首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《Chronobiology international》2013,30(8):1580-1595
Octodon degus is a primarily diurnal rodent that presents great variation in its circadian chronotypes due to the interaction between two phase angles of entrainment, diurnal and nocturnal, and the graded masking effects of environmental light and temperature. The aim of this study was to test whether the circadian system of this diurnal rodent can be internally dissociated by imposing cycles shorter and longer than 24?h, and to determine the influence of degus chronotypes and wheel-running availability on such dissociation. To this end, wheel-running activity and body temperature rhythms were studied in degus subjected to symmetrical light-dark (LD) cycles of T28h and T21h. The results show that both T-cycles dissociate the degus circadian system in two different components: one light-dependent component (LDC) that is influenced by the presence of light, and a second non–light-dependent component (NLDC) that free-runs with a period different from the external lighting cycle. The LDC was more evident in the nocturnal than diurnal chronotype, and also when wheel running was available. Our results show that, in addition to rats and mice, degus must be added to the list of species that show an internal dissociation in their circadian rhythms when exposed to forced desynchronization protocols. The existence of a multioscillatory circadian system having two groups of oscillators with low coupling strength may explain the flexibility of degus chronotypes. (Author correspondence: )  相似文献   

2.
Processes involved in the operation of the circadian pacemaker are well characterized; however; little is known about what mechanisms drive the overt diurnal, nocturnal, or crepuscular behavior in a species. In this context, dual‐phasing rodents, such as Octodon degus, emerge as a useful model to decipher these keys. Two main chronotypes, nocturnal and diurnal, have been traditionally described in laboratory‐housed degus based on the percentage of activity displayed by the animals during the scotophase or photophase. However, if one considers also the entrainment phase angle during the first days following a change from LD to DD conditions, a third chronotype (intermediate)—or more properly, a continuous grading of circadian expressions between diurnal and nocturnal chronotype—can be observed. Our experiments suggest the pacemaker of the diurnal animal is entrained to the photophase, and light does not exert a negative masking effect. The pacemaker of the nocturnal degus, on the other hand, is entrained to the scotophase, and light exerts a strong negative masking effect. Finally, the intermediate chronotype is characterized by variable negative masking effect of light overlapping a pacemaker entrained to the photophase. The phase shift inversion from diurnal to nocturnal chronotype is related to the availability of a wheel in the cage, and the effect may be located downstream from the clock. However, body temperature rhythm recordings, less affected by masking effects, point to an involvement of the circadian pacemaker in chronotype differentiation, as transient entrainment cycles, and not an abrupt phase shift, were detected after providing access to the wheel. The diurnality of degus seems to be the result of a variety of mechanisms, which may explain how different processes can lead to similar chronotypes.  相似文献   

3.
《Chronobiology international》2013,30(8):1564-1579
Daily rhythms in different biochemical and hematological variables have been widely described in either diurnal or nocturnal species, but so far no studies in the rhythms of these variables have been conducted in a dual-phasing species such as the degus. The Octodon degus is a rodent that has the ability to switch from diurnal to nocturnal activity under laboratory conditions in response to wheel-running availability. This species may help us discover whether a complete temporal order inversion occurs parallel to the inversion that has been observed in this rodent's activity pattern. The aim of the present study is to determine the phase relationships among 26 variables, including behavioral, physiological, biochemical, and hematological variables, during the day and at night, in diurnal and nocturnal degus chronotypes induced under controlled laboratory conditions through the availability of wheel running. A total of 39 male degus were individually housed under a 12:12 light-dark (LD) cycle, with free wheel-running access. Wheel-running activity (WRA) and body temperature (Tb) rhythms were recorded throughout the experiment. Melatonin, hematological, and biochemical variables were determined by means of blood samples obtained every 6?h (ZT1, ZT7, ZT13, and ZT19). In spite of great differences in WRA and Tb rhythms between nocturnal and diurnal degus, no such differences were observed in the temporal patterns of most of the biological variables analyzed for the two chronotypes. Variation was only found in plasma urea level and lymphocyte number. A slight delay in the phase of the melatonin rhythm was also observed. This study shows the internal temporal order of a dual-phasing mammal does not show a complete inversion in accordance with its activity and body temperature pattern; it would appear that the switching mechanism involved in the degu's nocturnalism is located downstream from the pacemaker. (Author correspondence: ).  相似文献   

4.
Synergic contribution of light and temperature is known to cause a paradoxical masking effect (inhibition of activity by bright light and high temperature) on various rhythms of animals. The present study reports the paradoxical masking effects of 1000-lux photophase at 25°C on the locomotor activity rhythm of Drosophila malerkotliana. Flies were subjected to light (L)-dark (D) 12:12 cycles wherein the photophase was varied from 10 to 1000 lux, whereas the scotophase was set to 0 lux in these and subsequent LD cycles. At 10, 100, and 500 lux, the flies were diurnal; however, at 1000 lux they were nocturnal. Transfer from LD 12:12 cycles to continuous darkness (DD) initiated free-running rhythmicity in all flies. Free-running rhythms of the flies switched from the 10-lux to the 500-lux groups started from the last activity-onset phase of the rhythm following 3–5 transient cycles, suggesting involvement of the circadian pacemaker. In contrast, the free-running rhythm of the flies of the 1000-lux group began abruptly from the last lights-on phase of the LD cycle, indicating noninvolvement of the pacemaker. Furthermore, all flies showed nocturnal activity in the two types of LD 12:12 cycles when the photophase was 1000 lux. The first type of LD cycles had three succeeding photophases of 100, 1000, and again 100 lux, whereas the second type of LD cycles had only one photophase of 1000 lux, but the LD 12:12 cycles were reversed to DL 12:12 cycles. Apparently, the combined effects of light and temperature caused such paradoxical masking effects. This hypothesis was tested by repeating the above experiments at 20°C. Flies in all experiments exhibited a diurnal activity pattern, even when the photophase was 1000 lux. Thus, the present study demonstrates that the paradoxical masking effect in D. malerkotliana was caused by the additive influence of light intensity and temperature. This strategy appears to have physiological significance, i.e., to shun and thus protect against the bright photophase at high temperature in the field. (Author correspondence: )  相似文献   

5.
Entrainment of the circadian pacemaker to nonphotic stimuli, such as scheduled wheel-running activity, is well characterized in nocturnal rodents, but little is known about activity-dependent entrainment in diurnal or crepuscular species. In the present study, effects of scheduled voluntary wheel-running activity on circadian timekeeping were investigated in Octodon degus, a hystricomorph rodent that exhibits robust crepuscular patterns of wakefulness. When housed in constant darkness, O. degus exhibited circadian rhythms in wheel-running activity and body temperature (Tb) with an average period length (tau) of 23.39 +/- 0.11 h. When wheel running was restricted to a fixed 2-h schedule every 24 h, tau increased on average 0.39 +/- 0.09 h but did not result in steady-state entrainment. Instead, relative coordination between the fixed running schedule and circadian timing was observed. Tau was greatest when scheduled wheel running occurred at CT 20.5 (0.4 h greater than DD baseline tau). Scheduled running activity also influenced Tb waveform symmetry, reflecting concomitant changes in the circadian activity-rest ratio (alpha:rho). Aftereffects of the scheduled wheel-running paradigm were also observed. In 2 animals, tau lengthened from 23.20 and 23.80 h to 24.14 and 24.15 h, respectively, and remained relatively stable for approximately 1 month during the wheel schedule. Although behavioral activity appears to be a weak zeitgeber in this species, these data suggest that nonphotic stimuli can phase delay the circadian pacemaker in O. degus at similar times of the day as in nocturnal hamsters and mice, and in humans.  相似文献   

6.
Light exposure during the early and late subjective night generally phase delays and advances circadian rhythms, respectively. However, this generality was recently questioned in a photic entrainment study in Octodon degus. Because degus can invert their activity phase preference from diurnal to nocturnal as a function of activity level, assessment of phase preference is critical for computations of phase reference [circadian time (CT) 0] toward the development of a photic phase response curve. After determining activity phase preference in a 24-h light-dark cycle (LD 12:12), degus were released in constant darkness. In this study, diurnal (n = 5) and nocturnal (n = 7) degus were randomly subjected to 1-h light pulses (30-35 lx) at many circadian phases (CT 1-6: n = 7; CT 7-12: n = 8; CT 13-18: n = 8; and CT 19-24: n = 7). The circadian phase of body temperature (Tb) onset was defined as CT 12 in nocturnal animals. In diurnal animals, CT 0 was determined as Tb onset + 1 h. Light phase delayed and advanced circadian rhythms when delivered during the early (CT 13-16) and late (CT 20-23) subjective night, respectively. No significant phase shifts were observed during the middle of the subjective day (CT 3-10). Thus, regardless of activity phase preference, photic entrainment of the circadian pacemaker in Octodon degus is similar to most other diurnal and nocturnal species, suggesting that entrainment mechanisms do not determine overt diurnal and nocturnal behavior.  相似文献   

7.
The locomotor activity rhythms of domestic mice, laboratory rats, Syrian hamsters, Siberian hamsters, Mongolian gerbils, degus, and Nile grass rats were compared. Running-wheel activity was monitored under a light–dark cycle with 12 h of light and 12 h of darkness per day. Nile grass rats were found to be reliably diurnal, whereas laboratory rats, Siberian hamsters, domestic mice, and Syrian hamsters were reliably nocturnal. Both diurnal and nocturnal subgroups were observed in Mongolian gerbils and degus. A downward gradient of diurnality was observed from Mongolian gerbils classified as diurnal, degus classified as diurnal, gerbils classified as nocturnal, and degus classified as nocturnal. Nocturnal degus remained nocturnal when tested with an infrared motion detector without running wheels. Thus, although the diurnal–nocturnal dichotomy could be applied to some of the species, it was not appropriate for others. The dichotomy may reflect researchers’ needs for systematization more than a natural distinction between species. Through mechanisms as yet poorly understood, the balance between entraining and masking processes seems to generate a gradient of temporal niches that runs from predominantly diurnal species to predominantly nocturnal species with many chronotypes in between, including species that exhibit wide intra-species gradients of temporal niche.  相似文献   

8.
Rest activity pattern was studied in wild-captured males of Octodon degus (n=9), Octodon bridgesi (n=3), and Spalacopus cyanus (n=6) (Rodentia: Octodontidae). Ten-minute resolution actograms were constructed from data obtained by an automated acquisition system. After two months of habituation to a stable light-dark schedule, recordings were performed in isolation chambers under a 12: 12 Light Dark schedule. A free-running period (constant darkness) was recorded for O. bridgesi and S. cyanus. O. degus displayed a crepuscular pattern of rest activity rhythm. Entrained O. bridgesi and S. cyanus displayed nocturnal preference, with rest anticipating light phase and without crepuscular activity bouts. Under constant darkness, active phase occurred at subjective night in O. bridgesi and S. cyanus. Wild-captured O. bridgesi and S. cyanus possess a circadian driven nocturnal preference, while wild O. degus displays a crepuscular profile. Diurnal active phase preference of wild S. cyanus colonies observed in the field could not be explained solely by photic entrainment, since social and/or masking processes appear to be operative. The genus Octodon includes species with diverse chronotypes. We propose that crepuscular diurnal pattern observed in O. degus is a recent acquisition among the octodontid lineage.  相似文献   

9.
The effect of 'novel running wheels' on circadian clocks of the nocturnal field mouse Mus booduga was investigated during free-running and entrained conditions. In order to find out whether daily access to novel running wheels can entrain the locomotor activity rhythms experimental animals (n = 6) were provided with 'novel running wheels' at a fixed time of the day. The control animals (n = 5) were handled similar to the experimental animals but were not given access to novel running wheels. The results show that daily access to novel running wheels entrained the free-running locomotor activity rhythm of these mice. The post-entrainment free-running period (τ) of the experimental animals was significantly shorter than the pre-entrainment τ, whereas the pre- and post-treatment τ of the control animals did not differ significantly. In separate set of experiments, the effect of access to novel running wheels on the rate of re-entrainment was studied after a 6 h phase advance/delay in 24 h (12:12 h) light/dark (LD) cycles. Experimental animals were given access to novel running wheels for 3-h, 1 h after the 'lights-off' only on the first day of the 'new LD cycles'. Experimental animals took fewer cycles to re-entrain to 6-h phase advanced LD cycles compared to the control animals. After a phase delay in the LD cycles by 6h, the experimental animals took more number of cycles to re-entrain compared to the control animals. These results thus suggest that access to novel running wheel can act as a Zeitgeber for the circadian clocks of the nocturnal mouse M. booduga, and can also modify the rates of re-entrainment to phase shifted LD cycles, in a time-dependent manner.  相似文献   

10.
ABSTRACT

Diurnality in rodents is relatively rare and occurs primarily in areas with low nighttime temperatures such as at high altitudes and desert areas. However, many factors can influence temporal activity rhythms of animals, both in the field and the laboratory. The temporal activity patterns of the diurnal ice rat were investigated in the laboratory with, and without, access to running wheels, and in constant conditions with running wheels. Ice rats appeared to be fundamentally diurnal but used their running wheels during the night. In constant conditions, general activity remained predominantly diurnal while wheel running was either nocturnal or diurnal. In some animals, entrainment of the wheel running rhythm was evident, as demonstrated by free-running periods that were different from 24 h. In other animals, the wheel running activity abruptly switched from nocturnal to subjective day as soon as the animals entered DD, and reverted back to nocturnal once returned to LD, suggesting the rhythms were masked by light. Wheel running rhythms appears to be less robust and more affected by light compared to general activity rhythms. In view of present and future environmental changes, the existence of more unstable activity rhythms that can readily switch between temporal niches might be crucial for the survival of the species.  相似文献   

11.
With the widespread adoption of electrical lighting during the 20th century, human and nonhuman animals became exposed to high levels of light at night for the first time in evolutionary history. This divergence from the natural environment may have significant implications for certain ecological niches because of the important influence light exerts on the circadian system. For example, circadian disruption and nighttime light exposure are linked to changes in immune function. The majority of studies investigating the effects of light exposure and circadian disruption on the immune system use nocturnal rodents. In diurnal species, many hormones and immune parameters vary with secretion patterns 180° out of phase to those of nocturnal rodents. Thus, the authors investigated the effects of nighttime light exposure on immunocompetence in diurnal Nile grass rats (Arvicanthis niloticus). Rats were housed in either standard 14-h light (L):10-h dark (D) cycles with L ~150 lux and D 0 lux or dim light at night (dLAN) cycles of LD 14:10 with L ~150 lux and D 5 lux for 3 wks, then tested for plasma bactericidal capacity, as well as humoral and cell-mediated immune responses. Rats exposed to dLAN showed increased delayed-type hypersensitivity pinna swelling, which is consistent with enhanced cell-mediated immune function. dLAN rats similarly showed increased antibody production following inoculation with keyhole lymphocyte hemocyanin (KLH) and increased bactericidal capacity. Daytime corticosterone concentrations were elevated in grass rats exposed to nighttime dim light, which may have influenced immunological measures. Overall, these results indicate nighttime light affects immune parameters in a diurnal rodent. (Author correspondence: )  相似文献   

12.
Wheel-running and other non-photic stimuli influence the rest-activity pattern of diurnal and nocturnal mammals. A day to night inversion of phase preference of activity was described among Octodon degus, when exposed to ad-libitum wheel running. We have studied the rest-activity pattern response in presence of ad libitum wheel-running in wild-captured male individuals from two species of genus Octodon: O. degus (n = 9, crepuscular-diurnal) and O. bridgesi (n = 3, nocturnal). After two months of habituation to laboratory conditions, recordings were performed in isolation chambers under a 12:12 light-dark schedule with or without access to a running wheel. Actograms were constructed from data obtained by an automated acquisition system. O. bridgesi were also recorded under constant darkness, with or without access to wheel-running. Entrained to the light-dark schedule, a crepuscular pattern of activity was evident for O. degus, whereas O. bridgesi displayed a robust nocturnal chronotype. The activity of O. degus observed during the dark phase was enhanced when wheel-running was allowed. No significant change in phase preference was observed for O. bridgesi when wheel-running was allowed. A lengthening of endogenous period was observed in O. bridgesi after wheel-running exposure under constant darkness. Nocturnal and diurnal octodontids exhibit different masking responses to wheel-running.  相似文献   

13.
Most animals can be categorized as nocturnal, diurnal, or crepuscular. However, rhythms can be quite plastic in some species and vary from one individual to another within a species. In the golden spiny mouse (Acomys russatus), a variety of rhythm patterns have been seen, and these patterns can change considerably as animals are transferred from the field into the laboratory. We previously suggested that these animals may have a circadian time‐keeping system that is fundamentally nocturnal and that diurnal patterns seen in their natural habitat reflect mechanisms operating outside of the basic circadian time‐keeping system (i.e., masking). In the current study, we further characterized plasticity evident in the daily rhythms of golden spiny mice by measuring effects of lighting conditions and access to a running wheel on rhythms in general activity (GA) and body temperature (Tb). Before the wheel was introduced, most animals were active mainly during the night, though there was considerable inter‐individual variability and patterns were quite plastic. The introduction of the wheel caused an increase in the level of nighttime activity and Tb in most individuals. The periods of the rhythms in constant darkness (DD) were very similar, and even slightly longer in this study (24.1±0.2 h) than in an earlier one in which animals had not been provided with running wheels. We found no correlation between the distance animals ran in their wheels and the period of their rhythms in DD. Re‐entrainment after phase delays of the LD cycle occurred more rapidly in the presence than absence of the running wheel. The characteristics of the rhythms of golden spiny mice seen in this study may be the product of natural selection favoring plasticity of the circadian system, perhaps reflecting what can happen during an evolutionary transition as animals move from a nocturnal to a diurnal niche.  相似文献   

14.
It is known that day-active Nile grass rats, Arvicanthis niloticus, increase the amount of activity in the night relative to that in the day when provided with running wheels. This was confirmed in the present study. Animals without a wheel displayed 69.0% of their general activity in the L phase of a 12:12 h light-dark cycle; animals provided with wheels had only 48.6% of their wheel revolutions in the light. The contribution of direct (masking) responses to light to the increased nocturnality of animals with wheels was examined in two experiments. In experiment 1, masking was tested by exposing the animals to repeated cycles of 30 min of entraining light and 30 min of a different, usually dimmer light, during the L phase of a 12:12 h light-dark cycle. For animals with wheels, there was more running during the 30-min pulses of dim light or darkness than during the 30-min periods of entraining light. In contrast, for animals without wheels, there was more general activity during the 30-min periods of entraining light than during the 30-min pulses of dim light or darkness. In experiment 2, the animals were first exposed to a 12:12 h light-dark cycle and then put on a 1:10:1:12 h LDLD skeleton photoperiod. Animals with wheels increased their running during the subjective day of the skeleton photoperiod compared to that in the actual day of the 12:12 h light-dark cycle. Animals without wheels showed similar levels of general activity during the subjective day of the skeleton photoperiod and the actual day of the 12:12 h cycle. These experiments demonstrate that when Nile rats have running wheels, their increased nocturnal activity is associated with an increased suppression of locomotion in direct response to light. It is possible that changes in masking responses to light may be an essential and integral component of switching between diurnal and nocturnal activity profiles.  相似文献   

15.
Synergic contribution of light and temperature is known to cause a paradoxical masking effect (inhibition of activity by bright light and high temperature) on various rhythms of animals. The present study reports the paradoxical masking effects of 1000-lux photophase at 25°C on the locomotor activity rhythm of Drosophila malerkotliana. Flies were subjected to light (L)-dark (D) 12:12 cycles wherein the photophase was varied from 10 to 1000 lux, whereas the scotophase was set to 0 lux in these and subsequent LD cycles. At 10, 100, and 500 lux, the flies were diurnal; however, at 1000 lux they were nocturnal. Transfer from LD 12:12 cycles to continuous darkness (DD) initiated free-running rhythmicity in all flies. Free-running rhythms of the flies switched from the 10-lux to the 500-lux groups started from the last activity-onset phase of the rhythm following 3-5 transient cycles, suggesting involvement of the circadian pacemaker. In contrast, the free-running rhythm of the flies of the 1000-lux group began abruptly from the last lights-on phase of the LD cycle, indicating noninvolvement of the pacemaker. Furthermore, all flies showed nocturnal activity in the two types of LD 12:12 cycles when the photophase was 1000 lux. The first type of LD cycles had three succeeding photophases of 100, 1000, and again 100 lux, whereas the second type of LD cycles had only one photophase of 1000 lux, but the LD 12:12 cycles were reversed to DL 12:12 cycles. Apparently, the combined effects of light and temperature caused such paradoxical masking effects. This hypothesis was tested by repeating the above experiments at 20°C. Flies in all experiments exhibited a diurnal activity pattern, even when the photophase was 1000 lux. Thus, the present study demonstrates that the paradoxical masking effect in D. malerkotliana was caused by the additive influence of light intensity and temperature. This strategy appears to have physiological significance, i.e., to shun and thus protect against the bright photophase at high temperature in the field.  相似文献   

16.
Both temporary access to a running wheel and temporary exposure to light systematically influence the phase producing entrainment of the circadian activity rhythm in the golden hamster (Mesocricetus auratus). However, precise determination of entrainment limits remains methodologically difficult, because such calculations may be influenced by varying experimental paradigms. In this study, effects on the entrainment of the activity pattern during successive light-dark (LD) cycles of stepwise decreasing periods, as well as wheel running activity, were investigated. In particular, the hamster activity rhythm under LD cycles with a period (T) shorter than 22 h was studied, i.e., when the LD cycle itself had been shown to be an insufficiently strong zeitgeber to synchronize activity rhythms. Indeed, it was confirmed that animals without a wheel do not entrain under 11:11-h LD cycles (T = 22 h). Subsequently providing hamsters continuous access to a running wheel established entrainment to T = 22 h. Moreover, this paradigm underwent further reductions of the T period to T = 19.6 h without loss of entrainment. Furthermore, restricting access to the wheel did not result in loss of entrainment, while even entrainment to T = 19 h was observed. To explain this observed shift in the lower entrainment limit, our speculation centers on changes in pacemaker response facilitated by stepwise changes of T spaced very far apart, thus allowing time for adaptation.  相似文献   

17.
Arctic and subarctic environments are exposed to extreme light: dark (LD) regimes, including periods of constant light (LL) and constant dark (DD) and large daily changes in day length, but very little is known about circadian rhythms of mammals at high latitudes. The authors investigated the circadian rhythms of a subarctic population of northern red-backed voles (Clethrionomys rutilus). Both wild-caught and third-generation laboratory-bred animals showed predominantly nocturnal patterns of wheel running when exposed to a 16:8 LD cycle. In LL and DD conditions, animals displayed large phenotypic variation in circadian rhythms. Compared to wheel-running rhythms under a 16:8 LD cycle, the robustness of circadian activity rhythms decreased among all animals tested in LL and DD (i.e., decreased chi-squared periodogram waveform amplitude). A large segment of the population became noncircadian (60% in DD, 72% in LL) within 8 weeks of exposure to constant lighting conditions, of which the majority became ultradian, with a few individuals becoming arrhythmic, indicating highly labile circadian organization. Wild-caught and laboratory-bred animals that remained circadian in wheel running displayed free-running periods between 23.3 and 24.8 h. A phase-response curve to light pulses in DD showed significant phase delays at circadian times 12 and 15, indicating the capacity to entrain to rapidly changing day lengths at high latitudes. Whether this phenotypic variation in circadian organization, with circadian, ultradian, and arrhythmic wheel-running activity patterns in constant lighting conditions, is a novel adaptation to life in the arctic remains to be elucidated.  相似文献   

18.
1. Carbon dioxide emission (VCO2) has been continuously recorded in three laboratory animal species (Sprague-Dawley rats, Japanese quail, Hartley guinea-pigs) which differ by their nocturnal and diurnal activities. A 100 lux stimulus has been delivered at various time intervals. 2. A regular alternation of 12, 3 or 1.5 hr light (L) and darkness (D) gives VCO2 circadian and ultradian rhythms of 24, 6 or 3 hr periods, respectively, in quail and rats. 3. Such circadian and ultradian LD rhythms are not induced in all guinea-pigs. 4. The amplitudes of the VCO2 responses are greatest at D----L when the animals have a maximum diurnal activity and at L----D when their maximum activity is nocturnal. 5. Interactions between circadian and ultradian rhythms are seen in all LD experiments, as well as in continuous light (LL) or continuous dark (DD). 6. No more well-marked or even inverted VCO2 responses to the light stimuli may occur after several days of exposure to these LD alternations.  相似文献   

19.
《Chronobiology international》2013,30(10):1336-1344
Arachnocampa species, commonly called glowworms, are flies whose larvae use light to attract prey. Here we compare rhythmicity in two of the nine described species: the Tasmanian species, Arachnocampa tasmaniensis, which inhabits caves and wet forest, and the eastern Australian mainland species, A. flava, primarily found in subtropical rainforest. Both species show the same nocturnal glowing pattern in external (epigean) environments and the same inhibition of bioluminescence by light and both species show circadian regulation of bioluminescence. We find that the underlying circadian bioluminescence propensity rhythm (BPR) of the two species peaks at opposite phases of the day:night cycle. Larvae of A. flava, placed in constant darkness in the laboratory, bioluminesce during the subjective scotophase, typical of nocturnal animals, whereas A. tasmaniensis shows the opposite tendency, bioluminescing most intensely during the subjective photophase. In A. tasmaniensis, which are exposed to natural day:night cycles, light exposure during the day overrides the high bioluminescence propensity through negative masking and leads to a release of bioluminescence after dusk when the BPR is on the wane. A consequence is that A. tasmaniensis is able to start glowing at any phase of the light:dark cycle as soon as masking by light is released, whereas A. flava is locked into nocturnal bioluminescence. We suggest that the paradoxical BPR of A. tasmaniensis is an adaptation for living in the cave environment. Observations of bioluminescence in colonies of A. tasmaniensis located in the transition from a cave mouth to the dark zone show that glowing is inhibited by light exposure but a peak bioluminescence follows immediately after “dusk” at their location. The substantial difference in the circadian regulation of bioluminescence between the two species probably reflects adaptation to the cave (hypogean) habitat in A. tasmaniensis and the forest (epigean) habitat in A. flava. (Author correspondence: )  相似文献   

20.
The Australian platypus, Ornithorhynchus anatinus, is one of three extant genera of the order monotremata. Given the divergent evolutionary lineage of monotremes in relation to more commonly studied animals, it was of interest to determine first, whether platypuses possess endogenous biological pacemakers and, second, general parameters of aquatic activity rhythms under artificial and natural light–dark (LD) cycles. Using a novel recording device, aquatic activity rhythms were measured in three platypuses: a paired male and female studied together, and a single female studied in isolation from other platypuses. Under a constant photic environment, some evidence was found for persistent and free-running rhythmicity, indicating the presence of an endogenous circadian pacemaker in the platypus. Under artificial LD cycles the paired animals exhibited a nocturnal pattern of entrainment, although in the single female considerable variability in entrained phase-relations was found under natural LD cycles. Evidence for a circadian pacemaker in the hypothalamic region of platypuses is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号