was slightly greater than, but not statistically different from, the dark-control animals as is typical of most rodents. One species showed a trend for an increase in expression with increased light, whereas a second species showed no trend in expression. In the naked mole-rat, Fos expression appeared higher in the dark-controls than in the animals exposed to light, although the differences in Fos expression were not significant. These results suggest a gradient in the sensitivity of the circadian system to light in mole-rats, with a higher percentage of individuals that are unresponsive to light in correlation with the degree of sociality. In highly social species, such as the naked mole-rat that live in a relatively stable subterranean milieu in terms of food availability, temperature, constant darkness, and devoid of 24-h cyclic environmental cues, the temporal coordination of rest-wake activities may be dependent on social interactions and social status rather than on photic regulation of the circadian timing system. (Author correspondence: )  相似文献   

10.
The authors derived early and late populations of fruit flies showing increased incidence of emergence during morning or evening hours by imposing selection for timing of emergence under 12:12?h light/dark (LD) cycles. From previous studies, it was clear that the increased incidence of adult emergence during morning and evening hours in early and late populations was a result of evolution of divergent and characteristic emergence waveforms in these populations. Such characteristic waveforms are henceforth referred to as “evolved emergence waveforms” (EEWs). The early and late populations also evolved different circadian clocks, which is evident from the divergence in their clock period (τ) and photic phase response curve (PRC). Although correlation between emergence waveforms and clock properties suggests functional significance of circadian clocks, τ and PRCs do not satisfactorily explain the early and late emergence phenotypes. In order to understand the functional significance of the PRC for early and late emergence phenotypes, the authors investigated whether circadian clocks of these flies exhibit any difference in photosensitivity under entrained conditions. Such differences would suggest that the light requirement for circadian entrainment of the emergence rhythm in early and late populations is different. To test this, they examined if early and late flies differ in their light utilization behavior, first by assaying their emergence rhythm under complete photoperiod and then in three different skeleton photoperiods. The results showed that early and late populations require different durations of light during the morning and evening to achieve their EEWs, suggesting that for the circadian entrainment of the emergence rhythm, early and late flies utilize light from different parts of the day. (Author correspondence: or )  相似文献   

11.
Lycosa tarentula is a ground-living spider that inhabits a burrow where it awaits the appearance of prey or conspecifics. In this study, circadian rhythms of locomotor activity were examined as well as the ocular pathway of entrainment. Thirty-three adult virgin females were examined under constant darkness (DD); all of them exhibited robust circadian rhythms of locomotor activity with a period averaging 24.1h. Fourteen of these spiders were studied afterwards under an LD 12:12 cycle; they usually entrained to in the first or second day, even when the light intensity was as low as 1 lx. During the LD cycle, locomotor activity was generally restrained to the darkness phase, although several animals showed a small amount of diurnal activity. Ten males were also examined under LD; they were also nocturnal, but were much more active than the females. Seven females were examined under constant light (LL); under this they became arrhythmic. Except for the anterior median eyes (OMAs), all the eyes were capable of entraining the locomotor activity to an LD cycle. These results demonstrate that under laboratory conditions and low light intensities locomotor activity of Lycosa tarentula is circadian and in accordance with Aschoff's 'rule'. Only OMAs are unable to entrain the rhythm; the possible localization of circadian clock is therefore discussed.  相似文献   

12.
Loss of Dexras1 in gene-targeted mice impairs circadian entrainment to light cycles and produces complex changes to phase-dependent resetting responses (phase shifts) to light. The authors now describe greatly enhanced and phase-specific nonphotic responses induced by arousal in dexras1?/? mice. In constant conditions, mutant mice exhibited significant arousal-induced phase shifts throughout the subjective day. Unusual phase advances in the late subjective night were also produced when arousal has little effect in mice. Bilateral lesions of the intergeniculate leaflet (IGL) completely eliminated both the nonphotic as well as the light-induced phase shifts of circadian locomotor rhythms during the subjective day, but had no effect on nighttime phase shifts. The expression of FOS-like protein in the suprachiasmatic nucleus (SCN) was not affected by either photic or nonphotic stimulation in the subjective day in either genotype. Therefore, the loss of Dexras1 (1) enhances nonphotic phase shifts in a phase-dependent manner, and (2) demonstrates that the IGL in mice is a primary mediator of circadian phase-resetting responses to both photic and nonphotic events during the subjective day, but plays a different functional role in the subjective night. Furthermore, (3) the change in FOS level does not appear to be a critical step in the entrainment pathways for either light or arousal during the subjective day. The cumulative evidence suggests that Dexras1 regulates multiple photic and nonphotic signal-transduction pathways, thereby playing an essential role modulating species-specific characteristics of circadian entrainment. (Author correspondence: )  相似文献   

13.
Circadian clocks use a wide range of environmental cues, including cycles of light, temperature, food, and social interactions, to fine-tune rhythms in behavior and physiology. Although social cues have been shown to influence circadian clocks of a variety of organisms including the fruit fly Drosophila melanogaster, their mechanism of action is still unclear. Here, the authors report the results of their study aimed at investigating if daily cycles of presence and absence (PA) of conspecific male visitors are able to entrain the circadian locomotor activity rhythm of male hosts living under constant darkness (DD). The results suggest that PA cycles may not be able to entrain circadian locomotor activity rhythms of Drosophila. The outcome does not change when male hosts are presented with female visitors, suggesting that PA cycles of either sex may not be effective in bringing about stable entrainment of circadian clocks in D. melanogaster. However, in hosts whose clock phase has already been set by light/dark (LD) cycles, daily PA cycles of visitors can cause measurable change in the phase of subsequent free-running rhythms, provided that their circadian clocks are labile. Thus, the findings of this study suggest that D. melanogaster males may not be using cyclic social cues as their primary zeitgeber (time cue) for entrainment of circadian clocks, although social cues are capable of altering the phase of their circadian rhythms.  相似文献   

14.
Lycosa tarentula is a ground-living spider that inhabits a burrow where it awaits the appearance of prey or conspecifics. In this study, circadian rhythms of locomotor activity were examined as well as the ocular pathway of entrainment. Thirty-three adult virgin females were examined under constant darkness (DD); all of them exhibited robust circadian rhythms of locomotor activity with a period averaging 24.1h. Fourteen of these spiders were studied afterwards under an LD 12:12 cycle; they usually entrained to in the first or second day, even when the light intensity was as low as 1 lx. During the LD cycle, locomotor activity was generally restrained to the darkness phase, although several animals showed a small amount of diurnal activity. Ten males were also examined under LD; they were also nocturnal, but were much more active than the females. Seven females were examined under constant light (LL); under this they became arrhythmic. Except for the anterior median eyes (OMAs), all the eyes were capable of entraining the locomotor activity to an LD cycle. These results demonstrate that under laboratory conditions and low light intensities locomotor activity of Lycosa tarentula is circadian and in accordance with Aschoff's 'rule'. Only OMAs are unable to entrain the rhythm; the possible localization of circadian clock is therefore discussed.  相似文献   

15.
《Chronobiology international》2013,30(7):1369-1388
Australian sleepy lizards (Tiliqua rugosa) exhibit marked locomotor activity rhythms in the field and laboratory. Light-dark (LD) and temperature cycles (TCs) are considered important for the entrainment of circadian locomotor activity rhythms and for mediating seasonal adjustments in aspects of these rhythms, such as phase, amplitude, and activity pattern. The relative importance of 24 h LD and TCs in entraining the circadian locomotor activity rhythm in T. rugosa was examined in three experiments. In the first experiment, lizards were held under LD 12:12 and subjected to either a TC of 33:15?°?C in phase with the LD cycle or a reversed TC positioned in antiphase to the LD cycle. Following LD 12:12, lizards were maintained under the same TCs but were subjected to DD. Activity was restricted to the thermophase in LD, irrespective of the lighting regime and during the period of DD that followed, suggesting entrainment by the TC. The amplitude of the TC was lowered by 8?°?C to reduce the intensity and possible masking effect of the TC zeitgeber in subsequent experiments. In the second experiment, lizards were held under LD 12.5:11.5 and subjected to one of three treatments: constant 30?°?C, normal TC (30:20?°?C) in phase with the LD cycle, or reversed TC. Following LD, all lizards were subjected to DD and constant 30?°?C. Post-entrainment free-run records revealed that LD cycles and TCs could both entrain the locomotor rhythms of T. rugosa. In LD, mean activity duration (α) of lizards in the normal TC group was considerably less than that in the constant 30?°?C group. Mean α also increased between LD and DD in lizards in the normal TC group. Although there was large variation in the phasing of the rhythm in relation to the LD cycle in reversed TC lizards, TCs presented in phase with the LD cycle most accurately synchronized the rhythm to the photocycle. In the third experiment, lizards were held in DD at constant 30?°?C before being subjected to a further period of DD and one of four treatments: normal TC (06:00 to 18:00 h thermophase), delayed TC (12:00 to 00:00 h thermophase), advanced TC (00:00 to 12:00 h thermophase), or control (no TC, constant 30?°?C). While control lizards continued to free-run in DD at constant temperature, the locomotor activity rhythms of lizards subjected to TCs rapidly entrained to TCs, whether or not the TC was phase advanced or delayed by 6 h. There was no difference in the phase relationships of lizard activity rhythms to the onset of the thermophase among the normal, delayed, and advanced TC groups, suggesting equally strong entrainment to the TC in each group. The results of this experiment excluded the possibility that masking effects were responsible for the locomotor activity responses of lizards to TCs. The three experiments demonstrated that TCs are important for entraining circadian locomotor activity rhythms of T. rugosa, even when photic cues are conflicting or absent, and that an interaction between LD cycles and TCs most accurately synchronizes this rhythm. (Author correspondence: )  相似文献   

16.
《Chronobiology international》2013,30(9):1195-1205
Circadian rhythms are established very early during vertebrate development. In fish, environmental cues can influence the initiation and synchronization of different rhythmic processes. Previous studies in zebrafish and rainbow trout have shown that circadian oscillation of clock genes represents one of the earliest detectable rhythms in the developing embryo, suggesting their significance in regulating the coordination of developmental processes. In this study, we analyzed the daily expression of the core clock components Per1, Per2, Per3, and Clock during the first several days of Senegalese sole development (0–4 d post fertilization or dpf) under different lighting regimes, with the aim of addressing when the molecular clock first emerges in this species and how it is affected by different photoperiods. Rhythmic expression of the above genes was detected from 0 to 1 dpf, being markedly affected in the next few days by both constant light (LL) and dark (DD) conditions. A gradual entrainment of the clock machinery was observed only under light-dark (LD) cycles, and robust rhythms with increased amplitudes were established by 4 dpf for all clock genes currently studied. Our results show the existence of an embryonic molecular clock from the 1st d of development in Senegalese sole and emphasize the significance of cycling LD conditions when raising embryos and early larvae. (Author correspondence: ; )  相似文献   

17.
The environmental day-night cycle provides the principal synchronizing signal for behavioral activity in most mammals. Light information is relayed to the master circadian pacemaker, the suprachiasmatic nucleus (SCN), via synaptic transmission from the retina directly to the SCN, where a predominately glutamate-driven cellular signaling pathway is able to reset biochemical, physiological, and behavioral activities. In the present study, we aimed to decipher the key roles played by protein kinase C (PKC) in regulating light-induced behavioral resetting under both a temporal and intensity-dependent manner; in addition, we also investigate PKC contributions to advancing and delaying re-entrainment paradigms. Our findings show that during the early night PKC acts in a temporal manner, where PKC inhibition selectively attenuates light-induced behavioral resetting in response to subsaturating and saturating light intensities. Declines in light response were also evident upon PKC inhibition during the late night, but restricted to bright light stimuli. The positive regulatory actions of PKC were further demonstrated in response to an 8-h delayed re-entrainment paradigm where inhibition of PKC resulted in slower re-entrainment. Further, analysis of both classic and novel PKC isozymes present within the SCN showed significant circadian variation in the mRNA expression of PKCα, indicating possible isozyme-specific mediators in photic signaling. Our data provide evidence of a PKC contribution to both acute light-induced clock resetting, which is intensity and time of day dependent, and a functional role in circadian photoentrainment. (Author correspondence: )  相似文献   

18.
In mammals, non-visual responses to light involve intrinsically photosensitive melanopsin-expressing retinal ganglion cells (ipRGCs) that receive synaptic inputs from rod and cone photoreceptors. Several studies have shown that cones also play a role in light entrainment, photic responses of the suprachiasmatic nucleus (SCN), pupil constriction, and sleep induction. These studies suggest that cones are mainly involved in the initial response to light, whereas melanopsin provides a sustained input for non-visual responses during continued light exposure. Based on this idea, we explored the effects of the absence of middle-wavelength (MW)-cones on the temporal responses of circadian behavior and clock gene expression in light. In mice lacking MW-cones, our results show a reduction in behavioral phase shifts in response to light stimulations of short duration at 480 and 530?nm, but no alteration for short-wavelength (360-nm) light exposures. Similarly, induction of the period gene mPer1 and mPer2 mRNAs in the SCN are attenuated in response to light exposures of mid to long wavelengths. Modeling of the photoresponses shows that mice lacking MW-cones have an overall reduction in sensitivity that increases with longer wavelengths. The differences in photic responsiveness are consistent with the idea that cones provide a strong initial phasic input to the circadian system at light-onset and may confer a priming effect on ipRGC responses to sub-threshold light exposures. In summary, the contribution of MW-cones is essential for the normal expression of phase shifts and clock gene induction by light in mammals. (Author correspondence: )  相似文献   

19.
20.
Period aftereffects are a form of behavioral plasticity in which the free-running period of circadian behavior undergoes experience-dependent changes. It is unclear whether this plasticity is age dependent and whether the changes in behavioral period relate to changes in the SCN or the retina, 2 known circadian pacemakers in mammals. To determine whether these changes vary with age, Per1-luc transgenic mice (in which the luciferase gene is driven by the Period1 promoter) of different ages were exposed to short (10 h light: 10 h dark, T20) or long (14 h light: 14 h dark, T28) light cycles (T cycles). Recordings of running-wheel activity in constant darkness (DD) revealed that the intrinsic periods of T20 mice were significantly shorter than of T28 mice at all ages. Aftereffects following the shorter light cycle were significantly smaller in mice older than 3 months, corresponding with a decreased ability to entrain to T20. Age did not diminish entrainment or aftereffects in the 28-h light schedule. The behavioral period of pups born in DD depended on the T cycle experienced in utero, showing maternal transference of aftereffects. Recordings of Per1-luc activity from the isolated SCN in vitro revealed that the SCN of young mice expressed aftereffects, but the periods of behavior and SCN were negatively correlated. Enucleation in DD had no effect on behavioral aftereffects, indicating the eyes are not required for aftereffects expression. These data show that circadian aftereffects are an age-dependent form of plasticity mediated by stable changes in the SCN and, importantly, extra-SCN tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号