首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The circadian timing system (CTS) governs the 24-h rhythm of the organism and, hence, also main pathways responsible for drug pharmacokinetics. P-glycoprotein (P-gp) is a drug transporter that plays a pivotal role in drug absorption, distribution, and elimination, and temporal changes in its activity may affect input, output, activity, and toxicity profile of drugs. In the current study, the influence of different circadian stages on the overall intestinal permeability (P(eff)) of the P-gp substrates talinolol and losartan was evaluated in in situ intestinal perfusion studies in rats. Additionally, in vivo studies in rats were performed by employing the P-gp probe talinolol during the day (nonactive) and night (active) period in rats. Effective intestinal permeabilities of talinolol and losartan were smaller in studies performed during the night (p < .05), indicating that P-gp-dependent intestinal secretion is greater during the nighttime activity span than daytime rest span of the animals. P-gp modulators vinblastine and PSC833 led to a significant decrease of talinolol and losartan exsorption in the intestinal segments as compared with control groups. Strikingly, the permeability-enhancing effect of vinblastine and PSC833 was higher with night perfusions, for both talinolol and losartan. In vivo studies performed with talinolol revealed-consistent with the in situ studies (P(eff) day > night)-a day vs. night difference in the oral availability of talinolol in the group of male rats in terms of the area under the curve (AUC) data (AUC(day) > AUC(night)). The P-gp modulator vinblastine significantly increased talinolol AUC(day) (p < .05), whereas only a weak vinblastine effect was seen in night. According to the in situ data, the functional activity of P-gp was regulated by the CTS in jejunum and ileum, which are major intestinal segments for energy-dependent efflux. In conclusion, circadian rhythms may affect carrier-mediated active efflux and play a role in the absorption process. In addition to daily rhythms in P-gp activity in rat intestine, the in vivo studies indicate that absorption-, distribution-, metabolism-, and elimination-relevant rhythms may be involved in the circadian kinetics of the drug, besides transporter-dependent efflux, such well-known aspects as metabolic or renal clearance or motility. Since this also holds true for a potentially interacting second compound (modulator), modulator effects should be evaluated carefully in transporter related drug-drug interactions.  相似文献   

2.
A mutant mouse expressing a gain-of-function of the AT1A angiotensin II receptor was engineered to study the consequences of a constitutive activation of this receptor on blood pressure (BP). Cardiovascular rhythms and spontaneous cardiac baroreflex sensitivity (BRS) were evaluated using telemetric BP recordings of five transgenic (AT1AMUT) and five wild (AT1AWT) mice. The circadian rhythms were described with the Chronos-Fit program. The gain of the transfer function between systolic BP (SBP) and pulse intervals used to estimate the spontaneous BRS (ms/mmHg) was calculated in the low frequency (0.15–0.60?Hz) band. Transgenic AT1AMUT exhibited higher BP and heart rate (HR) levels compared to controls (SBP AT1AMUT 134.6?±?5.9?mmHg vs. AT1AWT 110.5?±?5.9; p?<?0.05; HR AT1AMUT 531.0?±?14.9 vs. AT1AWT 454.8?±?5.4 beats/min; p?=?0.001). Spontaneous BRS was diminished in transgenic mice (AT1AMUT 1.23?±?0.17?ms/mmHg vs. AT1AWT 1.91?±?0.18?ms/mmHg; p?<?0.05). Motor activity did not differ between groups. These variables exhibited circadian changes, and the differences between the strains were maintained throughout the cycle. The highest values for BP, HR, and locomotor activity were observed at night. Spontaneous BRS varied in the opposite direction, with the lowest gain estimated when BP and HR were elevated (i.e., at night, when the animals were active). It is likely the BP elevation of the mutant mice results from the amplification of the effects of AngII at different sites. Future studies are necessary to explore whether AT1A receptor activation at the central nervous system level effectively contributed to the observed differences. (Author correspondence: )  相似文献   

3.
Most night workers are unable to adjust their circadian rhythms to the atypical hours of sleep and wake. Between 10% and 30% of shiftworkers report symptoms of excessive sleepiness and/or insomnia consistent with a diagnosis of shift work disorder (SWD). Difficulties in attaining appropriate shifts in circadian phase, in response to night work, may explain why some individuals develop SWD. In the present study, it was hypothesized that disturbances of sleep and wakefulness in shiftworkers are related to the degree of mismatch between their endogenous circadian rhythms and the night-work schedule of sleep during the day and wake activities at night. Five asymptomatic night workers (ANWs) (3 females; [mean?±?SD] age: 39.2?±?12.5 yrs; mean yrs on shift?=?9.3) and five night workers meeting diagnostic criteria (International Classification of Sleep Disorders [ICSD]-2) for SWD (3 females; age: 35.6?±?8.6 yrs; mean years on shift?=?8.4) participated. All participants were admitted to the sleep center at 16:00?h, where they stayed in a dim light (<10 lux) private room for the study period of 25 consecutive hours. Saliva samples for melatonin assessment were collected at 30-min intervals. Circadian phase was determined from circadian rhythms of salivary melatonin onset (dim light melatonin onset, DLMO) calculated for each individual melatonin profile. Objective sleepiness was assessed using the multiple sleep latency test (MSLT; 13 trials, 2-h intervals starting at 17:00?h). A Mann-Whitney U test was used for evaluation of differences between groups. The DLMO in ANW group was 04:42?±?3.25?h, whereas in the SWD group it was 20:42?±?2.21?h (z = 2.4; p?<?.05). Sleep did not differ between groups, except the SWD group showed an earlier bedtime on off days from work relative to that in ANW group. The MSLT corresponding to night work time (01:00–09:00?h) was significantly shorter (3.6?±?.90?min: [M?±?SEM]) in the SWD group compared with that in ANW group (6.8?±?.93?min). DLMO was significantly correlated with insomnia severity (r = ?.68; p < .03), indicating that the workers with more severe insomnia symptoms had an earlier timing of DLMO. Finally, SWD subjects were exposed to more morning light (between 05:00 and 11:00?h) as than ANW ones (798 vs. 180 lux [M?±?SD], respectively z?=??1.7; p?<?.05). These data provide evidence of an internal physiological delay of the circadian pacemaker in asymptomatic night-shift workers. In contrast, individuals with SWD maintain a circadian phase position similar to day workers, leading to a mismatch/conflict between their endogenous rhythms and their sleep-wake schedule. (Author correspondence: )  相似文献   

4.
Subterranean common mole voles, Ellobius talpinus, were implanted with long-term recording electronic thermometers to obtain hourly body temperature (Tb) data during either the wintertime or summertime. The two individuals tested during the summertime had significant circadian and ultradian rhythms in their Tb. Four of the five mole voles tested during the wintertime lacked rhythmicity in their Tb. The fifth individual lacked circadian rhythms but had ultradian rhythms in its Tb. A loss of circadian rhythms in Tb during deep torpor or hibernation has been reported for a few species of mammals. Inasmuch as the mole voles' wintertime Tb remained at euthermic levels, our results show that a loss of circadian body temperature rhythms in mole voles does not require the low Tb of deep torpor or hibernation. A tentative conclusion, based on these few animals, is that in common mole voles the Tb rhythms may disappear during the wintertime even though their Tb remains high. (Author correspondence: )  相似文献   

5.
Due to its disruptive effects on circadian rhythms and sleep deprivation at night, shiftworking is currently recognized as a risk factor for breast cancer (BC). As revealed by the present analysis based on a comparative case-control study of 1679 women, exposure to light-at-night (LAN) in the “sleeping habitat” is significantly associated with BC risk (odds ratio [OR]?=?1.220, 95% confidence interval [CI]?=?1.118–1.311; p?<?.001), controlling for education, ethnicity, fertility, and alcohol consumption. The novelty of the present research is that, to the best of the authors' knowledge, it is the first study to have identified an unequivocal positive association between bedroom-light intensity and BC risk. Thus, according to the results of the present study, not only should artificial light exposure in the working environment be considered as a potential risk factor for BC, but also LAN in the “sleeping habitat.” (Author correspondence: )  相似文献   

6.
Circadian clocks use a wide range of environmental cues, including cycles of light, temperature, food, and social interactions, to fine-tune rhythms in behavior and physiology. Although social cues have been shown to influence circadian clocks of a variety of organisms including the fruit fly Drosophila melanogaster, their mechanism of action is still unclear. Here, the authors report the results of their study aimed at investigating if daily cycles of presence and absence (PA) of conspecific male visitors are able to entrain the circadian locomotor activity rhythm of male hosts living under constant darkness (DD). The results suggest that PA cycles may not be able to entrain circadian locomotor activity rhythms of Drosophila. The outcome does not change when male hosts are presented with female visitors, suggesting that PA cycles of either sex may not be effective in bringing about stable entrainment of circadian clocks in D. melanogaster. However, in hosts whose clock phase has already been set by light/dark (LD) cycles, daily PA cycles of visitors can cause measurable change in the phase of subsequent free-running rhythms, provided that their circadian clocks are labile. Thus, the findings of this study suggest that D. melanogaster males may not be using cyclic social cues as their primary zeitgeber (time cue) for entrainment of circadian clocks, although social cues are capable of altering the phase of their circadian rhythms. (Author correspondence: , )  相似文献   

7.
Endogenous circadian clocks are synchronized to the 24-h day by external zeitgebers such as daily light and temperature cycles. Bumblebee foragers show diurnal rhythms under daily light:dark cycles and short-period free-running circadian rhythms in constant light conditions in the laboratory. In contrast, during the continuous light conditions of the arctic summer, they show robust 24-h rhythms in their foraging patterns, meaning that some external zeitgeber must entrain their circadian clocks in the presence of constant light. Although the sun stays above the horizon for weeks during the arctic summer, the light quality, especially in the ultraviolet (UV) range, exhibits pronounced daily changes. Since the photoreceptors and photopigments that synchronize the circadian system of bees are not known, we tested if the circadian clocks of bumblebees (Bombus terrestris) can be entrained by daily cycles in UV light levels. Bumblebee colonies were set up in the laboratory and exposed to 12?h:12?h UV?+?:UV? cycles in otherwise continuous lighting conditions by placing UV filters on their foraging arenas for 12?h each day. The activity patterns of individual bees were recorded using fully automatic radiofrequency identification (RFID). We found that colonies manipulated in such a way showed synchronized 24-h rhythms, whereas simultaneously tested control colonies with no variation in UV light levels showed free-running rhythms instead. The results of our study show that bumblebee circadian rhythms can indeed be synchronized by daily cycles in ambient light spectral composition. (Author correspondence: )  相似文献   

8.
Circadian rhythms are believed to be an evolutionary adaptation to daily environmental cycles resulting from Earth's rotation about its axis. A trait evolved through a process of natural selection is considered as adaptation; therefore, rigorous demonstration of adaptation requires evidence suggesting evolution of a trait by natural selection. Like any other adaptive trait, circadian rhythms are believed to be advantageous to living beings through some perceived function. Circadian rhythms are thought to confer advantage to their owners through scheduling of biological functions at appropriate time of daily environmental cycle (extrinsic advantage), coordination of internal physiology (intrinsic advantage), and through their role in responses to seasonal changes. So far, the adaptive value of circadian rhythms has been tested in several studies and evidence indeed suggests that they confer advantage to their owners. In this review, we have discussed the background for development of the framework currently used to test the hypothesis of adaptive significance of circadian rhythms. Critical examination of evidence reveals that there are several lacunae in our understanding of circadian rhythms as adaptation. Although it is well known that demonstrating a given trait as adaptation (or setting the necessary criteria) is not a trivial task, here we recommend some of the basic criteria and suggest the nature of evidence required to comprehensively understand circadian rhythms as adaptation. Thus, we hope to create some awareness that may benefit future studies in this direction. (Author correspondence: or )  相似文献   

9.
There is mounting evidence for the involvement of the sleep-wake cycle and the circadian system in the pathogenesis of major depression. However, only a few studies so far focused on sleep and circadian rhythms under controlled experimental conditions. Thus, it remains unclear whether homeostatic sleep pressure or circadian rhythms, or both, are altered in depression. Here, the authors aimed at quantifying homeostatic and circadian sleep-wake regulatory mechanisms in young women suffering from major depressive disorder and healthy controls during a multiple nap paradigm under constant routine conditions. After an 8-h baseline night, 9 depressed women, 8 healthy young women, and 8 healthy older women underwent a 40-h multiple nap protocol (10 short sleep-wake cycles) followed by an 8-h recovery night. Polysomnographic recordings were done continuously, and subjective sleepiness was assessed. In order to measure circadian output, salivary melatonin samples were collected during scheduled wakefulness, and the circadian modulation of sleep spindles was analyzed with reference to the timing of melatonin secretion. Sleep parameters as well as non-rapid eye movement (NREM) sleep electroencephalographic (EEG) spectra were determined for collapsed left, central, and right frontal, central, parietal, and occipital derivations for the night and nap-sleep episodes in the frequency range .75–25?Hz. Young depressed women showed higher frontal EEG delta activity, as a marker of homeostatic sleep pressure, compared to healthy young and older women across both night sleep episodes together with significantly higher subjective sleepiness. Higher delta sleep EEG activity in the naps during the biological day were observed in young depressed women along with reduced nighttime melatonin secretion as compared to healthy young volunteers. The circadian modulation of sleep spindles between the biological night and day was virtually absent in healthy older women and partially impaired in young depressed women. These data provide strong evidence for higher homeostatic sleep pressure in young moderately depressed women, along with some indications for impairment of the strength of the endogenous circadian output signal involved in sleep-wake regulation. This finding may have important repercussions on the treatment of the illness as such that a selective suppression of EEG slow-wave activity could promote acute mood improvement. (Author correspondence: )  相似文献   

10.
《Chronobiology international》2013,30(10):1312-1328
Robustness is a fundamental property of biological timing systems that is likely to ensure their efficient functioning under a wide range of environmental conditions. Here we report the findings of our study aimed at examining robustness of circadian clocks in fruit fly Drosophila melanogaster populations selected to emerge as adults within a narrow window of time. Previously, we have reported that such flies display enhanced synchrony, accuracy, and precision in their adult emergence and activity/rest rhythms. Since it is expected that accurate and precise circadian clocks may confer enhanced stability in circadian time-keeping, we decided to examine robustness in circadian rhythms of flies from the selected populations by subjecting them to a variety of environmental conditions comprising of a range of photoperiods, light intensities, ambient temperatures, and constant darkness. The results revealed that adult emergence and activity/rest rhythms of flies from the selected stocks were more robust than controls, as they displayed enhanced stability under a wide variety of environmental conditions. These results suggest that selection for adult emergence within a narrow window of time results in the evolution of robustness in circadian timing systems of the fruit fly D. melanogaster. (Author correspondence: or )  相似文献   

11.
Loss of Dexras1 in gene-targeted mice impairs circadian entrainment to light cycles and produces complex changes to phase-dependent resetting responses (phase shifts) to light. The authors now describe greatly enhanced and phase-specific nonphotic responses induced by arousal in dexras1?/? mice. In constant conditions, mutant mice exhibited significant arousal-induced phase shifts throughout the subjective day. Unusual phase advances in the late subjective night were also produced when arousal has little effect in mice. Bilateral lesions of the intergeniculate leaflet (IGL) completely eliminated both the nonphotic as well as the light-induced phase shifts of circadian locomotor rhythms during the subjective day, but had no effect on nighttime phase shifts. The expression of FOS-like protein in the suprachiasmatic nucleus (SCN) was not affected by either photic or nonphotic stimulation in the subjective day in either genotype. Therefore, the loss of Dexras1 (1) enhances nonphotic phase shifts in a phase-dependent manner, and (2) demonstrates that the IGL in mice is a primary mediator of circadian phase-resetting responses to both photic and nonphotic events during the subjective day, but plays a different functional role in the subjective night. Furthermore, (3) the change in FOS level does not appear to be a critical step in the entrainment pathways for either light or arousal during the subjective day. The cumulative evidence suggests that Dexras1 regulates multiple photic and nonphotic signal-transduction pathways, thereby playing an essential role modulating species-specific characteristics of circadian entrainment. (Author correspondence: )  相似文献   

12.
Restricted feeding (RF) schedules are potent zeitgebers capable of entraining metabolic and hormonal rhythms in peripheral oscillators in anticipation of food. Behaviorally, this manifests in the form of food anticipatory activity (FAA) in the hours preceding food availability. Circadian rhythms of FAA are thought to be controlled by a food-entrainable oscillator (FEO) outside of the suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals. Although evidence suggests that the FEO and the SCN are capable of interacting functionally under RF conditions, the genetic basis of these interactions remains to be defined. In this study, using dexras1-deficient (dexras1?/?) mice, the authors examined whether Dexras1, a modulator of multiple inputs to the SCN, plays a role in regulating the effects of RF on activity rhythms and gene expression in the SCN. Daytime RF under 12L:12D or constant darkness (DD) resulted in potentiated (but less stable) FAA expression in dexras1?/? mice compared with wild-type (WT) controls. Under these conditions, the magnitude and phase of the SCN-driven activity component were greatly perturbed in the mutants. Restoration to ad libitum (AL) feeding revealed a stable phase displacement of the SCN-driven activity component of dexras1?/? mice by ~2?h in advance of the expected time. RF in the late night/early morning induced a long-lasting increase in the period of the SCN-driven activity component in the mutants but not the WT. At the molecular level, daytime RF advanced the rhythm of PER1, PER2, and pERK expression in the mutant SCN without having any effect in the WT. Collectively, these results indicate that the absence of Dexras1 sensitizes the SCN to perturbations resulting from restricted feeding. (Author correspondence: )  相似文献   

13.
《Chronobiology international》2013,30(9):1216-1226
Ultradian rhythms, such as sleep-wake periodicities, during the night might represent basic rest-activity cycles of organisms that are fundamental to the temporal organization and synchronization of behavior throughout the day. However, in contrast to circadian rhythms, little is known about the underlying oscillators and molecular mechanisms of higher-frequency rhythms. A fundamental step for the understanding of the mechanisms of these latter periodicities is the analysis of variation in sleep-wake cycles in free-living animals, which can help in estimating the relative importance of genetic and environmental influence on the rhythmicity. We analyzed variation in the level of rhythmicity and period length (τ) of behaviorally defined sleep-wake cycles in a natural population of blue tits Cyanistes caeruleus. Our results indicate that the expression of periodicity in sleep-wake patterns, but not τ, has a strong individual-specific basis. The within-individual repeatability estimate of the expression of periodicity was .45 (95% confidence interval: .35–.55) when data from males and females were combined. In addition, periodicity was influenced by specific environmental factors, such as night temperature, seasonal date, and age of the individual. Most strikingly, low nighttime temperature negatively affected periodicity of sleep-wake patterns, potentially via a hypothermic response of the birds. Our results further suggest that τ is influenced by photoperiod. Blue tits showed longer sleep-wake rhythms when the nights were longer. These observations suggest a genetic basis for the incidence of rhythmic sleep-wake behavior in addition to environmental modifications of their specific expression. (Author correspondence: )  相似文献   

14.
《Chronobiology international》2013,30(7):1443-1461
Long-term, night shiftwork has been identified as a potential carcinogenic risk factor. It is hypothesized that increased light at night exposure during shiftwork reduces melatonin production, which is associated with increased cancer risk. Sleep duration has been hypothesized to influence both melatonin levels and cancer risk, and it has been suggested that sleep duration could be used as a proxy for melatonin production. Finally, physical activity has been shown to reduce cancer risk, and laboratory studies indicate it may influence melatonin levels. A cross-sectional study of light exposure, sleep duration, physical activity, and melatonin levels was conducted among 61 female rotating shift nurses (work schedule: two 12?h days, two 12?h nights, five days off). Light intensity was measured using a light-intensity data logger, and sleep duration and physical activity were self-reported in a study diary and questionnaire. Melatonin concentrations were measured from urine and saliva samples. The characteristics of nurses working day and night shifts were similar. Light intensity was significantly higher during sleep for those working at night (p<?0.0001), while urinary melatonin levels following sleep were significantly higher among those working days (p?=?0.0003). Mean sleep duration for nurses working during the day (8.27?h) was significantly longer than for those working at night (4.78?h, p<?0.0001). An inverse association (p?=?0.002) between light exposure and urinary melatonin levels was observed; however, this was not significant when stratified by shift group. There was no significant correlation between sleep duration and melatonin, and no consistent relationship between physical activity and melatonin. Analysis of salivary melatonin levels indicated that the circadian rhythms of night workers were not altered, meaning peak melatonin production occurred at night. This study indicates that two nights of rotating shift work may not change the timing of melatonin production to the day among those working at night. Additionally, in this study, sleep duration was not correlated with urinary melatonin levels, suggesting it may not be a good proxy for melatonin production. (Author correspondence: )  相似文献   

15.
《Chronobiology international》2013,30(10):1352-1357
Infants' sleep-wake rhythms are influenced by multiple factors, including developmental and contextual aspects, as well as circadian cycles. Empirical studies that address the seasonal impact on infants' sleep are scarce. The present study examined aspects of sleep schedule and quality, comparing summer and winter months in a Mediterranean climate. This report is based on a convenience sample of 34 healthy 7-mo-olds, an age in which sleep is well consolidated and regulated compared with the first few months of life. Sleep was measured with actigraphy, in the home context. It was found that compared with winter, in the summer months, sleep onset occurred at a later hour, and more motor activity during sleep was detected. Although the overall sleep quality, as defined by sleep efficiency score, was similar in the two seasons, in the summer, more active sleep was observed. The authors discuss the finding in terms of circadian rhythms, developmental characteristics, as well as possible environmental factors and family routines, and call for more studies, in different climates and geographical zones, and in different developmental periods. (Author correspondence: or )  相似文献   

16.
《Chronobiology international》2013,30(7):1369-1388
Australian sleepy lizards (Tiliqua rugosa) exhibit marked locomotor activity rhythms in the field and laboratory. Light-dark (LD) and temperature cycles (TCs) are considered important for the entrainment of circadian locomotor activity rhythms and for mediating seasonal adjustments in aspects of these rhythms, such as phase, amplitude, and activity pattern. The relative importance of 24 h LD and TCs in entraining the circadian locomotor activity rhythm in T. rugosa was examined in three experiments. In the first experiment, lizards were held under LD 12:12 and subjected to either a TC of 33:15?°?C in phase with the LD cycle or a reversed TC positioned in antiphase to the LD cycle. Following LD 12:12, lizards were maintained under the same TCs but were subjected to DD. Activity was restricted to the thermophase in LD, irrespective of the lighting regime and during the period of DD that followed, suggesting entrainment by the TC. The amplitude of the TC was lowered by 8?°?C to reduce the intensity and possible masking effect of the TC zeitgeber in subsequent experiments. In the second experiment, lizards were held under LD 12.5:11.5 and subjected to one of three treatments: constant 30?°?C, normal TC (30:20?°?C) in phase with the LD cycle, or reversed TC. Following LD, all lizards were subjected to DD and constant 30?°?C. Post-entrainment free-run records revealed that LD cycles and TCs could both entrain the locomotor rhythms of T. rugosa. In LD, mean activity duration (α) of lizards in the normal TC group was considerably less than that in the constant 30?°?C group. Mean α also increased between LD and DD in lizards in the normal TC group. Although there was large variation in the phasing of the rhythm in relation to the LD cycle in reversed TC lizards, TCs presented in phase with the LD cycle most accurately synchronized the rhythm to the photocycle. In the third experiment, lizards were held in DD at constant 30?°?C before being subjected to a further period of DD and one of four treatments: normal TC (06:00 to 18:00 h thermophase), delayed TC (12:00 to 00:00 h thermophase), advanced TC (00:00 to 12:00 h thermophase), or control (no TC, constant 30?°?C). While control lizards continued to free-run in DD at constant temperature, the locomotor activity rhythms of lizards subjected to TCs rapidly entrained to TCs, whether or not the TC was phase advanced or delayed by 6 h. There was no difference in the phase relationships of lizard activity rhythms to the onset of the thermophase among the normal, delayed, and advanced TC groups, suggesting equally strong entrainment to the TC in each group. The results of this experiment excluded the possibility that masking effects were responsible for the locomotor activity responses of lizards to TCs. The three experiments demonstrated that TCs are important for entraining circadian locomotor activity rhythms of T. rugosa, even when photic cues are conflicting or absent, and that an interaction between LD cycles and TCs most accurately synchronizes this rhythm. (Author correspondence: )  相似文献   

17.
18.
We previously reported that early night peripheral bacterial lipopolysaccharide (LPS) injection produces phase delays in the circadian rhythm of locomotor activity in mice. We now assess the effects of proinflammatory cytokines on circadian physiology, including their role in LPS-induced phase shifts. First, we investigated whether differential systemic induction of classic proinflammatory cytokines could explain the time-specific behavioral effects of peripheral LPS. Induction levels for plasma interleukin (IL)-1α, IL-1β, IL-6, or tumor necrosis factor (TNF)-α did not differ between animals receiving a LPS challenge in the early day or early night. We next tested the in vivo effects of central proinflammatory cytokines on circadian physiology. We found that intracerebroventricular (i.c.v.) delivery of TNF-α or interleukin IL-1β induced phase delays on wheel-running activity rhythms. Furthermore, we analyzed if these cytokines mediate the LPS-induced phase shifts and found that i.c.v. administration of soluble TNF-α receptor (but not an IL-1β antagonistic) prior to LPS stimulation inhibited the phase delays. Our work suggests that the suprachiasmatic nucleus (SCN) responds to central proinflammatory cytokines in vivo, producing phase shifts in locomotor activity rhythms. Moreover, we show that the LPS-induced phase delays are mediated through the action of TNF-α at the central level, and that systemic induction of proinflammatory cytokines might be necessary, but not sufficient, for this behavioral outcome. (Author correspondence: )  相似文献   

19.
《Chronobiology international》2013,30(7):1401-1419
Many mammals display predictable daily rhythmicity in both neuroendocrine function and behavior. The basic rest-activity cycles are usually consistent for a given species and vary from night-active (nocturnal), those mostly active at dawn and dusk (i.e., crepuscular), and to day-active (diurnal) species. A number of daily rhythms are oppositely phased with respect to the light/dark (LD) cycle in diurnal compared with nocturnal mammals, whereas others are equally phased with respect to the LD cycle, regardless of diurnality/nocturnality. Pineal produced melatonin (MLT) perfectly matches this phase-locked feature in that its production and secretion always occurs during the night in both diurnal and nocturnal mammals. As most rodents studied to date in the field of chronobiology are nocturnal, the aim in this study was to evaluate the effect of light manipulations and different photoperiods on a diurnal rodent, the fat sand rat, Psammomys obesus. The authors studied its daily rhythms of body temperature (Tb) and 6-sulphatoxymelatonin (6-SMT) under various photoperiodic regimes and light manipulations (acute and chronic exposures) while maintaining a constant ambient temperature of 30°C?±?1°C. The following protocols were used: (A) Control (CON) conditions 12L:12D; (A1) exposure to one light interference (LI) of CON-acclimated individuals for 30?min, 5?h after lights-off; (A2) short photoperiod (SP) acclimation (8L:16D) for 3 wks; (A3) 3 wks of SP acclimation with chronic LI of 15?min, three times a night at 4-h intervals; (A4) chronic exposure to constant dim blue light (470nm, 30 lux) for 24?h for 3 wks (LL). (B) The response to exogenous MLT administration, provided in drinking water, was measured under the following protocols: (B1) After chronic exposure to SP with LI, MLT was provided once, starting 1?h before the end of photophase; (B2) after a continuous exposure to dim blue light, MLT was provided at 15:00?h for 2?h for 2 wks; (B3) to CON animals, MLT was given intraperitoneally (i.p.) at 14:00?h. The results demonstrate that under CON acclimation, Psammomys obesus has robust Tb and 6-SMT daily rhythms in which the acrophase (peak time) of Tb is during the photophase, whereas that of 6-SMT is during scotophase. LI resulted in an elevation of Tb and a reduction of 6-SMT levels. A significant difference in the response was noted between acute and chronic exposure to LI, particularly in 6-SMT levels, which were lower than CON after LI and higher after chronic LI, implying an acclimation process. Constant exposure to blue light abolished Tb and 6-SMT rhythms in all the animals. MLT administration resumed the Tb daily rhythm in these animals, and had a recovery effect on the chronic LI-exposed animals, resulting in a Tb decrease. Altogether, the authors show in this study the different modifications of Tb rhythms and MLT levels in response to environmental light manipulations. These series of experiments may serve as a basis for establishing P. obesus as an animal model for further studies in chronobiology. (Author correspondence: )  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号