首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
It is not known whether the endogenous mammalian core clock proteins sustain measurable oscillations in cells in culture where de novo translation is pharmacologically inhibited. We studied here the mammalian core clock protein PER2, which undergoes robust circadian oscillations in both abundance and phosphorylation. With a newly developed antibody that enables tracing the endogenous PER2 protein oscillations over circadian cycles with cultured mouse embryonic fibroblast cells, we provide evidence that PER2 does not persist noticeable circadian rhythms when translation is inhibited.  相似文献   

3.
Altered estrogen receptor α (ERA) signaling and altered circadian rhythms are both features of breast cancer. By using a method to entrain circadian oscillations in human cultured cells, we recently reported that the expression of key clock genes oscillates in a circadian fashion in ERA-positive breast epithelial cells but not in breast cancer cells, regardless of their ERA status. Moreover, we reported that ERA mRNA oscillates in a circadian fashion in ERA-positive breast epithelial cells, but not in ERA-positive breast cancer cells. By using ERA-positive HME1 breast epithelial cells, which can be both entrained in vitro and can form mammary gland-like acinar structures in three-dimensional (3D) culture, first we identified a circuit encompassing ERA and an estrogen-regulated loop consisting of two circadian clock genes, PER2 and BMAL1. Further, we demonstrated that this estrogen-regulated circuit is necessary for breast epithelial acinar morphogenesis. Disruption of this circuit due to ERA-knockdown, negatively affects the estrogen-sustained circadian PER2-BMAL1 mechanism as well as the formation of 3D HME1 acini. Conversely, knockdown of either PER2 or BMAL1, by hampering the PER2-BMAL1 loop of the circadian clock, negatively affects ERA circadian oscillations and 3D breast acinar morphogenesis. To our knowledge, this study provides the first evidence of the implication of an ERA-circadian clock mechanism in the breast acinar morphogenetic process.  相似文献   

4.
Diambra L  Malta CP 《PloS one》2012,7(3):e33912
Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping) of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i) the control of net entrance of PER into the nucleus and (ii) the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.  相似文献   

5.
Antennal sensory neurons in the fruit fly Drosophila melanogaster express circadian rhythms in the clock gene PERIOD (PER) and appear to be sufficient and necessary for circadian rhythms in olfactory responses. Given recent evidence for daily rhythms of pheromone responses in the antenna of the hawkmoth Manduca sexta, we examined whether a peripheral PER-based circadian clock might be present in this species. Several different cell types in the moth antenna were recognized by monoclonal antibodies against Manduca sexta PER. In addition to PER-like staining of pheromone-sensitive olfactory receptor neurons and supporting cells, immunoreactivity was detected in beaded branches contacting the pheromone-sensitive sensilla. The nuclei of apparently all sensory receptor neurons, of sensilla supporting cells, of epithelial cells, and of antennal nerve glial cells were PER-immunoreactive. Expression of per mRNA in antennae was confirmed by the polymerase chain reaction, which showed stronger expression at Zeitgeber-time 15 compared with Zeitgeber-time 3. This evidence for the expression of per gene products suggests that the antenna of the hawkmoth contains endogenous circadian clocks.  相似文献   

6.
Altered estrogen receptor α (ERA) signaling and altered circadian rhythms are both features of breast cancer. By using a method to entrain circadian oscillations in human cultured cells, we recently reported that the expression of key clock genes oscillates in a circadian fashion in ERA-positive breast epithelial cells but not in breast cancer cells, regardless of their ERA status. Moreover, we reported that ERA mRNA oscillates in a circadian fashion in ERA-positive breast epithelial cells, but not in ERA-positive breast cancer cells. By using ERA-positive HME1 breast epithelial cells, which can be both entrained in vitro and can form mammary gland-like acinar structures in three-dimensional (3D) culture, first we identified a circuit encompassing ERA and an estrogen-regulated loop consisting of two circadian clock genes, PER2 and BMAL1. Further, we demonstrated that this estrogen-regulated circuit is necessary for breast epithelial acinar morphogenesis. Disruption of this circuit due to ERA-knockdown, negatively affects the estrogen-sustained circadian PER2-BMAL1 mechanism as well as the formation of 3D HME1 acini. Conversely, knockdown of either PER2 or BMAL1, by hampering the PER2-BMAL1 loop of the circadian clock, negatively affects ERA circadian oscillations and 3D breast acinar morphogenesis. To our knowledge, this study provides the first evidence of the implication of an ERA-circadian clock mechanism in the breast acinar morphogenetic process.  相似文献   

7.
The circadian systems of different insect groups are summarized and compared. Emphasis is placed on the anatomical identification and characterization of circadian pacemakers, as well as on their entrainment, coupling, and output pathways. Cockroaches, crickets, beetles, and flies possess bilaterally organized pacemakers in the optic lobes that appear to be located in the accessory medulla, a small neuropil between the medulla and the lobula. Neurons that are immunoreactive for the peptide pigment-dispersing hormone (PDH) arborize in the accessory medulla and appear to be important components of the optic lobe pacemakers. The neuronal architecture of the accessory medulla with associated PDH-immunoreactive neurons is best characterized in cockroaches, while the molecular machinery of rhythm generation is best understood in fruit flies. One essential component of the circadian clock is the period protein (PER), which colocalizes with PDH in about half of the fruit fly's presumptive pacemaker neurons. PER is also found in the presumptive pacemaker neurons of beetles and moths, but appears to have different functions in these insects. In moths, the pacemakers are situated in the central brain and are closely associated with neuroendocrine functions. In the other insects, neurons associated with neuroendocrine functions also appear to be closely coupled to the optic lobe pacemakers. Some crickets and flies seem to possess central brain pacemakers in addition to their optic lobe pacemakers. With respect to neuronal organization, the circadian systems of insects show striking similarities to the vertebrate circadian system. (Chronobiology International, 15(6), 567-594, 1998)  相似文献   

8.
9.
10.
The period (per) and timeless (tim) genes play a central role in the Drosophila circadian clock mechanism. PERIOD (PER) and TIMELESS (TIM) proteins periodically accumulate in the nuclei of pace-making cells in the fly brain and many cells in peripheral organs. In contrast, TIM and PER in the ovarian follicle cells remain cytoplasmic and do not show daily oscillations in their levels. Moreover, TIM is not light sensitive in the ovary, while it is highly sensitive to this input in circadian tissues. The mechanism underlying this intriguing difference is addressed here. It is demonstrated that the circadian photoreceptor CRYPTOCHROME (CRY) is not expressed in ovarian tissues. Remarkably, ectopic cry expression in the ovary is sufficient to cause degradation of TIM after exposure to light. In addition, PER levels are reduced in response to light when CRY is present, as observed in circadian cells. Hence, CRY is the key component of the light input pathway missing in the ovary. However, the factors regulating PER and TIM levels downstream of light/cry action appear to be present in this non-circadian organ.  相似文献   

11.
ABSTRACT

In Cushing’s syndrome, the cortisol rhythm is impaired and can be associated with the disruption in the rhythmic expression of clock genes. In this study, we evaluated the expression of CLOCK, BMAL1, CRY1, CRY2, PER1, PER2, PER3 genes in peripheral blood leukocytes of healthy individuals (n = 13) and Cushing’s disease (CD) patients (n = 12). Participants underwent salivary cortisol measurement at 0900 h and 2300 h. Peripheral blood samples were obtained at 0900 h, 1300 h, 1700 h, and 2300 h for assessing clock gene expression by qPCR. Gene expression circadian variations were evaluated by the Cosinor method. In healthy controls, a circadian variation in the expression of CLOCK, BMAL1, CRY1, PER2, and PER3 was observed, whereas the expression of PER1 and CRY2 followed no specific pattern. The expression of PER2 and PER3 in healthy leukocytes presented a late afternoon acrophase, similarly to CLOCK, whereas CRY1 showed night acrophase, similarly to BMAL1. In CD patients, the circadian variation in the expression of clock genes was lost, along with the abolition of cortisol circadian rhythm. However, CRY2 exhibited a circadian variation with acrophase during the dark phase in patients. In conclusion, our data suggest that Cushing’s disease, which is characterized by hypercortisolism, is associated with abnormalities in the circadian pattern of clock genes. Higher expression of CRY2 at night outlines its putative role in the cortisol circadian rhythm disruption.  相似文献   

12.
Circadian clocks have been shown to operate developmentally in mouse and human hematopoietic stem and progenitor cells in vivo, but little is known about their possible oscillations in vitro. Here, we show that repeated circadian oscillations could be induced in both cultured bone marrow‐derived mesenchymal‐ and adipose‐derived stem cells (MSCs and ASCs, respectively) by serum shock. In particular, the novel finding of rhythmic clock gene expression induced by cAMP analogs showed similarities as well as differences to serum‐induced oscillations. Rhythmic PER1 expression was found in serum‐shocked MSCs, suggesting the phosphorylation status of PER1 is important for its activity in circadian rhythms. Furthermore, immunofluoresent staining showed that the localization of PER1 was dependent on the level of PER1 expression. These inducible self‐sustained circadian clocks in primary cultures of human MSCs in vitro with rhythmic changes in expression levels, phosphorylation, and localization of clock protein, PER1, may be of importance for maintaining the induced oscillations in stem cells. Therefore, the established cell models described here appear to be valuable for studying the molecular mechanism driving and coordinating the circadian network between stem and stromal cells.  相似文献   

13.
Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis.  相似文献   

14.
The mammalian circadian clock proteins undergo a daily cycle of accumulation followed by phosphorylation and degradation. The mechanism by which clock proteins undergo degradation has not been fully understood. Circadian clock protein PERIOD2 (PER2) is shown to be the potential target of F-box protein beta-TrCP1, a component of ubiquitin E3 ligase. Here, we show that beta-TrCP2 as well as beta-TrCP1 target PER2 protein in vitro. We also identified beta-TrCP binding site (m2) of PER2 being recognized by both beta-TrCP1 and beta-TrCP2. Luciferase-PER2 fusion system revealed that m2 site was responsible for the stability of PER2. The role of beta-TrCP1 and beta-TrCP2 in circadian rhythm generation was analysed by real-time reporter assay revealing that siRNA-mediated suppressions of beta-TrCP1 and/or beta-TrCP2 attenuate circadian oscillations in NIH3T3 cell. beta-TrCP1-deficient mice, however, showed normal period length, light-induced phase-shift response in behaviour and normal expression of PER2, suggesting that beta-TrCP1 is dispensable for the central clock in the suprachiasmatic nucleus. Our study indicates that beta-TrCP1 and beta-TrCP2 were involved in the cell autonomous circadian rhythm generation in culture cells, although the role of beta-TrCP2 in the central clock in the suprachiasmatic nucleus remains to be elucidated.  相似文献   

15.
In the fly Drosophila melanogaster, neuronal plasticity of synaptic terminals in the first optic neuropil, or lamina, depends on early visual experience within a critical period after eclosion [1]. The current study revealed two additional and parallel mechanisms involved in this type of synaptic terminal plasticity. First, an endogenous circadian rhythm causes daily oscillations in the volume of photoreceptor cell terminals. Second, daily visual experience precisely modulates the circadian time course and amplitude of the volume oscillations that the photoreceptor-cell terminals undergo. Both mechanisms are separable in their molecular basis. We suggest that the described neuronal plasticity in Drosophila ensures continuous optimal performance of the visual system over the course of a 24 h-day. Moreover, the sensory system of Drosophila cannot only account for predictable, but also for acute, environmental changes. The volumetric changes in the synaptic terminals of photoreceptor cells are accompanied by circadian and light-induced changes of presynaptic ribbons as well as extensions of epithelial glial cells into the photoreceptor terminals, suggesting that the architecture of the lamina is altered by both visual exposure and the circadian clock. Clock-mutant analysis and the rescue of PER protein rhythmicity exclusively in all R1-6 cells revealed that photoreceptor-cell plasticity is autonomous and sufficient to control visual behavior. The strength of a visually guided behavior, the optomotor turning response, co-varies with synaptic-terminal volume oscillations of photoreceptor cells when elicited at low light levels. Our results show that behaviorally relevant adaptive processing of visual information is performed, in part, at the level of visual input level.  相似文献   

16.
Im SH  Li W  Taghert PH 《PloS one》2011,6(4):e18974

Background

To synchronize their molecular rhythms, circadian pacemaker neurons must input both external and internal timing cues and, therefore, signal integration between sensory information and internal clock status is fundamental to normal circadian physiology.

Methodology/Principal Findings

We demonstrate the specific convergence of clock-derived neuropeptide signaling with that of a deep brain photoreceptor. We report that the neuropeptide PDF receptor and the circadian photoreceptor CRYPTOCROME (CRY) are precisely co-expressed in a subset of pacemakers, and that these pathways together provide a requisite drive for circadian control of daily locomotor rhythms. These convergent signaling pathways influence the phase of rhythm generation, but also its amplitude. In the absence of both pathways, PER rhythms were greatly reduced in only those specific pacemakers that receive convergent inputs and PER levels remained high in the nucleus throughout the day. This suggested a large-scale dis-regulation of the pacemaking machinery. Behavioral rhythms were likewise disrupted: in light∶dark conditions they were aberrant, and under constant dark conditions, they were lost.

Conclusions/Significance

We speculate that the convergence of environmental and clock-derived signals may produce a coincident detection of light, synergistic responses to it, and thus more accurate and more efficient re-setting properties.  相似文献   

17.
Circadian rhythms are common in many cell types but are reported to be lacking in embryonic stem cells. Recent studies have described possible interactions between the molecular mechanism of circadian clocks and the signaling pathways that regulate stem cell differentiation. Circadian rhythms have not been examined well in neural stem cells and progenitor cells that produce new neurons and glial cells during adult neurogenesis. To evaluate circadian timing abilities of cells undergoing neural differentiation, neurospheres were prepared from the mouse subventricular zone (SVZ), a rich source of adult neural stem cells. Circadian rhythms in mPer1 gene expression were recorded in individual spheres, and cell types were characterized by confocal immunofluorescence microscopy at early and late developmental stages in vitro. Circadian rhythms were observed in neurospheres induced to differentiate into neurons or glia, and rhythms emerged within 3–4 days as differentiation proceeded, suggesting that the neural stem cell state suppresses the functioning of the circadian clock. Evidence was also provided that neural stem progenitor cells derived from the SVZ of adult mice are self-sufficient clock cells capable of producing a circadian rhythm without input from known circadian pacemakers of the organism. Expression of mPer1 occurred in high frequency oscillations before circadian rhythms were detected, which may represent a role for this circadian clock gene in the fast cycling of gene expression responsible for early cell differentiation.  相似文献   

18.
Circadian rhythms in metabolism, physiology, and behavior originate from cell-autonomous circadian clocks located in many organs and structures throughout the body and that share a common molecular mechanism based on the clock genes and their protein products. In the mammalian neural retina, despite evidence supporting the presence of several circadian clocks regulating many facets of retinal physiology and function, the exact cellular location and genetic signature of the retinal clock cells remain largely unknown. Here we examined the expression of the core circadian clock proteins CLOCK, BMAL1, NPAS2, PERIOD 1(PER1), PERIOD 2 (PER2), and CRYPTOCHROME2 (CRY2) in identified neurons of the mouse retina during daily and circadian cycles. We found concurrent clock protein expression in most retinal neurons, including cone photoreceptors, dopaminergic amacrine cells, and melanopsin-expressing intrinsically photosensitive ganglion cells. Remarkably, diurnal and circadian rhythms of expression of all clock proteins were observed in the cones whereas only CRY2 expression was found to be rhythmic in the dopaminergic amacrine cells. Only a low level of expression of the clock proteins was detected in the rods at any time of the daily or circadian cycle. Our observations provide evidence that cones and not rods are cell-autonomous circadian clocks and reveal an important disparity in the expression of the core clock components among neuronal cell types. We propose that the overall temporal architecture of the mammalian retina does not result from the synchronous activity of pervasive identical clocks but rather reflects the cellular and regional heterogeneity in clock function within retinal tissue.  相似文献   

19.
We examined the effect of photoperiod on the expression of circadian clock genes period (per) and timeless (tim), using quantitative real-time polymerase chain reaction (PCR), and the effect of photoperiod on subcellular distribution of PERIOD (PER), using immunocytochemistry, in the blow fly, Protophormia terraenovae. Under both short-day and long-day conditions, the mRNA levels of per and tim in the brain oscillated, and their peaks and troughs occurred around lights-off and lights-on, respectively. The oscillations persisted even under constant darkness. In the large ventral lateral neurons (l-LNvs), small ventral lateral neurons (s-LNvs), dorsal lateral neurons (LNds), and medial dorsal neurons (DNms), the subcellular distribution of PER-immunoreactivity changed with time. The number of cells with PER-immunoreactivity in the nucleus was highest 12 h after lights-off and lowest 12 h after lights-on, regardless of photoperiod, suggesting that PER nuclear translocation entrains to photoperiod. When temporal changes in the nuclear localization of PER were compared, the neurons could be classified into 2 groups: the l-LNvs were similar to the s-LNvs, and the LNds were similar to DNms. In LNds and DNms, decreasing rates of the number of cells with PER immunoreactivity in the nucleus per brain from the maximum were large as compared with those in l-LNvs and s-LNvs under short-day conditions. These results suggest that photoperiodic information is reflected in the expression patterns of circadian clock genes per and tim and in the subcellular distribution of PER. This observation suggests that the 2 different groups of clock neurons respond to photoperiod in slightly different manners.  相似文献   

20.
The circadian clock is responsible for the generation of circadian rhythms in hormonal secretion and metabolism. These peripheral clocks could be reset by various cues in order to adapt to environmental variations. The ovary can be characterized as having highly dynamic physiology regulated by gonadotropins. Here, we aimed to address the status of circadian clock in the ovary, and to explore how gonadotropins could regulate clockwork in granulosa cells (GCs). To this end, we mainly utilized the immunohistochemistry, RT-PCR, and real-time monitoring of gene expression methods. PER1 protein was constantly abundant across the daily cycle in the GCs of immature ovaries. In contrast, PER1 protein level was obviously cyclic through the circadian cycle in the luteal cells of pubertal ovaries. In addition, both FSH and LH induced Per1 expression in cultured immature and mature GCs, respectively. The promoter analysis revealed that the Per1 expression was mediated by the cAMP response element binding protein. In cultured transgenic GCs, both FSH and LH also induced the circadian oscillation of Per2. However, the Per2 oscillation promoted by FSH quickly dampened within only one cycle, whereas the Per2 oscillation promoted by LH was persistently maintained. Collectively, these findings strongly suggest that both FSH and LH play an important role in regulating circadian clock in the ovary; however, they might exert differential actions on the clockwork in vivo due to each specific role within ovarian physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号