首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 848 毫秒
1.
Shiftwork is often associated with metabolic diseases, and in the past few years, several cytokines have been postulated to contribute to various diseases, including insulin resistance. The aim of this study was to compare the concentrations of adiponectin, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in samples of young adult men exposed to a fixed (i) night shift (n?=?9), working from 22:00 to 06:00?h; (ii) early morning shift (n?=?6), working from 06:00 to 14:00?h; and (iii) day shift (n?=?7), working from 08:00 to 17:00?h. The fixed night-shift and early-morning-shift samples were considered collectively as a shiftworker group given their work times. Blood samples were collected during the regular working day at 4-h intervals over the course of 24?h, thus totaling six samples. Morphological and physical activity parameters did not differ between the three groups. Total energy intake was lowest on the early morning shifts (p?<?.03). Both shiftworker groups ingested a significantly higher percentage of fat (p?<?.003) and a lower percentage of carbohydrate (p?<?.0005) than the day group. The early morning group had a lower mean 24-h level of adiponectin than the other two groups (p?=?.016), and both the early morning and night groups exhibited higher mean 24-h levels of TNF-α than the day group (p?=?.0001). The 24-h mean levels of IL-6 did not differ significantly between the groups (p?=?.147). None of the groups exhibited a significant circadian effect on adiponectin (p?=?.829), TNF-α (p?=?.779), or IL-6 (p?=?.979) levels. These results indicate that individuals who are enrolled in shiftwork are susceptible to alterations in the secretion of cytokines that are involved in insulin resistance and cardiovascular disease, both of which are known to affect this population. (Author correspondence: )  相似文献   

2.
This study aimed to analyze individual cortisol levels in relation to work conditions, sleep, and health parameters among truck drivers working day shifts (n?=?21) compared to those working irregular shifts (n?=?21). A total of 42 male truck drivers (39.8?±?6.2 yrs) completed questionnaires about sociodemographics, job content, work environment, health, and lifestyle. Rest-activity profiles were measured using actigraphy, and cardiovascular blood parameters were collected. Salivary cortisol samples were obtained: (i) at waking time, (ii) 30?min after waking, and (iii) at bedtime, during both one workday and one day off from work. Irregular-shift workers, compared to day-shift workers, showed significantly higher waist-hip ratio, very-low-density lipoprotein (VLDL) cholesterol, tiredness after work, years working as a driver, truck vibration, and less job demand (p?<?.05). High cortisol levels in irregular-shift workers were correlated with certain stressors, such as short sleep duration and low job satisfaction, and to metabolic parameters, such as total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), VLDL, and triglycerides. Day-shift workers had higher cortisol levels collected 30?min after waking (p?=?.03) and a higher cortisol awakening response (CAR; p?=?.02) during workdays compared to off days. Irregular-shift workers had higher cortisol levels on their off days compared to day-shift workers (p?=?.03). In conclusion, for the day-shift workers, a higher cortisol response was observed on workdays compared to off days. Although no direct comparisons could be made between groups for work days, on off days the irregular-shift workers had higher cortisol levels compared to day-shift workers, suggesting a prolonged stress response in the irregular-shift group. In addition, cortisol levels were correlated with stressors and metabolic parameters. Future studies are warranted to investigate further stress responses in the context of irregular work hours. (Author correspondence: )  相似文献   

3.
The study focused on chronotype-related differences in subjective load assessment, sleepiness, and salivary cortisol pattern in subjects performing daylong simulated driving. Individual differences in work stress appraisal and psychobiological cost of prolonged load seem to be of importance in view of expanding compressed working time schedules. Twenty-one healthy, male volunteers (mean?±?SD: 27.9?±?4.9 yrs) were required to stay in semiconstant routine conditions. They performed four sessions (each lasting ~2.5?h) of simulated driving, i.e., completed chosen tasks from computer driving games. Saliva samples were collected after each driving session, i.e., at 10:00–11:00, 14:00–15:00, 18:00–19:00, and 22:00–23:00?h as well as 10–30?min after waking (between 05:00 and 06:00?h) and at bedtime (after 00:00?h). Two subgroups of subjects were distinguished on the basis of the Chronotype Questionnaire: morning (M)- and evening (E)-oriented types. Subjective data on sleep need, sleeping time preferences, sleeping problems, and the details of the preceding night were investigated by questionnaire. Subjective measures of task load (NASA Task Load Index [NASA-TLX]), activation (Thayer's Activation-Deactivation Adjective Check List [AD ACL]), and sleepiness (Karolinska Sleepiness Scale [KSS]) were applied at times of saliva samples collection. M- and E-oriented types differed significantly as to their ideal sleep length (6 h 54 min?±?44 versus 8 h 13 min?±?50 min), preferred sleep timing (midpoint at 03:19 versus 04:26), and sleep index, i.e., ‘real-to-ideal’ sleep ratio, before the experimental day (0.88 versus 0.67). Sleep deficit proved to be integrated with eveningness. M and E types exhibited similar diurnal profiles of energy, tiredness, tension, and calmness assessed by AD ACL, but E types estimated higher their workload (NASA-TLX) and sleepiness (KSS). M types exhibited a trend of higher mean cortisol levels than E types (F?=?4.192, p?<?.056) and distinct diurnal variation (F?=?2.950, p?<?.019), whereas E types showed a flattened diurnal curve. Cortisol values did not correlate with subjective assessments of workload, arousal, or sleepiness at any time-of-day. Diurnal cortisol pattern parameters (i.e., morning level, mean level, and range of diurnal changes) showed significant positive correlations with sleep length before the experiment (r?=?.48, .54, and .53, respectively) and with sleep index (r?=?.63, .64, and .56, respectively). The conclusions of this study are: (i) E-oriented types showed lower salivary cortisol levels and a flattened diurnal curve in comparison with M types; (ii) sleep loss was associated with lower morning cortisol and mean diurnal level, whereas higher cortisol levels were observed in rested individuals. In the context of stress theory, it may be hypothesized that rested subjects perceived the driving task as a challenge, whereas those with reduced sleep were not challenged, but bored/exhausted with the experimental situation. (Author correspondence: )  相似文献   

4.
The objective of this study was to compare light exposure and sleep parameters between adolescents with delayed sleep phase disorder (DSPD; n?=?16, 15.3?±?1.8 yrs) and unaffected controls (n?=?22, 13.7?±?2.4 yrs) using a prospective cohort design. Participants wore wrist actigraphs with photosensors for 14 days. Mean hourly lux levels from 20:00 to 05:00?h and 05:00 to 14:00?h were examined, in addition to the 9-h intervals prior to sleep onset and after sleep offset. Sleep parameters were compared separately, and were also included as covariates within models that analyzed associations with specified light intervals. Additional covariates included group and school night status. Adolescent delayed sleep phase subjects received more evening (p?<?.02, 22:00–02:00?h) and less morning (p?<?.05, 08:00–09:00?h and 10:00–12:00?h) light than controls, but had less pre-sleep exposure with adjustments for the time of sleep onset (p?<?.03, 5–7?h prior to onset hour). No differences were identified with respect to the sleep offset interval. Increased total sleep time and later sleep offset times were associated with decreased evening (p?<?.001 and p?=?.02, respectively) and morning (p?=?.01 and p?<?.001, respectively) light exposure, and later sleep onset times were associated with increased evening exposure (p?<?.001). Increased total sleep time also correlated with increased exposure during the 9?h before sleep onset (p?=?.01), and a later sleep onset time corresponded with decreased light exposure during the same interval (p?<?.001). Outcomes persisted regardless of school night status. In conclusion, light exposure interpretation requires adjustments for sleep timing among adolescents with DSPD. Pre- and post-sleep light exposures do not appear to contribute directly to phase delays. Sensitivity to morning light may be reduced among adolescents with DSPD. (Author correspondence: )  相似文献   

5.
The purpose of the present study was to examine the effects of active warm-up duration on the diurnal fluctuations in anaerobic performances. Twelve physical education students performed a medical stress test (progressive test up to exhaustion) and four Wingate tests (measurement of peak power [Ppeak], mean power [Pmean], and fatigue index during an all-out 30 s cycling exercise). The tests were performed in separate sessions (minimum interval?=?36?h) in a balanced and randomized design at 08:00 and 18:00?h, either after a 5?min (5-AWU) or a 15?min active warm-up (15-AWU). AWU consisted of pedaling at 50% of the power output at the last stage of the stress exhausting test. Rectal temperature was collected throughout the sessions. A two-way ANOVA (warm-up?×?time of day) revealed a significant interaction for Ppeak (F(1.11)?=?6.48, p?<?0.05) and Pmean (F(1.11)?=?5.84, p?<?0.05): the time-of-day effect was significant (p?<?0.001) in contrast with the effect of warm-up duration (p?>?0.05). Ppeak and Pmean improved significantly from morning to afternoon after both 5-AWU and 15-AWU, but the effect of warm-up duration was significant in the morning only. Indeed, the values of Ppeak or Pmean were the same after both warm-up protocols in the afternoon. For rectal temperature, there was no interaction between time-of-day and warm-up duration. Rectal temperature before and after both the warm-up protocols was higher in the afternoon, and the effect of warm-up duration on temperature was similar at 08:00 and 18:00?h. In conclusion, the interpretation of the results of the anaerobic performance tests should take into account time-of-day and warm-up procedures. Longer warm-up protocols are recommended in the morning to minimize the diurnal fluctuations of anaerobic performances. (Author correspondence: )  相似文献   

6.
《Chronobiology international》2013,30(5):1093-1104
In the present study, the authors investigated the effects of shiftwork exposure on DNA methylation using peripheral blood DNA from subjects working in two chemical plants in Northern Italy. The investigation was designed to evaluate (a) DNA methylation changes in Alu and long interspersed nuclear element-1 (LINE-1) repetitive elements as a surrogate of global methylation and (b) promoter methylation of glucocorticoid receptor (GCR), tumor necrosis factor alpha (TNF-α), and interferon-gamma (IFN-γ). One hundred and fifty white male workers (mean?±?SD: 41.0?±?9 yrs of age) were examined: 100 3?×?8 rotating shiftworkers (40.4?±?8.7 yrs of age) and 50 day workers (42.2?±?9.4 yrs of age). The authors used bisulfite-pyrosequencing to estimate repetitive elements and gene-specific methylation. Multiple regression analysis, adjusted for age, body mass index (BMI), and job seniority, did not show any significant association between the five DNA methylation markers and shiftwork. However, job seniority, in all subjects, was significantly associated with Alu (β?=??0.019, p?=?.033) and IFN-γ (β?=??0.224, p?<?.001) methylation, whereas TNF-α methylation was inversely correlated with age (β?=??0.093, p?<?.001). Considering only shiftworkers, multiple regression analysis, adjusted for age, BMI, and job seniority, showed a significant difference between morning and evening types in TNF-α methylation (mean morning type [MT] 11.425 %5mC versus evening type [ET] 12.975 %5mC; β?=?1.33, p?=?.022). No difference was observed between good and poor tolerance to shiftwork. Increasing job seniority (<5, 5–15, >15 yrs) was associated with significantly lower Alu (β?=??0.86, p?=?.006) and IFN-γ methylation (β?=??6.50, p?=?.007) after adjustment for age, BMI, and morningness/eveningness. In addition, GCR significantly increased with length of shiftwork (β?=?3.33, p?=?.05). The data showed alterations in blood DNA methylation in a group of shiftworkers, including changes in Alu repetitive elements methylation and gene-specific methylation of IFN-γ and TNF-α promoters. Further studies are required to determine the role of such alterations in mediating the effects of shiftwork on human health. (Author correspondence: )  相似文献   

7.
The present study was designed to investigate if the suggested greater fatigability during repeated exercise in the afternoon, compared to the morning, represents a true time-of-day effect on fatigability or a consequence of a higher initial power. In a counterbalanced order, eight subjects performed a repeated-sprint test [10?×?(6 s of maximal cycling sprint?+?30 s of rest)] on three different occasions between: 08:00–10:00, 17:00–19:00, and 17:00-19:00?h controlled (17:00–19:00?hcont, i.e., initial power controlled to be the same as the two first sprints of the 08:00–10:00?h trial). Power output was significantly (p?<?0.05) higher for sprints 1, 2, and 3 in the afternoon than in the morning (e.g., sprint 1: 23.3 ±1 versus 21.2 ±1 W·kg?1), but power decrement for the 10 sprints was also higher in the afternoon. Based on the following observations, we conclude that this higher power decrement is a consequence of the higher initial power output in the afternoon. First, there was no difference in power during the final five sprints (e.g., 20.4 ±1 versus 19.7 ±1 W·kg?1 for sprint 10 in the afternoon and morning, respectively). Second, the greater decrement in the afternoon was no longer present when participants were producing the same initial power output in the afternoon as in the morning. Third, electromyographic activity of the vastus lateralis decreased during the exercise (p?<?0.05), but without a time-of-day effect. (Author correspondence: )  相似文献   

8.
Neuroimaging is increasingly used to study the motor system in vivo. Despite many reports of time-of-day influences on motor function at the behavioral level, little is known about these influences on neural motor networks and their activations recorded in neuroimaging. Using functional magnetic resonance imaging (fMRI), the authors studied 15 healthy subjects (9 females; mean?±?SD age: 23?±?3 yrs) performing a self-paced finger-tapping task at different times of day (morning, midday, afternoon, and evening). Blood-oxygenation-level-dependent signal showed systematic differences across the day in task-related motor areas of the brain, specifically in the supplementary motor area, parietal cortex, and rolandic operculum (pcorr?<?.0125). The authors found that these time-of-day-dependent hemodynamic modulations are associated with chronotype and not with homeostatic sleep pressure. These results show that consideration of time-of-day for the analysis of fMRI studies is imperative. (Author correspondence: )  相似文献   

9.
Most night workers are unable to adjust their circadian rhythms to the atypical hours of sleep and wake. Between 10% and 30% of shiftworkers report symptoms of excessive sleepiness and/or insomnia consistent with a diagnosis of shift work disorder (SWD). Difficulties in attaining appropriate shifts in circadian phase, in response to night work, may explain why some individuals develop SWD. In the present study, it was hypothesized that disturbances of sleep and wakefulness in shiftworkers are related to the degree of mismatch between their endogenous circadian rhythms and the night-work schedule of sleep during the day and wake activities at night. Five asymptomatic night workers (ANWs) (3 females; [mean?±?SD] age: 39.2?±?12.5 yrs; mean yrs on shift?=?9.3) and five night workers meeting diagnostic criteria (International Classification of Sleep Disorders [ICSD]-2) for SWD (3 females; age: 35.6?±?8.6 yrs; mean years on shift?=?8.4) participated. All participants were admitted to the sleep center at 16:00?h, where they stayed in a dim light (<10 lux) private room for the study period of 25 consecutive hours. Saliva samples for melatonin assessment were collected at 30-min intervals. Circadian phase was determined from circadian rhythms of salivary melatonin onset (dim light melatonin onset, DLMO) calculated for each individual melatonin profile. Objective sleepiness was assessed using the multiple sleep latency test (MSLT; 13 trials, 2-h intervals starting at 17:00?h). A Mann-Whitney U test was used for evaluation of differences between groups. The DLMO in ANW group was 04:42?±?3.25?h, whereas in the SWD group it was 20:42?±?2.21?h (z = 2.4; p?<?.05). Sleep did not differ between groups, except the SWD group showed an earlier bedtime on off days from work relative to that in ANW group. The MSLT corresponding to night work time (01:00–09:00?h) was significantly shorter (3.6?±?.90?min: [M?±?SEM]) in the SWD group compared with that in ANW group (6.8?±?.93?min). DLMO was significantly correlated with insomnia severity (r = ?.68; p < .03), indicating that the workers with more severe insomnia symptoms had an earlier timing of DLMO. Finally, SWD subjects were exposed to more morning light (between 05:00 and 11:00?h) as than ANW ones (798 vs. 180 lux [M?±?SD], respectively z?=??1.7; p?<?.05). These data provide evidence of an internal physiological delay of the circadian pacemaker in asymptomatic night-shift workers. In contrast, individuals with SWD maintain a circadian phase position similar to day workers, leading to a mismatch/conflict between their endogenous rhythms and their sleep-wake schedule. (Author correspondence: )  相似文献   

10.
Although a nonlinear time-of-day and prior wake interaction on performance has been well documented, two recent studies have aimed to incorporate the influences of sleep restriction into this paradigm. Through the use of sleep-restricted forced desynchrony protocols, both studies reported a time-of-day?×?sleep restriction interaction, as well as a time-of-day?×?prior wake?×?sleep dose three-way interaction. The current study aimed to investigate these interactions on simulated driving performance, a more complex task with ecological validity for the problem of fatigued driving. The driving performance of 41 male participants (mean?±?SD: 22.8 ±2.2 yrs) was assessed on a 10-min simulated driving task with the standard deviation of lateral position (SDLAT) measured. Using a between-group design, participants were subjected to either a control condition of 9.33?h of sleep/18.66?h of wake, a moderate sleep-restriction (SR) condition of 7?h of sleep/21?h of wake, or a severe SR condition of 4.66?h of sleep/23.33?h of wake. In each condition, participants were tested at 2.5-h intervals after waking across 7?×?28-h d of forced desynchrony. Driving sessions occurred at nine doses of prior wake, within six divisions of the circadian cycle based on core body temperature (CBT). Mixed-models analyses of variance (ANOVAs) revealed significant main effects of time-of-day, prior wake, sleep debt, and sleep dose on SDLAT. Additionally, significant two-way interactions of time-of-day?×?prior wake and time-of-day?×?sleep debt, as well as significant three-way interactions of time-of-day?×?prior wake?×?sleep debt and time-of-day?×?sleep debt?×?sleep dose were observed. Although limitations such as the presence of practice effects and large standard errors are noted, the study concludes with three findings. The main effects demonstrate that extending wake, reducing sleep, and driving at poor times of day all significantly impair driving performance at an individual level. In addition to this, combining either extended wake or a sleep debt with the early morning hours greatly decreases driving performance. Finally, operating under the influence of a reduced sleep dose can greatly decrease performance at all times of the day. (Author correspondence: )  相似文献   

11.
《Chronobiology international》2013,30(10):1390-1396
A morning peak in ST-segment elevation myocardial infarction (STEMI) has been described. The authors explored the relationship between variation of symptom onset, patient characteristics, and outcomes in two worldwide fibrinolytic trials. A total of 35 492 patients with STEMI were grouped into 8-h intervals by time of symptom onset: early (06:00 to 13:59?h), late-day (14:00 to 21:59?h), overnight (22:00 to 05:59?h). The authors correlated timing with patient characteristics and outcomes (adjusted for thrombolysis in myocardial infarction [TIMI] risk score) first in InTIME II-TIMI 17 trial (N?=?15 031), and confirmed in the ExTRACT-TIMI 25 trial (N?=?20 461). Timing was similar in the derivation (early 49%, late-day 30%, and overnight 21%; p?<?.001) and validation set (48%, 31%, and 21%, respectively; p?<?.001). Some patient characteristics consistently varied with time of symptom onset. Patients in the early cohort were older with poorer renal function. The late-day group had more smokers with higher initial heart rate and systolic blood pressure. Those with overnight symptom onset had higher rates of obesity, prior myocardial infarction, and treatment delays. Prior use of aspirin and beta-blockers was also highest in the overnight group. Relative to the early cohort, adjusted mortality was higher with late-day onset (derivation odds ratio [OR]: 1.19, p?=?.04; validation OR: 1.18, p?=?.01), but there was no excess in mortality overnight compared with early (derivation OR: .97, p?=?.72; validation OR: 1.01, p?=?.90). Composite endpoints followed similar patterns. This study indicates that circadian patterns in onset of STEMI continue to exist with patient characteristics differing by time of day. Despite a potential physiologic resistance to morning thrombolysis, outcomes were best in the early cohort, intermediate overnight, and worst with late-day symptom onset. Efforts to reduce smoking and improve control of blood pressure could reduce the number of patients with late-day onset of STEMI who experience the worst outcomes. (Author correspondence: )  相似文献   

12.
Moving rapidly from a supine to a standing posture is a common daily activity, yet a significant physiological challenge. Syncope can result from the development of initial orthostatic hypotension (IOH) involving a transient fall in systolic/diastolic blood pressure (BP) of >40/20?mm Hg within the first 15 s, and/or a delayed orthostatic hypotension (DOH) involving a fall in systolic/diastolic BP of >20/10?mm Hg within 15?min of posture change. Although epidemiological data indicate a heightened syncope risk in the morning, little is known about the diurnal variation in the IOH and DOH mechanisms associated with postural change. The authors hypothesized that the onset of IOH and DOH occurs sooner, and the associated cardiorespiratory and cerebrovascular changes are more pronounced, in the early morning. At 06:00 and 16:00?h, 17 normotensive volunteers, aged 26?±?1 yrs (mean?±?SE), completed a protocol involving supine rest, an upright stand, and a 60° head-up tilt (HUT) during which continuous beat-to-beat measurements of middle cerebral artery velocity (MCAv), mean arterial BP (MAP), heart rate, and end-tidal Pco2 (PETco2) were obtained. Mean MCAv was ~12% lower at baseline in the morning (p?≤?.01) and during the HUT (p?<?.01), despite a morning elevation in PETco2 by ~2.2?mm Hg (p?=?.01). The decline in MAP during initial standing (morning vs. afternoon: 50%?±?4% vs. 49%?±?3%) and HUT (39%?±?3% vs. 38%?±?3%) did not vary with time-of-day (p?>?.30). In conclusion, although there is a marked reduction in MCAv in the morning, there is an absence of diurnal variation in the onset of and associated physiological responses associated with IOH and DOH. These responses, at least in this population, are unlikely contributors to the diurnal variation in orthostatic tolerance. (Author correspondence: )  相似文献   

13.
Electrooculography (EOG) was used to explore performance differences in a sustained attention task during rested wakefulness (RW) and after 7 days of partial sleep deprivation (SD). The RW condition was based on obtaining regular sleep, and the SD condition involved sleep restriction of 3?h/night for a week resulting in a total sleep debt of 21?h. The study used a counterbalanced design with a 2-wk gap between the conditions. Participants performed a sustained attention task for 45?min on four occasions: 10:00–11:00, 14:00–15:00, 18:00–19:00, and 22:00–23:00?h. The task required moving gaze and attention as fast as possible from a fixation point to a target. In each session, 120 congruent and 34 incongruent stimuli were presented, totaling 1232 observations/participant. Correct responses plus errors of omission (lapses) and commission (false responses) were recorded, and the effect of time-of-day on sustained attention following SD was investigated. The analysis of variance (ANOVA) model showed that SD affected performance on a sustained attention task and manifested itself in a higher number of omission errors: congruent stimuli (F(1,64)?=?13.3, p?<?.001) and incongruent stimuli (F(1,64)?=?14.0, p?<?.001). Reaction times for saccadic eye movements did not differ significantly between experimental conditions or by time-of-day. Commission errors, however, exhibited a decreasing trend during the day. The visible prevalence of omissions in SD versus RW was observed during the mid-afternoon hours (the so-called post-lunch dip) for both congruent and incongruent stimuli (F(1,16)?=?5.3, p?=?.04 and F(1,16)?=?5.6, p?=?.03, respectively), and at 18:00?h for incongruent stimuli (F(1,13)?=?5.7, p?=?.03). (Author correspondence: )  相似文献   

14.
The present study was designed to evaluate time-of-day effects on electromyographic (EMG) activity changes during a short-term intense cycling exercise. In a randomized order, 22 male subjects were asked to perform a 30-s Wingate test against a constant braking load of 0.087?kg·kg?1 body mass during two experimental sessions, which were set up either at 07:00 or 17:00?h. During the test, peak power (Ppeak), mean power (Pmean), fatigue index (FI; % of decrease in power output throughout the 30 s), and evolution of power output (5-s span) throughout the exercise were analyzed. Surface EMG activity was recorded in both the vastus lateralis and vastus medialis muscles throughout the test and analyzed over a 5-s span. The root mean square (RMS) and mean power frequency (MPF) of EMG were calculated. Neuromuscular efficiency (NME) was estimated from the ratio of power to RMS. Resting core temperature, Ppeak, Pmean, and FI were significantly higher (p?<?.05) in the evening than morning test (e.g., Ppeak: 11.6?±?0.8 vs. 11.9?±?1 W·kg?1). The results showed that power output decreased following two phases. During the first phase (first 20s), power output decreased rapidly and values were higher (p?<?.05) in the evening than in the morning. During the second phase (last 10s), power decreased slightly and appeared independent of the time of day of testing. This power output decrease was paralleled by evolution of the MPF and NME. During the first phase, NME and MPF were higher (p <?.05) in the evening. During the second phase, NME and MPF were independent of time of day. In addition, no significant differences were noticed between 7:00 and 17:00?h for EMG RMS during the whole 30 s. Taken together, these results suggest that peripheral mechanisms (i.e., muscle power and fatigue) are more likely the cause of the diurnal variation of the Wingate-test performance rather than central mechanisms. (Author correspondence: )  相似文献   

15.
《Chronobiology international》2013,30(8):1127-1138
To date, studies investigating the consequences of shiftwork have predominantly focused on external (local) time. Here, we report the daily variation in cognitive performance in rotating shiftworkers under real-life conditions using the psychomotor vigilance test (PVT) and show that this function depends both on external and internal (biological) time. In addition to this high sensitivity of PVT performance to time-of-day, it has also been extensively applied in sleep deprivation protocols. We, therefore, also investigated the impact of shift-specific sleep duration and time awake on performance. In two separate field studies, 44 young workers (17 females, 27 males; age range 20–36 yrs) performed a PVT test every 2?h during each shift. We assessed chronotype by the MCTQShift (Munich ChronoType Questionnaire for shiftworkers). Daily sleep logs over the 4-wk study period allowed for the extraction of shift-specific sleep duration and time awake in a given shift, as well as average sleep duration (“sleep need”). Median reaction times (RTs) significantly varied across shifts, depending on both Local Time and Internal Time. Variability of reaction times around the 24 h mean (≈ ±5%) was best explained by a regression model comprising both factors, Local Time and Internal Time (p < .001). Short (15th percentile; RT15%) and long (85th percentile; RT85%) reaction times were differentially affected by Internal Time and Local Time. During night shifts, only median RT and RT85% were impaired by the duration of time workers had been awake (p?<?.01, consistent with the highest sleep pressure), but not RT15%. Proportion of sleep before a test day (relative to sleep need) significantly affected median RT and RT85% during morning shifts (p?<?.01). RT15% was worst in the beginning of the morning shift, but improved to levels above average with increasing time awake (p < .05), whereas RT85% became worse (p < .05). Hierarchical mixed models confirmed the importance of chronotype and sleep duration on cognitive performance in shiftworkers, whereas the effect of time awake requires further research. Our finding that both Local Time and Internal Time, in conjunction with shift-specific sleep behavior, strongly influence performance extends predictions derived from laboratory studies. (Author correspondence: )  相似文献   

16.
《Chronobiology international》2013,30(9):1062-1074
The aim of the present study was to evaluate the development of the circadian rhythm of the salivary cortisol in premature infants and its correlation with the onset of the sleep–activity behavior pattern during the first 3 weeks of life under controlled light:dark conditions. Furthermore, we investigated the influence of acoustic stimulation by audiotaped lullabies or the maternal voice on the cortisol values and long-term sleep–activity patterns. The study was a block-randomized, prospective clinical trial with a study population of 62 preterm neonates (30?<?37 gestational age). We compared two study groups who listened either to music or to the maternal voice (music: N?=?20; maternal voice: N?=?20) with a matched control group (N?=?22). The acoustic stimulation took place every evening between 20:00 and 21:00?h for 30?min over a period of 2 weeks. The cortisol values and activity–rest behavior of the neonates were determined during the first 3 weeks of life on the 1st, 7th and 14th day. Actigraphic monitoring was used to record the activity pattern continuously over 24?h and a validated algorithm for neonates was used to estimate sleep and wakefulness. The saliva samples were obtained 10?min before and 10?min after the acoustic interventions for the study groups. Additionally, saliva samples were obtained from the control group seven times over a 24-h period (20:00, 21:00, 01:00, 05:00, 08:00, 13:00 and 17:00?h). The cortisol data were analyzed by fast Fourier transformation to assess periodic characteristics and frequencies. Hierarchical linear modeling was further performed for the statistical analysis. Results: The cortisol rhythm analysis indicated a circadian rhythm pattern for only one premature infant, all others of the neonates showed no circadian or ultradian rhythm in cortisol. Cortisol level of the premature neonates was significantly higher during the first day of the study period at night-time (median: 17.1?nmol/L, IQR?=?9.7–24.4?nmol/L) than on days 7 (median: 9.6?nmol/L, IQR?=?4.7–14.6?nmol/L; Tukey-HSD, z?=?4.12, p?<?0.001) and 14 (IQR?=?5.8–13.7?nmol/L; Tukey-HSD, z?=?2.89, p?<?0.05). No significant effect of acoustic stimulation was observed on the cortisol concentration and sleep–wake behavior. The activity–sleep rhythm of preterm neonates was dominated by ultradian rhythm patterns with a prominent period length of 4?h (30.5%). Activity frequencies of neonates were also significantly higher overnight on the first study day (mean: 329?±?185.1?U) than of night seven (mean: 260.2?±?132.4?U; Tukey-HSD, z?=?2.50, p?<?0.05). Quiet-activity patterns increased, whereas high-activity patterns decreased during the observation period. Average sleep time increased significantly during the study time from day 1 to day 7 (Tukey-HSD, z?=?2.51, p?<?0.05). In conclusion, premature infants showed higher cortisol levels – without a circadian rhythmicity – and higher activity frequencies in the first days after birth which may reflect an adaptation process of neonates after birth. Cortisol concentrations and the activity patterns were not influenced by music interventions.  相似文献   

17.
The objective of this study was to quantify daytime sleep in night-shift workers with and without an intervention designed to recover the normal relationship between the endogenous circadian pacemaker and the sleep/wake cycle. Workers of the treatment group received intermittent exposure to full-spectrum bright light during night shifts and wore dark goggles during the morning commute home. All workers maintained stable 8-h daytime sleep/darkness schedules. The authors found that workers of the treatment group had daytime sleep episodes that lasted 7.1?±?.1?h (mean?±?SEM) versus 6.6?±?.2?h for workers in the control group (p?=?.04). The increase in total sleep time co-occurred with a larger proportion of the melatonin secretory episode during daytime sleep in workers of the treatment group. The results of this study showed reestablishment of a phase angle that is comparable to that observed on a day-oriented schedule favors longer daytime sleep episodes in night-shift workers. (Author correspondence: )  相似文献   

18.
《Chronobiology international》2013,30(9-10):1870-1894
Cognitive performance fluctuates during the day due to diurnal variations in alertness level. This study examined: (1) whether cognitive performance in school-aged children is affected by time-of-day; (2) which functional domains are particularly vulnerable to time-of-day effects; and (3) whether the effects are more pronounced for cognitively more demanding tasks or task conditions. Children, aged 10–12 yrs, were randomly assigned to a test session starting either at 08:30 (n?=?802), 10:00 (n?=?713), or 13:00?h (n?=?652). Speed and accuracy of information processing were evaluated by tasks that assess input-related cognitive processes (e.g., stimulus encoding), central cognitive processes (e.g., working memory, sustained attention), and output-related processes (e.g., response organization) using the Amsterdam Neuropsychological Tasks program. Time-of-day effects in children were identified in specific neurocognitive domains, such as visuospatial processing and working memory, but only under cognitively more demanding task conditions. Sustained attention showed a speed-accuracy tradeoff with increased slowness and lapses in the early morning, but with better feedback responsiveness and perceptual sensitivity than in the early afternoon. Furthermore, there was a significant interaction of time-on-task with time-of-day for tempo, with the afternoon group increasing in tempo with time-on-task, and the early-morning group first showing a slowing of tempo with time-on-task, followed at the end of the task by a speed increase towards the initial levels. To conclude, the authors found time-of-day effects in preadolescents, which were confined to cognitively more demanding tasks tapping input-related and central cognitive processes. (Author correspondence: )  相似文献   

19.
Tolerance time to a standardized orthostatic stressor is markedly reduced in normotensive individuals in the morning. However, the physiological mechanisms that underpin this phenomenon are unknown. The purpose of this study was to examine the role of α1-adrenergic activity on orthostatic tolerance and associated cardiorespiratory and cerebrovascular responses, and to determine whether its endogenous modulation is important in the diurnal variation of orthostatic tolerance. In a four-trial, randomized placebo-controlled crossover experiment, 12 normotensive volunteers (aged 25?±?1 yrs; mean?±?SE) completed a 60° head-upward tilt (HUT; 15?min or until onset of presyncope) at 06:00 and 16:00?h, 90?min after the administration of either α1-blockade (prazosin, 1?mg/20?kg body weight) or placebo. Continuous beat-to-beat measurements of middle cerebral blood flow velocity (transcranial Doppler), blood pressure (Finometer), heart rate, stroke volume, cardiac output, and end-tidal carbon dioxide were obtained. Independent of time-of-day, α1-blockade markedly reduced the ability to tolerate a 15-min 60° HUT; tolerance time was 229% shorter compared with the placebo condition (p?≤?.0001). Moreover, a marked diurnal variation in orthostatic tolerance was evident following α1-adrenergic blockade; e.g., tolerance time in the morning (176?±?30 s) was lower than in the afternoon (354?±?75 s; p?=?.04). These findings highlight an important role of α1-sympathetic vasoconstrictor activity in acutely regulating blood pressure and offsetting syncope, especially in the early morning. (Author correspondence: )  相似文献   

20.
The endocrine axis controlling the stress response displays daily rhythms in many factors such as adrenal sensitivity and cortisol secretion. These rhythms have mostly been described in mammals, whereas they are poorly understood in teleost fish, so that their impact on fish welfare in aquaculture remains unexplored. In the present research, the authors investigated the daily rhythms in the hypothalamus-pituitary-interrenal (HPI) axis in the flatfish Solea senegalensis, which has both scientific and commercial interest. In a first experiment, hypothalamic expression of corticotropin-releasing hormone (crh) and its binding protein (crhbp), both pituitary proopiomelanocortin A and B (pomca and pomcb) expression, as well as plasma cortisol, glucose, and lactate levels were analyzed throughout a 24-h cycle. All variables displayed daily rhythms (cosinor, p?<?.05), with acrophases varying depending on the factor analyzed: crh and cortisol peaked at the beginning of the dark phase (zeitgeber time [ZT]?=?14.5 and 14.4?h, respectively), pomca and pomcb as well as glucose at the beginning of the light phase (ZT?=?1.2, 2.4, and 3.4?h, respectively), and crhbp and lactate at the end of the dark phase (ZT?=?22.3 and 23.0?h, respectively). In a second experiment, the influence of an acute stressor (30 s of air exposure), applied at two different time points (ZT 1 and ZT 13), was tested. The stress response differed depending on the time of day, showing higher cortisol values (96.2?±?10.7?ng/mL) when the stressor was applied at ZT 1 than at ZT 13 (52.6?±?11.1?ng/mL). This research describes for the first time the daily rhythms in endocrine factors of the HPI axis of the flatfish S. senegalensis, and the influence of daytime on the stress responses. A better knowledge of the chronobiology of fish provides a helpful tool for understanding the circadian physiology of the stress response, and for designing timely sound protocols to improve fish welfare in aquaculture. (Author correspondence: )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号