首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed an agarose‐based biocompatible drug delivery vehicle. The vehicle is in the form of thin, transparent, strong and flexible films. The biocompatibility and haemocompatibility of the films is confirmed using direct and indirect contact biological assay. Contact angle measurement exhibits hydrophilic nature of the films, and protein adsorption test shows low protein adsorption on the film surface. Drugs, antibiotics and antiseptics, retain their potency after their incorporation into the films. Our bioplastic films can be a versatile medium for drug delivery applications, especially as wound and surgical dressings where a fast drug release rate is desired.  相似文献   

2.
3.
Hydrogels (HGs) and nanogels (NGs) have been recently identified as innovative supramolecular materials for many applications in biomedical field such as in tissue engineering, optoelectronic, and local delivery of active pharmaceutical ingredients (APIs). Due to their in vivo biocompatibility, synthetic accessibility, low cost, and tunability, peptides have been used as suitable building blocks for preparation of HGs and NGs formulations. Peptide HGs have shown an outstanding potential to deliver small drugs, protein therapeutics, or diagnostic probes, maintaining the efficacy of their loaded molecules, preventing degradation phenomena, and responding to external physicochemical stimuli. In this review, we discuss the possible use of peptide-based HGs and NGs as vehicles for the delivery of the anticancer drug doxorubicin (Dox). This anthracycline is clinically used for leukemia, stomach, lung, ovarian, breast, and bladder cancer therapy. The loading of Dox into supramolecular systems (liposomes, micelles, hydrogels, and nanogels) allows reducing its cardiotoxicity. According to a primary sequence classification of the constituent peptide, doxorubicin-loaded systems are here classified in short and ultra-short peptide-based HGs, RGD, or RADA-peptide-based HGs and peptide-based NGs.  相似文献   

4.
聚乙二醇-聚乳酸嵌段共聚物在药物递送系统中的应用   总被引:1,自引:0,他引:1  
聚乙二醇-聚乳酸嵌段共聚物具备良好的生物相容性和生物可降解性,是良好的纳米级药物载体。嵌段共聚物具有载药能力强、粒径小、体内循环时间长、主动靶向性和被动靶向性等特点,因此在药物递送系统中得到广泛应用。简要介绍了聚乙二醇-聚乳酸嵌段共聚物的合成和性质,及其作为脂质体、胶束、微球等载体在药物递送系统中的最新进展。  相似文献   

5.
6.
陶晴  卞晓军  张彤  刘刚  颜娟 《生物工程学报》2021,37(9):3162-3178
脱氧核糖核酸(Deoxyribonucleic acid,DNA)不仅可作为生物遗传的物质基础,又以其可编程性、功能多样性、生物相容性和生物可降解性等优点,在生物材料的构建方面表现出巨大的潜力。DNA水凝胶是一种主要由DNA参与形成的三维网状聚合物材料,同时因其保留的DNA生物性能与自身骨架的机械性能的完美融合使得它成为近年来最受关注的新兴功能高分子材料之一。目前,基于各种功能核酸序列或通过结合不同的功能材料制备的单组分或多组分DNA水凝胶,已广泛用于生物医学、分子检测及环境保护的研究或应用领域中。文中主要总结了近十几年来DNA水凝胶制备方法上的研究进展,探讨了DNA水凝胶的分类策略,并进一步综述了DNA水凝胶在药物运输、生物传感、细胞培养等方面的应用研究。最后对DNA水凝胶未来的发展方向以及可能面临的挑战进行了展望。  相似文献   

7.
Micro- and nanospheres composed of biodegradable polymers show promise as versatile devices for the controlled delivery of biopharmaceuticals. Whereas important properties such as drug release profiles, biocompatibility, and (bio)degradability have been determined for many types of biodegradable particles, information about particle degradation inside phagocytic cells is usually lacking. Here, we report the use of confocal Raman microscopy to obtain chemical information about cross-linked dextran hydrogel microspheres and amphiphilic poly(ethylene glycol)-terephthalate/poly(butylene terephthalate) (PEGT/PBT) microspheres inside RAW 264.7 macrophage phagosomes. Using quantitative Raman microspectroscopy, we show that the dextran concentration inside phagocytosed dextran microspheres decreases with cell incubation time. In contrast to dextran microspheres, we did not observe PEGT/PBT microsphere degradation after 1 week of internalization by macrophages, confirming previous studies showing that dextran microsphere degradation proceeds faster than PEGT/PBT degradation. Raman microscopy further showed the conversion of macrophages to lipid-laden foam cells upon prolonged incubation with both types of microspheres, suggesting that a cellular inflammatory response is induced by these biomaterials in cell culture. Our results exemplify the power of Raman microscopy to characterize microsphere degradation in cells and offer exciting prospects for this technique as a noninvasive, label-free optical tool in biomaterials histology and tissue engineering.  相似文献   

8.
Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling and nonswelling cylindrical hydrogels and drug release from these into a target fluid are investigated here. A mathematical model for hydrogel-solution composite, a composite of a distributed parameter system (cylindrical hydrogel) and a lumped parameter system (surrounding solution), is developed. The polymer network displacement in a swelling/deswelling hydrogel is described by a stress diffusion coupling model. The analytical solution for network displacement is used to predict solvent intake by swelling hydrogels, solvent efflux from deswelling hydrogels, and changes in pressure, porosity, and effective drug diffusivity. These in turn influence drug uptake during and after hydrogel swelling and drug release from hydrogel during and after deswelling. Numerical results illustrate benefits of hydrogel swelling for drug loading and merits of different modes of drug release. Drug uptake and drug release by temperature-responsive hydrogels are compared with those by hydrogels not subject to deformation.  相似文献   

9.
Immunoliposome (IL) targeting to areas of inflammation after an acute myocardial infarction (MI) could provide the means by which pro-angiogenic compounds can be selectively targeted to the infarcted region. The adhesion of model drug carriers and ILs coated with an antibody to P-selectin was quantified in a rat model of MI following left coronary artery ligation. Anti-P-selectin coated model drug carriers showed a 140% and 180% increase in adhesion in the border zone of the MI 1 and 4 h post-MI, respectively. Radiolabeled anti-P-selectin ILs injected immediately post-MI and allowed to circulate 24 h showed an 83% increase in targeting to infarcted myocardium when compared to adjacent non-infarcted myocardium. Radiolabeled anti-P-selectin ILs injected 4 h post-MI and allowed to circulate for 24 h showed a 92% increase in accumulation in infarcted myocardium when compared to adjacent non-infarcted myocardium. Targeting to upregulated adhesion molecules on the endothelium provides a promising strategy for selectively delivering compounds to the infarct region of the myocardium using our liposomal-based drug delivery vehicle.  相似文献   

10.
Cancer chemotherapy is mainly based on the use of cytotoxic compounds that often affect other tissues, generating serious side effects which deteriorate the quality of life of patients. Recent advancements in targeted drug delivery systems offer opportunities to improve the efficiency of chemotherapy, by the use of smaller drug doses with reduced side effects. In the gene therapy approach, this consists in improving the transformation potential of the gene delivery system. Interestingly, these systems further provide good platforms for the delivery of hydrophobic and low-bioavailability compounds, while facilitating the penetration of the blood-brain barrier. The present report provides an overview of biologically relevant cancer hallmarks that can be exploited to design effective delivery vehicles that release cytotoxic compounds specifically in cancer tissues, in a targeted manner. The relevance of each cancer marker is presented, with particular emphasis on the generation of these hallmarks and their importance in cancer cell biology.  相似文献   

11.
12.
The present work describes the synthesis and characterization of α/γ hybrid peptides, Boc‐Phe‐γ4‐Phe‐Val‐OMe, P1 ; Boc‐Ala‐γ4‐Phe‐Val‐OMe, P2 ; and Boc‐Leu‐γ4‐Phe‐Val‐OMe, P3 together with the formation of self‐assembled structures formed by these hybrid peptides in dimethyl sulfoxide (DMSO)/water (1:1). The self‐assembled structures were characterized by infrared (IR) spectroscopy, circular dichroism (CD), and scanning electron microscopy (SEM). Further, α/γ hybrid peptide self‐assembled structures were evaluated for antibacterial properties. Among all, the self‐assembled peptide P1 exhibited the antimicrobial activity against Escherichia coli and Klebsiella pneumoniae, while self‐assembled peptide P3 inhibited the biofilms of Salmonella typhimurium and Pseudomonas aeruginosa. In this study, we have shown the significance of self‐assembled structures formed from completely hydrophobic α/γ hybrid peptides in exploring the antibacterial properties together with biofilm inhibition.  相似文献   

13.
Trypanosomiases and Leishmaniases are neglected tropical diseases that affect the less developed countries. For this reason, they did not and still do not have high visibility in Western societies. The name neglected diseases also refers to the fact that they often received little interest at the level of public investment, research and development. The drug discovery scenario, however, is changing dramatically. After a period in which different socioeconomic factors have prevented massive research efforts in this field, such efforts have increased considerably in the very recent years, with significant scientific advancements. In this context, we have embarked on a new drug discovery project devoted to identification of new small molecules for the treatment of trypanosomal and leishmanial diseases. Two complementary approaches have been pursued and are reported here. The first deals with a structure-based drug design, and a privileged structure-guided synthesis of quinazoline compounds able to modulate trypanothione reductase activity was accomplished. In the second, a combinatorial library, built on a natural product-based strategy, was synthesized. Using whole parasite assays, different quinones have been identified as promising lead compounds. A combination of both approaches to hopefully overcome some of the challenges of anti-trypanosomatid drug discovery has eventually been proposed.  相似文献   

14.
BackgroundIncreased incidence of antibiotic-resistant species calls for development of new types of nano-medicine that can be used for healing of bacteria-caused wounds, such as diabetic foot ulcer. As diabetic patients have inefficient defense mechanism against reactive oxygen species (ROS) produced in our body as a by-product of oxygen reduction, the process of wound healing takes longer epithelialisation period. Ceria nanoparticles (CNPs) are well-known for their antibacterial and ROS-scavenging nature. Yet till now no significant effort has been made to conjugate ceria nanoparticles with drugs to treat diabetic wounds.MethodsIn this experiment, CNPs were synthesized in-house and clindamycin hydrochloride was loaded onto it by physical adsorption method for reactive oxygen species responsive drug delivery. Various physico-chemical characterisations such as Transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Energy dispersive X-ray, Thermogravimetric study etc. were performed to affirm the formation of both nanoceria along with drug encapsulated nanoceria.ResultsBoth of these as-prepared formulations inhibited the growth of Gram-positive as well as Gram-negative bacteria confirmed by Disk diffusion study; exhibiting their antibacterial effect. In-vitro drug release study was carried out in physiological environment both in absence and presence of hydrogen peroxide solution to test the reactive ROS-responsiveness of the drug loaded nanocomposites. It also exhibited faster wound healing in diabetes-induced rats. Therefore, it could successfully lower the amount of serum glucose level, inflammation cytokines, hepatotoxic and oxidative stress markers in diabetic rats as confirmed by various ex vivo tests conducted.ConclusionThus, drug loaded ceria nanoparticles have the potential to heal diabetic wounds successfully and can be considered to be useful for the fabrication of appropriate medicated suppositories beneficial for diabetic foot ulcer treatment in future.  相似文献   

15.
The current treatment for coronary restenosis following balloon angioplasty involves the use of a mechanical or a drug-eluting stent. Despite the high usage of commercially-available drug-eluting stents in the cardiac field, there are a number of limitations. This review will present the background ofrestenosis, go briefly into the molecular and cellular mechanisms of restenosis, the use of mechanical stents in coronary restenosis, and will provide an overview of the drugs and genes tested to treat restenosis. The primary focus of this article is to present a comprehensive overview on the use of nanoparticulate delivery systems in the treatment of restenosis both in-vitro and in-vivo. Nanocarriers have been tested in a variety of animal models and in human clinical trials with favorable results. Polymer-based nanoparticles, liposomes, and micelles will be discussed, in addition to the findings presented in the field of cardiovascular drug targeting. Nanocarrier-based delivery presents a viable alternative to the current stent based therapies.  相似文献   

16.
The majority of bioengineering strategies to promote peripheral nerve regeneration after injury have focused on therapies to bridge large nerve defects while fewer therapies are being developed to treat other nerve injuries, such as nerve transection. We constructed delivery systems using fibrin gels containing either free GDNF or polylactide–glycolic acid (PLGA) microspheres with GDNF to treat delayed nerve repair, where ELISA verified GDNF release. We determined the formulation of microspheres containing GDNF that optimized nerve regeneration and functional recovery in a rat model of delayed nerve repair. Experimental groups underwent delayed nerve repair and treatment with GDNF microspheres in fibrin glue at the repair site or control treatments (empty microspheres or free GDNF without microspheres). Contractile muscle force, muscle mass, and MUNE were measured 12 weeks following treatment, where GDNF microspheres (2 weeks formulation) were superior compared to either no GDNF or short‐term release of free GDNF to nerve. Nerve histology distal to the repair site demonstrated increased axon counts and fiber diameters due to GDNF microspheres (2 weeks formulation). GDNF microspheres partially reversed the deleterious effects of chronic nerve injury, and recovery was slightly favored with the 2 weeks formulation compared to the 4 weeks formulation. Biotechnol. Bioeng. 2013; 110: 1272–1281. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
With the remarkable development of nanotechnology in recent years, new drug delivery approaches based on the state-of-the-art nanotechnology have been receiving significant attention. Nanoparticles, an evolvement of nanotechnology, are increasingly considered as a potential candidate to carry therapeutic agents safely into a targeted compartment in an organ, particular tissue or cell. These particles are colloidal structures with a diameter smaller than 1,000 nm, and therefore can penetrate through diminutive capillaries into the cell's internal machinery. This innovative delivery technique might be a promising technology to meet the current challenges in drug delivery. When loaded with a gene or drug agent, nanoparticles can become nanopills, which can effectively treat problematical diseases such as cancer. This article summarizes different types of nanoparticles drug delivery systems under investigation and their prospective therapeutic applications. Also, this article presents a closer look at the advances, current challenges, and future direction of nanoparticles drug delivery systems.  相似文献   

18.
Epidermal growth factor (EGF) was used as the targeting ligand to enhance the specificity of a cancer drug delivery system (DDS) via its specific interaction with the EGF receptor (EGFR) that is overexpressed on the surface of some cancer cells. To investigate the intermolecular interaction and binding affinity between the EGF-conjugated DDS and the EGFR, 50 ns molecular dynamics simulations were performed on the complex of tethered EGFR and EGF linked to single-wall carbon nanotube (SWCNT) through a biopolymer chitosan wrapping the tube outer surface (EGFR·EGF-CS-SWCNT-Drug complex), and compared to the EGFR·EGF complex and free EGFR. The binding pattern of the EGF-CS-SWCNT-Drug complex to the EGFR was broadly comparable to that for EGF, but the binding affinity of the EGF-CS-SWCNT-Drug complex was predicted to be somewhat better than that for EGF alone. Additionally, the chitosan chain could prevent undesired interactions of SWCNT at the binding pocket region. Therefore, EGF connected to SWCNT via a chitosan linker is a seemingly good formulation for developing a smart DDS served as part of an alternative cancer therapy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号