首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Brain plasticity, in relation to new adult mammalian neurons generated in the subgranular zone of the hippocampus, has been well described. However, the functional outcome of new adult olfactory neurons born in the subventricular zone of the lateral ventricles is not clearly defined, as manipulating neurogenesis through various methods has given inconsistent and conflicting results in lab mice. Several small rodent species, including Peromyscus leucopus, display seasonal (photoperiodic) brain plasticity in brain volume, hippocampal function, and hippocampus-dependent behaviors; plasticity in the olfactory system of photoperiodic rodents remains largely uninvestigated. We exposed adult male P. leucopus to long day lengths (LD) and short day lengths (SD) for 10 to 15 weeks and then examined olfactory bulb cell proliferation and survival using the thymidine analog BrdU, olfactory bulb granule cell morphology using Golgi-Cox staining, and behavioral investigation of same-sex conspecific urine. SD mice did not differ from LD counterparts in granular cell morphology of the dendrites or in dendritic spine density. Although there were no differences due to photoperiod in habituation to water odor, SD mice rapidly habituated to male urine, whereas LD mice did not. In addition, short day induced changes in olfactory behavior were associated with increased neurogenesis in the caudal plexiform and granule cell layers of the olfactory bulb, an area known to preferentially respond to water-soluble odorants. Taken together, these data demonstrate that photoperiod, without altering olfactory bulb neuronal morphology, alters olfactory bulb neurogenesis and olfactory behavior in Peromyscus leucopus.  相似文献   

3.
4.
Summary Photoperiod plays an important role in controlling the annual reproductive cycle of the male lizard Anolis carolinensis. The nature of photoperiodic time measurement in Anolis was investigated by exposing anoles to 3 different kinds of lighting paradigms (resonance, T cycles, and night breaks) to determine if photoperiodic time measurement involves the circadian system. Both the reproductive response and the patterns of entrainment of the activity rhythm were assessed. The results show that the circadian system is involved in photoperiodic time measurement in this species and that a discrete photoinducible phase resides in the latter half of the animals' subjective night. Significantly, the ability of the circadian system to execute photoperiodic time measurement is crucially dependent on the length of the photoperiod. Resonance, T cycle and night break cycles utilizing a photoperiod 10–11 h in duration reveal circadian involvement whereas these same cycles utilizing 6 or 8 h photoperiods do not.Abbreviation CRPP circadian rhythm of photoperiodic sensitivity  相似文献   

5.
A substantial number of human epidemiological data, as well as experimental studies, suggest that adverse maternal stress during gestation is involved in abnormal behavior, mental, and cognition disorder in offspring. To explore the effect of prenatal stress (PS) on hippocampal neurons, in this study, we observed the dendritic field of pyramidal neurons in hippocampal CA3, examined the concentration of glutamate (Glu), and detected the expression of synaptotagmin‐1 (Syt‐1) and N‐methyl‐D ‐aspartate receptor 1 (NR1) in hippocampus of juvenile female offspring rats. Pregnant rats were divided into two groups: control group (CON) and PS group. Female offspring rats used were 30‐day old. The total length of the apical dendrites of pyramidal neurons in hippocampal CA3 of offspring was significantly shorter in PS than that in CON (p < 0.01). The number of branch points of the apical dendrites of pyramidal neurons in hippocampal CA3 of offspring was significantly less in PS (p < 0.01). PS offspring had a higher concentration of hippocampal Glu compared with CON (p < 0.05). PS offspring displayed increased expression of Syt‐1 and decreased NR1 in hippocampus compared with CON (p < 0.001 and p < 0.01, respectively). The expression of NR1 in different hippocampus subfields of offspring was significantly decreased in PS than that in CON (p < 0.05‐0.01). This study shows that PS increases the Glu in hippocampus and causes apical dendritic atrophy of pyramidal neurons of hippocampal CA3 in offspring rats. The decline of NR1 in hippocampus may be an adaptive response to the increased Glu. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2010  相似文献   

6.
The avian brain undergoes naturally occurring cell death and neuronal replacement in adulthood. Little is known about how neuron survival in adult birds is regulated. However, previous work suggests that this process is open to environmental control. We now report that a reduction in day length from springlike to fall-like conditions can dramatically increase cell death in adult male canaries. Many of the dying cells are projection neurons in the motor pathway controlling song learning and production. Circulating levels of gonadal steroids were not correlated with photoperiod-induced changes in the magnitude of cell death. Our results suggest that neuronal death in adult male canaries is regulated by seasonal changes in photoperiod, and that this occurs independent of chronic changes in gonadal steroid hormone levels. Day length may serve as a predictive environmental cue to time cell death in accordance with seasonal reproduction. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 223–231, 1997
  • 1 This is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    7.
    Summary The effect of photoperiod on Crassulacean acid metabolism (CAM) in Kalanchoe blossfeldiana Poellniz, cv. Tom Thumb, has characteristics similar to its effect on flowering in this plant (although these two phenomena are not causally related). The photoperiodic control of CAM is based on (a) dependance on phytochrome, (b) an endogenous circadian rhythm of sensitivity to photoperiodic signals, (c) a balance between specific positive (increase in enzyme capacity) and negative (inhibitory substances) effects of the photoperiod. Variations in malate content, capacity of phosphoenolpyruvate (PEP) carboxylase, and capacity of CAM inhibitors in young leaves were measured under photoperiodic conditions noninductive for CAM and after transfer into photoperiodic conditions inductive for CAM. Essential characteristics of the photoperiodic induction of CAM are: 1) lag time for malate accumulation; 2) after-effect of the inductive photoperiod on the malate accumulation, on the increase in PEP carboxylase capacity, and on the decrease in the level of long-day produced inhibitors; final levels of malate, enzyme capacity and inhibitor are proportional to the number of inductive day-night cycles; 3) cireadian rhythm in PEP carboxylase capacity with a fixed phase under noninductive photoperiods and a continuously shifting phase under inductive photoperiods, after complex advancing and delaying transients. Kinetic similarities indicate that photoperiodic control of different physiological functions, namely, CAM and flowering, may be achieved through similar mechanisms. Preliminary results with species of Bryophyllum and Sedum support this hypothesis. Phase relationships suggest different degrees of coupling between endogenous enzymic rhythm and photoperiod, depending on whether the plants are under long days or short days.  相似文献   

    8.
    Otsuka T  Goto M  Kawai M  Togo Y  Sato K  Katoh K  Furuse M  Yasuo S 《PloS one》2012,7(6):e39090
    Most species living in temperate zones adapt their physiology and behavior to seasonal changes in the environment by using the photoperiod as a primary cue. The mechanisms underlying photoperiodic regulation of stress-related functions are not well understood. In this study, we analyzed the effects of photoperiod on the hypothalamic-pituitary-adrenal axis in photoperiod-sensitive Fischer 344 rats. We first examined how photoperiod affects diurnal variations in plasma concentrations of adrenocorticotropic hormone (ACTH) and corticosterone. ACTH levels did not exhibit diurnal variations under long- and short-day conditions. On the other hand, corticosterone levels exhibited a clear rhythm under short-day condition with a peak during dark phase. This peak was not observed under long-day condition in which a significant rhythm was not detected. To analyze the mechanisms responsible for the photoperiodic regulation of corticosterone rhythms, ACTH was intraperitoneally injected at the onset of the light or dark phase in dexamethasone-treated rats maintained under long- and short-day conditions. ACTH induced higher corticosterone levels in rats examined at dark onset under short-day condition than those maintained under long-day condition. Next, we asked whether melatonin signals are involved in photoperiodic regulation of corticosterone rhythms, and rats were intraperitoneally injected with melatonin at late afternoon under long-day condition for 3 weeks. However, melatonin injections did not affect the corticosterone rhythms. In addition, photoperiodic changes in the amplitude of corticosterone rhythms were also observed in melatonin-deficient C57BL/6J mice, in which expression profiles of several clock genes and steroidgenesis genes in adrenal gland were modified by the photoperiod. Our data suggest that photoperiod regulates corticosterone rhythms by altered adrenal sensitivity through melatonin-independent mechanisms that may involve the adrenal clock.  相似文献   

    9.
    10.
    Seasonal breeding is a universal reproductive strategy in many animals. Hypothalamic genes, especially type 2 and 3 iodothyronine deiodinases (Dio2/3), RFamide‐related peptide 3 (Rfrp‐3), kisspeptin (Kiss‐1) and gonadotropin‐releasing hormone (GnRH), are involved in a photoperiodic pathway that encodes seasonal signals from day length in many vertebrate species. However, the seasonal expression patterns of these genes in wild mammals are less studied. Here, we present a four‐year field investigation to reveal seasonal rhythm and age‐dependent reproductive activity in male Brandt's voles (Lasiopodomys brandtii) and to detect relationships among seasonal expression profiles of hypothalamic genes, testicular activity, age and annual day length. From breeding season (April) to nonbreeding season (October), adult male voles displayed a synchronous peak in gonadal activity with annual day length around summer solstice, which was jointly caused by age structure shifts and age‐dependent gonadal development patterns. Overwintered males maintained reproductive activity until late in the breeding season, whereas most newborn males terminated gonadal development completely, except for a minority of males born early in spring. Consistently, the synchronous and opposite expression profiles of Dio2/3 suggest their central function to decode photoperiodic signals and to predict the onset of the nonbreeding season. Moreover, changes in Dio2/3 signals may guide the actions of Kiss‐1 and Rfrp‐3 to regulate the age‐dependent divergence of reproductive strategy in wild Brandt's vole. Our results provide evidence on how hypothalamic photoperiod genes regulate seasonal breeding in a natural rodent population.  相似文献   

    11.
    Seasonal changes in vertebrate brain function are pervasive, but annual cycles in the rates of neuronal incorporation are established only in songbirds. Although cell division continues in the subependymal and hippocampal subgranular zones of adult rodents, there exists no parallel evidence that seasonal plasticity in mammals extends to changes in neuronal or glial number. We examined the effect of photoperiod on incorporation of new neurons in the brain of the adult golden hamster, a long-day breeder. We administered the cell birth marker 5′-bromode-oxyuridine (BrdU) to males which had either been maintained in long days, transferred to short days for 10 weeks, or moved acutely from long to short or short to long days. The number of cells in specific brain regions immunoreactive (ir) for this thymidine analog was determined 7 weeks later. The number of BrdU-ir cells in the dentate gyrus and subependymal zone increased twofold in short days. Transfer between photoperiods 10 days before the BrdU injections produced intermediate numbers of BrdU-labeled cells in the dentate gyrus, but was as effective as long-term photoperiodic exposure in the subependymal zone. Photoperiod also had similar effects in the hypothalamus and cingulate/retrosplenial cortex, but not in the central gray or preoptic area. Double-label immunocytochemistry indicated that very few of the BrdU-ir cells were glia, but that a majority had neuronal phenotype. In the subependymal zone, short days significantly increased the number of BrdU-labeled neurons. We did not detect significant effects of photoperiod on the volume of either the granule cell layer of the hippocampus or the dentate gyrus as a whole. We conclude that short day lengths increase neuronal birth and/or survival in several brain regions of adult hamsters. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 410–420, 1998  相似文献   

    12.
    The role of neuronal dendrites is to receive and process synaptic inputs. The geometry of the dendritic arbor can undergo neuronal activity-dependent changes that may impact the cognitive abilities of the organism. Here we show that vascular endothelial growth factor D (VEGFD), commonly known as an angiogenic mitogen, controls the total length and complexity of dendrites both in cultured hippocampal neurons and in the adult mouse hippocampus. VEGFD expression is dependent upon basal neuronal activity and requires nuclear calcium-calmodulin-dependent protein kinase IV (CaMKIV) signaling. Suppression of VEGFD expression in the mouse hippocampus by RNA interference causes memory impairments. Thus, nuclear calcium-VEGFD signaling mediates the effect of neuronal activity on the maintenance of dendritic arbors in the adult hippocampus and is required for cognitive functioning. These results suggest that caution be employed in the clinical use of blockers of VEGFD signaling for antiangiogenic cancer therapy.  相似文献   

    13.
    Photoperiod may regulate seasonal reproduction either by providing the primary driving force for the reproductive transitions or by synchronizing an endogenous reproductive rhythm. This study evaluated whether breed differences in timing of the reproductive seasons of Finnish Landrace (Finn) and Galway ewes are due to differences in photoperiodic drive of the reproductive transitions or to differences in photoperiodic synchronization of the endogenous rhythm of reproductive activity. The importance of decreasing photoperiod after the summer solstice in determining the onset and duration of the breeding season was tested by housing ewes from the summer solstice in either a simulated natural photoperiod or a fixed summer-solstice photoperiod (18 h light:6 h dark; summer-solstice hold). Onset of the breeding season within each breed did not differ between these photoperiodic treatments, but Galway ewes began and ended their breeding season earlier than Finn ewes. The duration of the breeding season was shorter in Galway ewes on summer-solstice hold than on simulated natural photoperiod; duration did not differ between photoperiodic treatments in Finn ewes. The requirement for increasing photoperiod after the winter solstice for initiation of anoestrus was tested by exposing ewes from the winter solstice to either a simulated natural photoperiod or a winter-solstice hold photoperiod (8.5 h light:15.5 h dark). Onset of anoestrus within each breed did not differ between these photoperiodic treatments, but the time of this transition differed between breeds. These observations suggest that genetic differences in timing of the breeding season in Galway and Finn ewes do not reflect differences in the extent to which photoperiod drives the reproductive transitions, because neither breed requires shortening days to enter the breeding season or lengthening days to end it at appropriate times. These findings are consistent with the hypothesis that photoperiod synchronizes an endogenous rhythm of reproductive activity in both breeds and that genetic differences in timing of the breeding season reflect differences in photoperiodic synchronization of this rhythm.  相似文献   

    14.
    15.
    The aim of this study was to evaluate the daily rhythm of locomotor activity in Rhamdia quelen (R. quelen). A total of 30 fish were enrolled in the study and were equally divided in 10 groups and maintained in 100 liters tanks. The locomotor activity was measured in fish maintained under the LD 12:12 photoperiod regime; thereafter, the LD cycle was reversed to DL in order to study the resynchronization and to explore the endogenous pacemaker. Subsequently, the fish were subjected to constant conditions of light to test whether or not locomotor rhythms are regulated by the endogenous circadian clock. The effect of increasing light length and intensity was studied on daily rhythm of locomotor activity of fish. Our results showed that the R. quelen is a strictly diurnal species, the rhythm of locomotory activity resynchronized quickly after inverting the LD cycle and persist under free course LL, suggesting a circadian origin. The light showed a significant masking effect often blocking the expression of the biological rhythm. The strictly diurnal behavior is controlled directly by the photoperiod and maintained even under very dim light (30 lux).  相似文献   

    16.
    Rhythmicity of the rat suprachiasmatic nucleus (SCN), a site of the circadian pacemaker, is affected by daylength; that is, by the photoperiod. Whereas various markers of rhythmicity have been followed, so far there have been no studies on the effect of the photoperiod on the expression of the clock genes in the rat SCN. To fill the gap and to better understand the photoperiodic modulation of the SCN state, rats were maintained either under a long photoperiod with 16 h of light and 8 h of darkness per day (LD16:8) or under a short LD8:16 photoperiod, and daily profiles of Per1, Cry1, Bmal1 and Clock mRNA in darkness were assessed by in situ hybridization method. The photoperiod affected phase, waveform, and amplitude of the rhythmic gene expression as well as phase relationship between their profiles. Under the long period, the interval of elevated Per1 mRNA lasted for a longer and that of elevated Bmal1 mRNA for a shorter time than under the short photoperiod. Under both photoperiods, the morning and the daytime Per1 and Cry1 mRNA rise as well as the morning Bmal1 mRNA decline were closely linked to the morning light onset. Amplitude of Per1, Cry1, and Bmal1 mRNA rhythms was larger under the short than under the long photoperiod. Also, under the short photoperiod, the daily Clock mRNA profile exhibited a significant rhythm. Altogether, the data indicate that the whole complex molecular clockwork in the rat SCN is photoperiod dependent and hence may differ according to the season of the year.  相似文献   

    17.
    18.
    R. W. King  Bruce G. Cumming 《Planta》1972,103(4):281-301
    Summary In C. rubrum, the amount of flowering that is induced by a single dark period interrupting continuous light depends upon the duration of darkness. A rhythmic oscillation in sensitivity to the time that light terminates darkness regulates the level of flowering. The period length of this oscillation is close to 30 hours, peaks of the rhythm occurring at about 13, 43 and 73 h of darkness.Phasing of the rhythm by 6-, 12- and 18-h photoperiods was studied by exposing plants to a given photoperiod at different phases of the free-running oscillation in darkness. The shift in phase of the rhythm was then determined by varying the length of the dark period following the photoperiod; this dark period was terminated by continuous light.With a 6-h photoperiod the timing of both the light-on and light-off signals is shown to control rhythm phasing. However, when the photoperiod is increased to 12 or 18 h, only the light-off signal determines phasing of the rhythm. In prolonged periods of irradiation-12 to 62 h light—a durational response to light overrides any interaction between the timing of the light period and the position of the oscillation at which light is administered. Such prolonged periods of irradiation apparently suspend or otherwise interact with the rhythm so that, in a following dark period, it is reinitiated at a fixed phase relative to the time of the light-off signal to give a peak of the rhythm 13 h after the dusk signal.In daily photoperiodic cycles rhythm phasing by a 6-h photocycle was also estimated by progressively increasing the number of cycles given prior to a single dark period of varied duration.In confirmation of Bünning's (1936) hypothesis, calculated and observed phasing of the rhythm controlling flowering in c. rubrum accounts for the photoperiodic response of this species. Evidence is also discussed which indicates that the timing of disappearance of phytochrome Pfr may limit flowering over the early hours of darkness.  相似文献   

    19.
    The song control nuclei of songbirds undergo pronounced seasonal changes in size and neuronal attributes. The mechanisms by which seasonal changes in environmental variables such as photoperiod mediate seasonal changes in these brain regions are not known. Manipulations of photoperiod and/or testosterone in captive songbirds induce seasonal changes in the size of song nuclei comparable to those observed in wild songbirds. It is unclear, however, whether the effects of photoperiod on the song nuclei are mediated by testosterone or by steroid-independent mechanisms. We independently manipulated photoperiod and testosterone in castrated male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) to determine the contributions of steroid-dependent and -independent actions of photoperiod to seasonal changes in the size and neuronal attributes of song nuclei. Testosterone implants increased the size of several song nuclei, regardless of photoperiod. Photoperiod exerted small but significant steroid-independent effects on the volume of the higher vocal center and the size of neurons in the robust nucleus of the archistriatum. Photoperiod also modulated the effect of testosterone on the size of area X; testosterone treatment had a more pronounced effect on the size of area X on short days than on long days. These results suggest that although testosterone is the primary factor mediating seasonal changes in neural attributes of the song nuclei, photoperiod may act via mechanisms that are independent of steroid levels to supplement or modulate the actions of testosterone. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 426–442, 1997.  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号