首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells of origin of the spinal projections from the brainstem of the cat have been studied by means of retrograde axonal transport of horseradish peroxidase (HRP). Following injections of HRP into various levels of the spinal cord, many labeled cells were found in several structures in the brainstem. The labeled cells occurred in the raphe nuclei, reticular formation, vestibular complex, and nuclei of the dorsolateral pontine tegmentum. In the dorsolateral pontine tegmentum, many labeled cells were found in the nuclei of locus coeruleus, subcoeruleus and K?lliker-Fuse. In the coeruleus and subcoeruleus, the greatest number of labeled cells were found, when HRP was injected into the sacral cord. No difference emerged, however, in the number of labeled cells appearing in the K?lliker-Fuse nucleus after injection of the enzyme into different levels of the spinal cord. It appears that neurons in the lateral vestibular nucleus which project to different levels of the spinal cord are located in different parts of this nucleus.  相似文献   

2.
Rhombencephalic cell groups projecting to the spinal cord are demonstrated following single pressure injections and/or iontophoretic ejections of HRP solution in either cervical or lumbar enlargements of the toad spinal cord. A group uptake and transport of HRP were obtained with both application techniques, when sufficiently long survival times (8-11 days) were used. Following injections in the cervical cord labeled cells are located mostly in the ventral nucleus of the VIIIth nerve and in the medial zone of the rhombencephalic reticular formation, i.e. the nucleus reticularis inferior, medius and superior. Following injections in the lumbar enlargement the majority of labeled cells are situated in the caudalmost portion of the ventral nucleus of the VIIIth nerve and in the nucleus reticularis inferior. These observations indicate that in the toad the main supraspinal descending pathways from the rhombencephalon originate in the ventral nucleus of the VIIIth nerve and the medial zone of the reticular formation, and that both these pathways are somatotopically organized.  相似文献   

3.
Intersubnuclear connections within the rat trigeminal brainstem complex   总被引:1,自引:0,他引:1  
Prior intracellular recording and labeling experiments have documented local-circuit and projection neurons in the spinal trigeminal (V) nucleus with axons that arborize in more rostral and caudal spinal trigeminal subnuclei and nucleus principalis. Anterograde tracing studies were therefore carried out to assess the origin, extent, distribution, and morphology of such intersubnuclear axons in the rat trigeminal brainstem nuclear complex (TBNC). Phaseolus vulgaris leucoagglutinin (PHA-L) was used as the anterograde marker because of its high sensitivity and the morphological detail provided. Injections restricted to TBNC subnucleus caudalis resulted in dense terminal labeling in each of the more rostral ipsilateral subnuclei. Subnucleus interpolaris projected ipsilaterally and heavily to magnocellular portions of subnucleus caudalis, as well as subnucleus oralis and nucleus principalis. Nucleus principalis, on the other hand, had only a sparse projection to each of the caudal ipsilateral subnuclei. Intersubnuclear axons most frequently traveled in the deep bundles within the TBNC, the V spinal tract, and the reticular formation. They gave rise to a number of circumscribed, highly branched arbors with many boutons of the terminal and en passant types. Retrograde single- or multiple-labeling experiments assessed the cells giving rise to TBNC intersubnuclear collaterals. Horseradish peroxidase (HRP) and/or fluorescent tracer injections into the thalamus, colliculus, cerebellum, nucleus principalis, and/or subnucleus caudalis revealed large numbers of neurons in subnuclei caudalis, interpolaris, and oralis projecting to the region of nucleus principalis. Cells projecting to more caudal spinal trigeminal regions were most numerous in subnuclei interpolaris and oralis. Some cells in lamina V of subnucleus caudalis and in subnuclei interpolaris and oralis projected to thalamus and/or colliculus, as well as other TBNC subnuclei. Such collateral projections were rare in nucleus principalis and more superficial laminae of subnucleus caudalis. TBNC cells labeled by cerebellar injections were not double-labeled by tracer injections into the thalamus, colliculus, or TBNC. These findings lend generality to currently available data obtained with intracellular recording and HRP labeling methods, and suggest that most intersubnuclear axons originate in TBNC local-circuit neurons, though some originate in cells that project to midbrain and/or diencephalon.  相似文献   

4.
Lesions of different parts of the spinal cord at different levels in the hen have been made and the resulting degeneration in the vestibular complex has been studied in silver impregnated sections. Spinovestibular fibres originate from cervical as well as lumbosacral levels of the cord and run in the dorsal part of the lateral funiculus. The spinovestibular fibres from all levels of the spinal cord terminate ipsilaterally in the nucleus Deiters ventralis, the nucleus Deiters dorsalis, the medial nucleus and rostrally in the descending nucleus. The spinovestibular fibres terminating in the above nuclei are few in number while spinovestibular fibres terminating bilaterally in the caudal part of the descending nucleus are much more abundant. In a few cases HRP injections in the vestibular complex resulted in labelled cells in upper cervical segments of the spinal cord localized in lamina VII. The findings are discussed in the light of data concerning the spinovestibular pathway in mammals.  相似文献   

5.
Prior intracellular recording and labeling experiments have documented local-circuit and projection neurons in the spinal trigeminal (V) nucleus with axons that arborize in more rostral and caudal spinal trigeminal subnuclei and nucleus principalis. Anterograde tracing studies were therefore carried out to assess the origin, extent, distribution, and morphology of such intersubnuclear axons in the rat trigeminal brainstem nuclear complex (TBNC). Phaseolus vulgaris leucoagglutinin (PHA-L) was used as the anterograde marker because of its high sensitivity and the morphological detail provided. Injections restricted to TBNC subnucleus caudalis resulted in dense terminal labeling in each of the more rostral ipsilateral subnuclei. Subnucleus interpolaris projected ipsilaterally and heavily to magnocellular portions of subnucleus caudalis, as well as subnucleus oralis and nucleus principalis. Nucleus principalis, on the other hand, had only a sparse projection to each of the caudal ipsilateral subnuclei. Intersubnuclear axons most frequently traveled in the deep bundles within the TBNC, the V spinal tract, and the reticular formation. They gave rise to a number of circumscribed, highly branched arbors with many boutons of the terminal and en passant types.

Retrograde single- or multiple-labeling experiments assessed the cells giving rise to TBNC intersubnuclear collaterals. Horseradish peroxidase (HRP) and/or fluorescent tracer injections into the thalamus, colliculus, cerebellum, nucleus principalis, and/or subnucleus caudalis revealed large numbers of neurons in subnuclei caudalis, interpolaris, and oralis projecting to the region of nucleus principalis. Cells projecting to more caudal spinal trigeminal regions were most numerous in subnuclei interpolaris and oralis. Some cells in lamina V of subnucleus caudalis and in subnuclei interpolaris and oralis projected to thalamus and/or colliculus, as well as other TBNC subnuclei. Such collateral projections were rare in nucleus principalis and more superficial laminae of subnucleus caudalis. TBNC cells labeled by cerebellar injections were not double-labeled by tracer injections into the thalamus, colliculus, or TBNC.

These findings lend generality to currently available data obtained with intracellular recording and HRP labeling methods, and suggest that most intersubnuclear axons originate in TBNC local-circuit neurons, though some originate in cells that project to midbrain and/or diencephalon.  相似文献   

6.
The present study was carried out to analyze the topography of bilateral spinal projections to the lateral reticular nucleus (LRN). We used retrograde transport of fluorescent tracers Fast Blue and Diamidino Yellow to identify spinal neurons projecting to the ipsilateral and/or contralateral LRN, as well as orthograde transport of Phaseolus vulgaris leucoagglutinin to identify the LRN areas where spinoreticular axons terminate. Orthograde labeling confirmed that bilateral spinoreticular projections coming from cervical and upper-thoracic segments terminate in the magnocellular division of LRN, while those coming from the lower-thoracic, lumbar and sacral segments end in the parvocellular division of the nucleus; only a sparse spinal input has been observed in the subtrigeminal division of LRN. Retrograde labeling showed that labeled neurons were present at all spinal levels and in particular large numbers in the cervical and lumbar enlargements. Retrogradely single-labeled cells were located, with contralateral predominance, in all segments of the spinal cord, within laminae IV, V, VI, VIII, and X, whereas in laminae III and VII labeled neurons were mainly observed ipsilaterally. Furthermore, a small fraction of double-labeled cells (7.4%) was observed throughout the spinal cord, mainly in laminae III, IV, VII and VIII.  相似文献   

7.
Distributions of corticospinal and corticobulbar neurons were revealed by tetramethylbenzidine (TMB) processing after injections of wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP) into the cervical or lumbar enlargements of the spinal cord, or medullary or pontine levels of the brain stem. Sections reacted for cytochrome oxidase (CO) allowed patterns of labeled neurons to be related to the details of the body surface map in the first somatosensory cortical area (SI). The results indicate that a number of cortical areas project to these subcortical levels: (1) Projection neurons in granular SI formed a clear somatotopic pattern. The hindpaw region projected to the lumbar enlargement, the forepaw region to the cervical enlargement, the whisker pad field to the lower medulla, and the more rostral face region to more rostral brain stem levels. (2) Each zone of labeled neurons in SI extended into adjacent dysgranular somatosensory cortex, forming a second somatotopic pattern of projection neurons. (3) A somatotopic pattern of projection neurons in primary motor cortex (MI) paralleled SI in mediolateral sequence corresponding to the hindlimb, forelimb, and face. (4) A weak somatotopic pattern of projection neurons was suggested in medial agranular cortex (Agm), indicating a premotor field with a rostromedial-to-caudolateral representation of hindlimb, forelimb, and face. (5) A somatotopic pattern of projection neurons representing the foot to face in a mediolateral sequence was observed in medial parietal cortex (PM) located between SI and area 17. (6) In the second somatosensory cortical area (SII), neurons projecting to the brain stem were immediately adjacent caudolaterally to the barrel field of SI, whereas neurons projecting to the upper spinal cord were more lateral. No projection neurons in this region were labeled by the injections in the lower spinal cord. (7) Other foci of projection neurons for the face and forelimb were located rostral to SII, providing evidence for a parietal ventral area (PV) in perirhinal cortex (PR) lateral to SI, and in cortex between SII and PM. None of these regions, which may be higher-order somatosensory areas, contained labeled neurons after injections in the lower spinal cord. Thus, more cortical fields directly influence brain stem and spinal cord levels related to sensory and motor functions of the face and forepaw than the hindlimb.

The termination patterns of corticospinal and corticobulbar projections were studied in other rats with injections of WGA:HRP in SI. Injections in lateral SI representing the face produced dense terminal label in the contralateral trigeminal complex. Injections in cortex devoted to the forelimb and forepaw labeled the contralateral cuneate nucleus and parts of the dorsal horn of the spinal cord. The cortical injections also demonstrated interconnections of parts of SI with some of the other regions of cortex with projections to the spinal cord, and provided further evidence for the existence of PV in rats.  相似文献   

8.
Individual cells which produce projections from the torus semicircularis in the frog have been visualized after injection of horseradish peroxidase (HRP) to various thalamic and isthmal areas. Labeled toral cells were observed if HRP had been injected to the posterodorsal areas of the thalamus or to the isthmal areas where lateral lemniscus fibers and cells of the premature lateral lemniscal nucleus are situated. Medium and large size cells in the rostrolateral torus semicircularis were mainly labeled. Thalamic injections of the HRP produced more labeled cells in the lateral part of the magnocellular nucleus, whereas isthmal injections produced labeled cells mainly in the lateral part of the laminar nucleus. A few HRP containing cells were observed in the principal nucleus of the torus. Specificity of the neuronal organisation of the auditory pathway in amphibians is discussed.  相似文献   

9.
Horseradish peroxidase histochemical studies of afferent and efferent projections of the trigeminal nerve in two species of chondrostean fishes revealed medial, descending and ascending projections. Entering fibers of the trigeminal sensory root project medially to terminate in the medial trigeminal nucleus, located along the medial wall of the rostral medulla. Other entering sensory fibers turn caudally within the medulla, forming the trigeminal spinal tract, and terminate within the descending trigeminal nucleus. The descending trigeminal nucleus consists of dorsal (DTNd) and ventral (DTNv) components. Fibers of the trigeminal spinal tract descend through the lateral alar medulla and into the dorsolateral cervical spinal cord. Fibers exit the spinal tract throughout its length, projecting to the ventral descending trigeminal nucleus (DTNv) in the medulla and to the funicular nucleus at the obex. Retrograde transport of HRP through sensory root fibers also revealed an ascending bundle of fibers that constitutes the neurites of the mesencephalic trigeminal nucleus, cell bodies of which are located in the rostral optic tectum. Retrograde transport of HRP through motor root fibers labeled ipsilateral cells of the trigeminal motor nucleus, located in the rostral branchiomeric motor column.  相似文献   

10.
The retrograde transport of horseradish peroxidase (HRP) was used to demonstrate the neurosecretory hypothalamo-hindbrain connection of the rat. Following HRP injections into the region of the dorsal columns nuclei labeled cells were observed in the caudal part of the paraventricular nucleus and in the lateral hypothalmic area. Hypothalamo-hindbrain projections are predominantly uncrossed.  相似文献   

11.
The cytology and synaptic organization of the insular trigeminal-cuneatus lateralis (iV-Cul) nucleus was examined in the rat. In addition, the ultrastructural morphology and synaptic connectivity of anterogradely labeled spinal afferent axons terminating in iV-Cul were examined following injection of horseradish peroxidase (HRP) into the cervical spinal cord. The uniformity of the ultrastructural features of iV-Cul neurons supports the presence of a homogeneous neuronal population. The most prominent feature of the iV-Cul neuropil is the presence of numerous interdigitating astrocytic processes, which extensively isolate neuronal somata and processes. iV-Cul contains a heterogeneous population of axonal endings that can be separated into three categories, depending upon whether they contain predominantly spherical-shaped agranular synaptic vesicles (R endings), predominantly pleomorphic-shaped agranular synaptic vesicles (P endings), or a heterogeneous population of dense-core vesicles (DC endings). The R endings represent the majority of axonal endings in iV-Cul and establish asymmetrical axodendritic and axospinous synaptic contacts, primarily along the distal portions of the dendritic tree. P endings establish symmetrical axosomatic, axodendritic, and axospinous synaptic contacts and exhibit a more generalized distribution along the somadendritic tree. DC terminals establish asymmetrical axodendritic synaptic contacts with distal dendritic processes and are the least frequently observed endings in the iV-Cul neuropil. Numerous synaptic glomeruli, exhibiting a single large central R bouton that establishes multiple axodendritic or axospinous synapses, characterize the iV-Cul neuropil. Axoaxonic synapses are conspicuously absent from the iV-Cul neuropil and glomeruli. The anterograde HRP labeling of spinal afferent axons that terminate in iV-Cul indicates that the terminals along these fibers are of the R type and that they are engaged predominantly in synaptic glomeruli. The results of this study indicate that the synaptic organization of iV-Cul is distinctly different from that of neighboring somatosensory nuclei, and supports the recent suggestion that this nucleus should be considered a separate precerebellar spinal relay nucleus in the lateral medulla.  相似文献   

12.
Distributions of corticospinal and corticobulbar neurons were revealed by tetramethylbenzidine (TMB) processing after injections of wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP) into the cervical or lumbar enlargements of the spinal cord, or medullary or pontine levels of the brain stem. Sections reacted for cytochrome oxidase (CO) allowed patterns of labeled neurons to be related to the details of the body surface map in the first somatosensory cortical area (SI). The results indicate that a number of cortical areas project to these subcortical levels: (1) Projection neurons in granular SI formed a clear somatotopic pattern. The hindpaw region projected to the lumbar enlargement, the forepaw region to the cervical enlargement, the whisker pad field to the lower medulla, and the more rostral face region to more rostral brain stem levels. (2) Each zone of labeled neurons in SI extended into adjacent dysgranular somatosensory cortex, forming a second somatotopic pattern of projection neurons. (3) A somatotopic pattern of projection neurons in primary motor cortex (MI) paralleled SI in mediolateral sequence corresponding to the hindlimb, forelimb, and face. (4) A weak somatotopic pattern of projection neurons was suggested in medial agranular cortex (Agm), indicating a premotor field with a rostromedial-to-caudolateral representation of hindlimb, forelimb, and face. (5) A somatotopic pattern of projection neurons representing the foot to face in a mediolateral sequence was observed in medial parietal cortex (PM) located between SI and area 17. (6) In the second somatosensory cortical area (SII), neurons projecting to the brain stem were immediately adjacent caudolaterally to the barrel field of SI, whereas neurons projecting to the upper spinal cord were more lateral. No projection neurons in this region were labeled by the injections in the lower spinal cord. (7) Other foci of projection neurons for the face and forelimb were located rostral to SII, providing evidence for a parietal ventral area (PV) in perirhinal cortex (PR) lateral to SI, and in cortex between SII and PM. None of these regions, which may be higher-order somatosensory areas, contained labeled neurons after injections in the lower spinal cord. Thus, more cortical fields directly influence brain stem and spinal cord levels related to sensory and motor functions of the face and forepaw than the hindlimb. The termination patterns of corticospinal and corticobulbar projections were studied in other rats with injections of WGA:HRP in SI.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The tracer neurobiotin was injected into the lateral vestibular nucleus in rat and the efferent fiber connections of the nucleus were studied. The labeled fibers reached the diencephalon rostrally and the sacral segments of the spinal cord caudally. In the diencephalon, the ventral posteromedial and the gustatory nuclei received the most numerous labeled fibers. In the mesencephalon, the inferior colliculus, the interstitial nucleus of Cajal, the nucleus of Darkschewitch, the periaqueductal gray matter and the red nucleus received large numbers of labeled fibers. In the rhombencephalon, commissural and internuclear connections originated from the lateral vestibular nucleus to all other vestibular nuclei. The medioventral (motor) part of the reticular formation was richly supplied, whereas fewer fibers were seen in the lateral (vegetative) part. In the spinal cord, the descending fibers were densely packed in the anterior funiculus and in the ventral part of the lateral funiculus. Collaterals invaded the entire gray matter from lamina IX up to lamina III; the fibers and terminals were most numerous in laminae VII and VIII. Collateral projections were rich in the cervical and lumbosacral segments, whereas they were relatively poor in the thoracic segments of the spinal cord. It was concluded that the fiber projection in the rostral direction was primarily aimed at sensory-motor centers; in the rhombencephalon and spinal cord, fibers projected onto structures subserving various motor functions.  相似文献   

14.
This study attempts to determine if fibers that project from the guinea pig red nucleus to the spinal cord use L-glutamate and/or L-aspartate as transmitters. Unilateral injections of kainic acid were placed stereotaxically in the red nucleus to destroy the cells of origin of the rubrospinal tract. Six days after the injection, Nissl-stained sections through the lesion site showed that the majority of neurons in the red nucleus ipsilateral to the kainic acid injection were destroyed. In addition, the lesioned area included parts of the surrounding midbrain reticular formation. Silver-impregnated, transverse sections of the cervical spinal cord revealed the presence of degenerating fibers contralaterally in laminae IV-VII of the gray matter. Ipsilaterally, very sparse degeneration was evident in laminae VII and VIII of the gray matter. Two to six days after surgery, the electrically evoked, Ca2(+)-dependent release of both D-[3H]aspartate, a marker for glutamatergic/aspartatergic neurons, and gamma-amino[14C]-butyric acid ([14C]GABA) was measured in dissected quadrants of the spinal cervical enlargement. Lesions centered on the red nucleus depressed the release of D-[3H]aspartate by 25-45% in dorsal and ventral quadrants of the cervical enlargement contralaterally. The release of [14C]GABA was depressed by 27% in contralateral ventral quadrants. To assess the contribution of rubro- versus reticulospinal fibers to the deficits in amino acid release, unilateral injections of kainic acid were placed stereotaxically in the midbrain reticular formation lateral to the red nucleus. Nissl-stained sections through the midbrain revealed the presence of extensive neuronal loss in the midbrain and rostral pontine reticular formation, whereas neurons in the red nucleus remained undamaged. In the spinal cord, degenerating axons were present ipsilaterally in laminae VII and VIII of the gray matter. Some fiber degeneration was also evident contralaterally in laminae V and VI of the gray matter. This lesion did not affect the release of either D-[3H]aspartate or [14C]GABA in the spinal cord. The substantial decrements in D-[3H]aspartate release following red nucleus lesions suggests that the synaptic endings of rubrospinal fibers mediate the release of D-[3H]aspartate in the spinal cord. Therefore, these fibers may be glutamatergic and/or aspartatergic. Because other evidence suggests that rubrospinal neurons are probably not GABAergic, the depression of [14C]GABA release probably reflects changes in the activity of spinal interneurons following the loss of rubrospinal input.  相似文献   

15.
The cytology and synaptic organization of the insular trigeminal—cuneatus lateralis (iV-Cul) nucleus was examined in the rat. In addition, the ultrastructural morphology and synaptic connectivity of anterogradely labeled spinal afferent axons terminating in iV-Cul were examined following injection of horseradish peroxidase (HRP) into the cervical spinal cord. The uniformity of the ultrastructural features of iV-Cul neurons supports the presence of a homogeneous neuronal population. The most prominent feature of the iV-Cul neuropil is the presence of numerous interdigitating astrocytic processes, which extensively isolate neuronal somata and processes. iV-Cul contains a heterogeneous population of axonal endings that can be separated into three categories, depending upon whether they contain predominantly spherical-shaped agranular synaptic vesicles (R endings), predominantly pleomorphic-shaped agranular synaptic vesicles (P endings), or a heterogeneous population of dense-core vesicles (DC endings). The R endings represent the majority of axonal endings in iV-Cul and establish asymmetrical axodendritic and axospinous synaptic contacts, primarily along the distal portions of the dendritic tree. P endings establish symmetrical axosomatic, axodendritic, and axospinous synaptic contacts and exhibit a more generalized distribution along the somadendritic tree. DC terminals establish asymmetrical axodendritic synaptic contacts with distal dendritic processes and are the least frequently observed endings in the iV-Cul neuropil. Numerous synaptic glomeruli, exhibiting a single large central R bouton that establishes multiple axodendritic or axospinous synapses, characterize the iV-Cul neuropil. Axoaxonic synapses are conspicuously absent from the iV-Cul neuropil and glomeruli. The anterograde HRP labeling of spinal afferent axons that terminate in iV-Cul indicates that the terminals along these fibers are of the R type and that they are engaged predominantly in synaptic glomeruli. The results of this study indicate that the synaptic organization of iV-Cul is distinctly different from that of neighboring somatosensory nuclei, and supports the recent suggestion that this nucleus should be considered a separate precerebellar spinal relay nucleus in the lateral medulla.  相似文献   

16.
The terminal distributions of spinal and dorsal column nuclear projections to tectum, pretectum, and central gray of hedgehog tenrecs (Echinops telfairi and Setifer setosus) were investigated using anterograde axonal flow and various tracer substances. In the inferior colliculus, the densest and most extensive mesencephalic projections were found within the pericentral regions. One target area, referred to as the external portion of the inferior colliculus, was represented as a semicircle of grain patches lateral and caudal to the central nucleus. This region received somesthetic afferents from the dorsal column nuclei and from spinal segments at various levels. In contrast, after high cervical injections, the pericentral portion dorsomedial to the rostral half of the central nucleus was labeled almost exclusively. This area of labeling was distinct from the labeling in the central gray and might be best compared with the intercollicular zone in other species. The superior colliculus received projections predominantly from the high cervical cord; minor projections also arose from lumbar spinal segments and the dorsal column nuclei. The terminal field covered roughly the caudal half of the colliculus and involved the stratum griseum intermediale in a patch-like fashion. Some labeling was also found in the stratum griseum profundum and in the stratum griseum superficiale. Other than in the colliculi, weak pretectal projections were observed following dorsal column nuclear injections, while the nucleus of Darkschewitsch was labeled best following lumbosacral injections. All mesencephalic target areas were labeled consistently on the contralateral side, while their ipsilateral side was involved to a varying degree: The relatively most prominent ipsilateral labeling was seen in the central gray, being roughly similar on both sides; scarcely any labeling was noted in the ipsilateral superior colliculus. Tectal injections of retrograde tracer, in addition, revealed a considerable number of labeled neurons in a relatively cell-poor region immediately ventral to the high cervial dorsal horn. This region might correspond to the lateral cervical nucleus, an aggregation of neurons that so far has only been demonstrated in higher mammals.  相似文献   

17.
The structural types of spinal cord marginal (lamina I) neurons projecting to the nucleus of the tractus solitarius (NTS) were studied. Upon injections of cholera toxin subunit B (CTb) into the caudal part of the NTS, including its lateral and medial portions, labeled cells occurred bilaterally in laminae I, IV-VII, and X, and the lateral spinal nucleus (LSN). After injections into the lateral portion alone, only a few cells were labeled in laminae V, VII, and X, and the LSN, and none in the superficial dorsal horn. Of 1882 labeled marginal cells, 38% belonged to the flattened type, 37% to the pyramidal type, and 25% to the fusiform type. Flattened and pyramidal cells were labeled in considerably greater numbers than those reported when other supraspinal targets of these cells were injected with CTb. Since cells in the NTS are known to be under marked 7-aminobutyric acidergic (GABA-ergic) inhibition, it is possible that only strong input conveyed by great numbers of flattened and pyramidal cells is capable of overcoming that barrier. Fusiform cells were labeled in numbers similar to those observed previously after tracer injections into the two other targets of this neuronal type, the parabrachial nuclei and the lateral reticular nucleus. Considering that these regions, as well as the NTS, control cardiovascular and respiratory functions, it is suggested that fusiform cells transmit noxious input that will influence autonomic reflexes processed in the three nuclei.  相似文献   

18.
The present study tested the hypothesis that the trigeminal (V) primary afferent projection to the contralateral dorsal horn originates in midline hairy skin. A prior study (Jacquin et al., 1990) showed that this crossed projection is heaviest to ophthalmic regions of medullary and cervical dorsal horns, and that it does not arise from V ganglion cells that innervate cornea, nasal mucosa, or cerebral dura mater. Here, retrograde double-labeling methods were used to show that many ophthalmic ganglion cells that innervate midline hairy skin via the supraorbital nerve project to the contralateral medullary and upper cervical dorsal horns. Diamidino yellow injections into the right dorsal horn labeled an average of 104 cells in the left V ganglion. Of these contralaterally projecting ganglion cells, an average of 45% were also labeled by horseradish peroxidase (HRP) injections into the left supraorbital nerve, and 25% were also labeled by HRP injections into the midline opthalmic hairy skin. However, only 2% were labeled by HRP injections restricted to left supraorbital vibrissae follicle nerves. Almost all of the double-labeled cells were located in the dorsal one-half of the V ganglion, and they did not differ in size from single-labeled cells.

On the basis of these and prior data, we conclude that a high percentage of contralaterally projecting V ganglion cells originate in midline hairy skin. It is also likely that the contralaterally projecting V ganglion cells serve a low-threshold mechanoreceptive function, given the relatively large ganglion cells and axons giving rise to this pathway and their central terminations in dorsal horn laminae III-V.  相似文献   

19.
The present study tested the hypothesis that the trigeminal (V) primary afferent projection to the contralateral dorsal horn originates in midline hairy skin. A prior study (Jacquin et al., 1990) showed that this crossed projection is heaviest to ophthalmic regions of medullary and cervical dorsal horns, and that it does not arise from V ganglion cells that innervate cornea, nasal mucosa, or cerebral dura mater. Here, retrograde double-labeling methods were used to show that many ophthalmic ganglion cells that innervate midline hairy skin via the supraorbital nerve project to the contralateral medullary and upper cervical dorsal horns. Diamidino yellow injections into the right dorsal horn labeled an average of 104 cells in the left V ganglion. Of these contralaterally projecting ganglion cells, an average of 45% were also labeled by horseradish peroxidase (HRP) injections into the left supraorbital nerve, and 25% were also labeled by HRP injections into the midline opthalmic hairy skin. However, only 2% were labeled by HRP injections restricted to left supraorbital vibrissae follicle nerves. Almost all of the double-labeled cells were located in the dorsal one-half of the V ganglion, and they did not differ in size from single-labeled cells. On the basis of these and prior data, we conclude that a high percentage of contralaterally projecting V ganglion cells originate in midline hairy skin. It is also likely that the contralaterally projecting V ganglion cells serve a low-threshold mechanoreceptive function, given the relatively large ganglion cells and axons giving rise to this pathway and their central terminations in dorsal horn laminae III-V.  相似文献   

20.
Prior studies have documented a trigeminal (V) mandibular primary afferent projection to the dorsomedial portion of the contralateral medullary and cervical dorsal horns in cat, hamster, and rat. We now report the existence of a much more substantial V ophthalmic primary afferent projection to the ventrolateral portion of contralateral medullary and cervical dorsal horns in rat. Horseradish peroxidase (HRP) injections into the V ganglion or V brainstem complex anterogradely labeled a fascicle of primary afferent axons that exited the caudal ventrolateral V spinal tract to form a rostrocaudally continuous, transversely oriented, V primary afferent decussation. These fibers terminated most heavily in laminae III-V of the ventrolateral dorsal horn in contralateral caudal medulla and the first and second cervical segments. Retrograde tracing with diamidino yellow (DY) or fluorogold and anterograde tracing with Phaseolus vulgaris leucoagglutinin also demonstrated a substantial commissural projection of central origin in medullary dorsal horn laminae I-VII. The latter projection had a more diffuse trajectory and termination pattern than that of the V primary afferent decussation. Unilateral HRP injections into medullary and cervical dorsal horns also retrogradely labeled V primary afferent collaterals contralateral to the injection site in corresponding regions of dorsal horn, and also in ventromedial interpolaris, oralis, and principalis, rostral to their decussation. Axons (1.5 +/- 0.8 microns mean diameter; 0.4-3.9 microns range) therefore terminated both ipsi- and contralateral to their cells of origin. These HRP injections also labeled an average of 40.4 +/- 13.0 V ganglion cells (mean +/- SD, corrected for split somata) in dorsomedial, ophthalmic regions of the contralateral ganglion. Their mean diameter was slightly larger than that of cells labeled ipsilaterally (29.9 vs. 26.3 microns). Double-labeling studies assessed possible ophthalmic receptor surfaces innervated by centrally crossing primary afferents. DY was injected into right medullary and cervical dorsal horns, and HRP was applied to either the left cornea, the ethmoid nerve, or the dura overlying cerebral cortex. Though DY labeled from 75 to 125 left ganglion cells per animal, no cells were double-labeled. All of these findings suggest that nociceptive-specific ganglion cells are not a source of the crossed ophthalmic primary afferent projection. Unilateral transection of the infraorbital nerve on the day of birth did not alter the crossed primary afferent projection to the partially deafferented side of the brainstem. This is further evidence of an absence of central sprouting in spared V primary afferents following neonatal V deafferentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号