首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This dedicated issue of Chronobiology International is devoted to the selected proceedings of the 20th International Symposium on Shift Work and Working Time held in Stockholm, Sweden, 28 June to 1 July 2011. It constitutes the fifth such issue of the journal since 2004 dedicated to the selected proceedings to the meetings of the Working Time Society. The key theme of the 20th Symposium was “Biological Mechanisms, Recovery, and Risk Management in the 24-h Society.” The collection of papers of this dedicated issue represents the best of contemporary research on the effects of night and rotating shift schedules on worker health and safety. The contents cover such topics as sleep restriction, injuries, health, and performance of night work and rotating shiftwork, plus light treatment as a countermeasure against the circadian disruption of shiftwork. The majority of the papers are observational field studies, including some of large sample size, and three studies are well-designed laboratory experiments. (Author correspondence: )  相似文献   

3.
Editor's Note     
This issue of Soviet Psychology — Vol. V, No. 1 — marks a new point in the development of English translations of Soviet psychology and psychiatry. Our original journal, published in Volumes I-IV as Soviet Psychology and Psychiatry, has given birth to two new journals: Soviet Psychology and Soviet Psychiatry. This will give International Arts and Sciences Press the opportunity to publish twice as much material from the fund of Soviet theory and research in the study of human behavior. The increased space in this new journal will allow for a broader coverage of Soviet work in psychology, as outlined in our last issue, the special Handbook of Soviet Psychology.  相似文献   

4.
Abstract

Reactjon of (2-acetoxyethoxy)methyl bromide with the silylated lumazine bases (1-6) in the presence of n-Bu4NI leads to the formation of the nucleosides 8, 10, 12, 14, 16 and 18 respectively. Deacetylation with methanolic ammonia afforded the free nucleosides 9, 11, 13, 15, 17 and 19, respectively, in good yields. Structural proofs of the newly synthesized compounds are based on elemental analyses, UV and 1H-NMR spactra. None of the acyclic nucleosides exhibited antiviral activity against HSV-1 in vitro.  相似文献   

5.
6.
Abstract

This report summarizes our results8 on how the determination of the thermodynamics of the two-state North (N, C2′-exo-C3′-endo) ? South (S,C2′-endo-C3′-exo) pseudorotational equilibrium in aqueous solution (pD 0.6 - 12.0) basing on vicinal 3JHH extracted from 1H-NMR spectra measured at 500 MHz from 278K to 358K yields an experimental energy inventory of the unique stereoelectronic forces that dictate the conformation of the sugar moiety in β-D-ribonucleosides (rNs), β-D-nucleotides, in the mirror-image β-D- versus β-L-2′-deoxynucleosides (dNs) as well as in α-D- or L- versus β-D- or L-2′-dNs. Our work shows for the first time that the free-energies of the inherent internal flexibilities of β-D- versus β-L-2′-dNs and α-D- versus α-L-2′-dNs are identical, whereas the aglycone promoted tunability of the constituent sugar conformation is grossly affected in the α-nucleosides compared to the β-counterparts.  相似文献   

7.
Abstract

Fusion of 2-trimethylsilylpyridine and tetra-O-acetyl-aldehydo-D-xylose or 2,3:4,5-di-O-isopropylidene-aldehydo-L-arabinose led, after removing of the protecting groups, to 2-(pentitol-1-yl)pyridines of D-gulo and D-ido or L-manno configurations. Dehydration of the sugar-chain with D-gulo and D-ido configurations gave the corresponding 2′,5′-anhydro derivatives, whereas 2-(5-O-isopropyl-L-manno-pentitol-1-yl)-pyridine was the only compound formed by dehydration of the sugar-chain with L-manno configuration. Structural proofs are based on 1H and 13C NMR spectra.  相似文献   

8.
Abstract

The synthesis of several 5′-substituted derivatives of ribavirin (1) and tiazofurin (3) are described. Direct acylation of 1 with the appropriate acyl chloride in pyridine-DMF gave the corresponding 5′-O-acyl derivatives (4a-h). Tosylation of the 2′, 3′-O-isopropylidene-ribavirin (6) and tiazofurin (11) with p-toluenesulfonyl chloride gave the respective 5′-O-p-tolylsulfonyl derivatives (7a and 12a), which were converted to 5′-azido-5′-deoxy derivatives (7b and 12b) by reacting with sodium/lithium azide. Deisopropylidenation of 7b and 12b, followed by catalytic hydrogenation afforded 1-(5-amino-5-deoxy-β-D)-ribofuranosyl)-1, 2, 4-triazole-3-carboxamide (10b) and 2 - (5 -amino- 5-deoxy- β-D-ribofuranosyl) thiazole-4-carboxamide (16), respectively. Treatment of 6 with phthalimide in the presence of triphenylphosphine and diethyl azodicarboxylate furnished the corresponding 5′-deoxy-5′-phthaloylamino derivative (9). Reaction of 9 with n-butylamine and subsequent deisopropylidenation provided yet another route to 10b. Selective 5′-thioacetylation of 6 and 11 with thiolacetic acid, followed by saponification and deisopropylidenation afforded 5′-deoxy-5′-thio derivatives of 1-β-D-ribofuranosyl-1, 2, 4-triazole-3-carboxamide (8a) and 2-β-D-ribofuranosylthiazole-4-carboxamide (15), respectively.  相似文献   

9.
Abstract

1H and 31P NMR spectra of cAMP (1) and both diastereomers of cAMPS (2 and 3) were compared with these of structurally related bicyclic phosphate 4 and phosphorothioates 5 and 6. Conformational analysis was also performed by NMR techniques for bicyclic phosphoranilidates 7 and 8 and (Rp)-cdAMP anilidate (9). Chair conformation is predominant for all investigated compounds 18, while the phosphoranilidate 9 exists in solution in chair-twist equilibrium. Thus, antagonistic properties of (Rp)-cAMPS with respect to cAMP are inferred by the change in the overall molecular shape caused by the presence of the bulky sulfur atom in the equatorial position of the cAMPS molecule.  相似文献   

10.
SUMMARY

The yield coefficients and minimum cell concentrations of silica, nitrogen and phosphorus have been determined for four diatoms, Navicula pell iculosa (Brébisson ex Kützing) Hilse, Nitzschia elliptica Hustedt, N. palea (Kützing) W. Smith and N. perpusilla Rabenhorst. It was found that the three Nitzschia species require more Si > N > P whereas the Navicula species needs more N > Si >P. Where possible the results are evaluated in terms of the morphological and ecological characteristics of these diatoms.  相似文献   

11.
Abstract

Treatment of D-xylose (1) with 0.5% methanolic hydrogen chloride under controlled conditions followed by benzoylation and acetolysis afforded crystalline 1-O-acetyl-2, 3, 5-tri-O-benzoyl-α-D-xylofuranose (4) in good yield. Coupling of 4 with 2, 4-bis-trimethylsilyl derivatives of 5-alkyluracils (methyl, ethyl, propyl and butyl) (5a-5d), 5-fluorouracil (5e) and uracil (5f) in acetonitrile in the presence of stannic chloride gave 1-(2,3,5-tri-O-benzoyl-β-D-xylofuranosyl)-nucleosides (6a-6f). Saponification of 6 with sodium methoxide afforded 1-β-D-xylofuranosyl-5-substituted uracils (7a-7f). Condensation of 4 with free adenine in similar fashion and deblocking gave carcinostatic 9-β-D-xylofuranosyladenine (7g).  相似文献   

12.
An improved synthesis of N2‐protected‐3′‐azido‐2′,3′‐dideoxyguanosine 20 and 23 is described. Deoxygenation of 2′‐O‐alkyl (and/or aryl) sulfonyl‐5′‐dimethoxytritylguanosine coupled with [1,2]‐hydride shift rearrangement gave protected 9‐(2‐deoxy‐threo‐pentofuranosyl)guanines ( 10 , 12 and 16 ). This rearrangement was accomplished in high yield with a high degree of stereoselectivity using lithium triisobutylborohydride (l‐Selectride®). Compounds 10 , 12 and 16 were transformed into 3′‐O‐mesylates ( 18 and 21 ), which can be used for 3′‐substitution. The 3′‐azido nucleosides were obtained by treatment of 18 and 21 with lithium azide. This procedure is reproducible with a good overall yield.  相似文献   

13.
Abstract

The syntheses of 6-(4) and 7-p-chlorphenyl-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-lumazine (6), was well as the debenzoylation to the corresponding free nucleosides 5 and 7, were improved. Thiation of 4 and 6 by P4S10 led in excellent yields to 4-thiolumazine nucleosides (8, 10) which could be deblocked to 9 and 11 and converted on treatment with ammonia into the isopterin-N-1- ribofuranosides 13 and 14. 2,2′-Anhydro-nucleoside formation worked well with 5 and 7 respectively to give 15 and 16, which formed on acid hydrolysis the 6- and 7-substituted 1-β-D-arabinofuranosyl-lumazines 18 and 19. The new nucleosides have been characterized by UV and 1H-NMR spectra.  相似文献   

14.
Abstract

The synthesis of pyrazolo[3,4-d]pyrimidine ribonucleoside 3′, 5′-cyclic phosphates related to cAMP, cIMP and cGMP has been achieved for the first time. Phosphorylation of 4-amino-6-methylthio-1-β-D-ribo-furanosylpyrazolo[3,4-d]pyrimidine (1) with POCl3 in trimethyl phosphate gave the corresponding 5′-phosphate (2a). DCC mediated intramolecular cyclization of 2a gave the corresponding 3′, 5′-cyclic phosphate (3a), which on subsequent dethiation provided the cAMP analog 4-amino-1-β-D-ribofuranosylpyrazolo[3, 4-d]pyrimidine 3′, 5′-cyclic phosphate (3b). A similar phosphorylation of 6-methylthio-1-β-D-ribofuranosylpyrazolo[3, 4-d]pyrimidin-4(5H)-one (5), followed by cyclization with DCC gave the 3′, 5′-cyclic phosphate of 5 (9a). Dethiation of 9a with Raney nickel gave the cIMP analog 1-β-D-ribofuranosylpyrazolo[3, 4-d]pyrimidin-4(5H)-one 3′, 5′-cyclic phosphate (9b). Oxidation of 9a with m-chloroperoxy benzoic acid, followed by ammonolysis provided the cGMP analog 6-amino-1-β-D-ribofuranosylpyrazolo [3, 4-d] pyrimidin-4(5H)-one 3′, 5′-cyclic phosphate (7). The structural assignment of these cyclic nucleotides was made by UV and H NMR spectroscopic studies.  相似文献   

15.
Abstract

A synthesis of 2,4-dideazaribavirin ( 2 ), brunfelsamidine ribonucleoside ( 8c ) and certain related derivatives are described for the first time using the stereospecific sodium salt glycosylation procedure. Glycosylation of the sodium salt of pyrrole-3-carbonitrile ( 4 ) with 1-chloro-2, 3-O-t-isopropylidene-5-O-t-butyldimethylsilyl-α-D-ribofuranose ( 5 ) gave exclusively the corresponding blocked nucleoside ( 6 ) with β-anomeric configuration, which on deprotection provided 1-β-D-ribofuranosylpyrrole-3-carbonitrile ( 7 ). Functional group tranformation of 7 gave 2 , 8c and related 3-substituted pyrrole ribonucleosides. These compounds are devoid of any significant antiviral/antitumor activity invitro.  相似文献   

16.
Abstract

Treatment of ψ-uridine (3) with α-acetoxyisobutyryl chloride in acetonitrile gave, after deprotection, a mixture of four products: 5-(2-chloro-2-deoxy-β-D-arabinofuranosyl)uracil (10a), its 3′-chloro xylo isomer (11a), 2′-chloro-2′-deoxy-ψ-uridine (9a) and 4,2′-anhydro-ψ-uridine (8a). Each component was isolated by column chromatography. Compound 9 was converted to the known 1,3-dimethyl derivative 2 by treatment with DMF-dimethylacetal. Treatment of 10 and 11 with NaOMe/MeOH afforded the same 4,2′-anhydro-C-nucleoside 8. The 1,3-dimethyl analogues of 10 and 11, however, were converted to 2′,3′-anhydro-1,3-dimethyl-ψ-uridine (13) upon base treatment. The epoxide 13 was also prepared in good yield by treatment of 10 and 11 with DMF-dimethylacetal.  相似文献   

17.
Abstract

The syntheses of all three of the mono-N-methy1 derivatives of C-ribavirin (3-β-D-ribofuranosyl-1, 2, 4-triazole-5-carboxamide, 2) have been accomplished. Reaction of 1-(β-D-ribofuranosyliminomethyl)-2-methyl-hydrazine ( 7 ) with ethyl oxamate (8) in boiling ethanol gave the N′-methyl-C-ribavirin ( 3 ). A similar treatment of β-D-ribofuranosyl-1-carboximidic acid methyl ester ( 6 ) with N′-methyloxamic hydrazide ( 10 ) furnished the N2-methyl-C-ribavirin ( 4 ). Direct methylation of unprotected 2 with methyl iodide in the presence of potassium carbonate in dimethyl sulfoxide gave N 4-methyl isomer ( 5 ) as the major product. Structural assignments of 3 , 4 , and 5 were based on the unequivocal synthetic sequences, 1H and 13C NMR data and confirmed by single crystal X-ray diffraction analysis.  相似文献   

18.
Abstract

The first chemical synthesis of 3-amino-1-β-D-ribofuranosyl-s-triazolo[5,1-c]-s-triazole (6) is described. Direct glycosylation of 3-amino-5(7)H-s-triazolo[5,1-c]-s-triazole (2) with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose (3) in the presence of TMS-triflate gave 3-amino-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-s-triazolo[5, 1-c]-s-triazole (4) which, on ammonolysis, gave 6. The absolute structure of 6 is determined by X-ray diffraction techniques employing Mo Kα radiation. The structure is solved by direct methods and refined to the R value of 0.044 by using a full-matrix least-squares method. The sugar of 6 has a 3T2 configuration. The torsion angles about the C5′–C4′ bond are both gauche and the torsion angle about the glycosidic bond is in the anti range. Each azole ring of the aglycon is planar and the dihedral angle between the planes of the rings is 3.6°.  相似文献   

19.
Abstract

The diastereoisomers 2a, 2b and their 2-thio analogues 4a and 4b were obtained by three-step transformation of uridine and 2-thiouridine, respectively. The absolute configuration at C-51 in 2a and 2b was established by CD, while for 4a and 4b the configurational assignment was based on the chemical correlation. The acids 1 and 3 were obtained by alkaline hydrolysis of 2a and 4a, respectively.  相似文献   

20.
Abstract

1-Methyl- and 1-aryl-(1,2-dideoxy-D-glyofurano)[2,1-d]-imidazolidine-2-thiones having the configurations β-D-glycero-L-gluco (4), β-D-glycero-D-ido (5—8), α-D glycerol-D-galacto (9—10) and β-D-glycero-D-talo (11, 12) are prepared by reaction of 2-amino-2-deoxy-aldoses with methyl and aryl isothiocyanates. 1-Aryl-(1,2-dideoxy–β-D-glycero-L-gluco-heptofurano)[2,1-d]imidazolidine-2-thiones (1—3) have been converted into 1-aryl-4-(D-galacto-pentitol-1-yl)-4-imidazo-line-2-thiones (24—26) by acid catalysed isomerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号