首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This issue of Chronobiology International is dedicated to the age-related changes in circadian rhythms as they occur in humans. It seems timely to give an overview of the knowledge and hypotheses on these changes now that we enter a century in which the number and percentage of elderly in the population will be unprecedented. Although we should take care not to follow the current tendency to think of old age as a disease—ignoring the fine aspects of being old—there is definitely an age-related increase in the risk of a number of conditions that are at least uncomfortable.

Circadian rhythms have been attributed adaptive values that usually go unnoticed, but can surface painfully clear when derangements occur. Alterations in the regulation of circadian rhythms are thought to contribute to the symptoms of a number of conditions for which the risk is increased in old age (e.g., sleep disturbances, dementia, and depression). A multidisciplinary approach to investigate the mechanisms of age-related changes in circadian regulation eventually may result in treatment strategies that will improve the quality of life of the growing number of elderly.

Although diverse topics are addressed in this issue, the possible mechanisms by which a deranged circadian timing system may be involved in sleep disturbances receives the most attention. This seems appropriate in view of the numerous studies that have addressed this relation in the last decade and also because of the high frequency and strong impact of sleep disturbances in the elderly. This introduction to the special issue first briefly addresses the impact of disturbed sleep in the elderly to show that the development of therapeutic methods other than the currently available pharmacological treatments should be given high priority. I believe that chronobiological insights may play an important role in the development of rational therapeutical methods.(Chronobiology International, 17(3), 233–243, 2000)  相似文献   

2.
We tested the hypothesis that glucocorticoid stimulation mediates the effect of exercise on circadian clock resetting in hamsters. We injected animals with 1 and 5 mg dexamethasone—a potent glucocorticoid agonist—at zeitgeber time (ZT) 4 and ZT6, circadian phases at which vigorous exercise induces maximal phase advances of about 3h. Neither dose of dexamethasone induced phase shifts that were significantly larger than those induced by injections of saline vehicle at either of the phases tested. Some animals, however, showed quite large and consistent phase shifts to repeated injections whether with saline or dexamethasone, such that there was a statistically significant correlation between individuals' responses to the two treatments. The data indicate no role for increased glucocorticoid activity in mediating the effects of exercise on circadian phase shifting, but suggest a modest role for nonspecific stimulation, independent of exercise, in inducing phase shifts at ZT4–ZT6. (Chronobiology International, 18(2), 203–213, 2001)  相似文献   

3.
This brief review is concerned with how human performance efficiency changes as a function of time of day. It presents an overview of some of the research paradigms and conceptual models that have been used to investigate circadian performance rhythms. The influence of homeostatic and circadian processes on performance regulation is discussed. The review also briefly presents recent mathematical models of alertness that have been used to predict cognitive performance. Related topics such as interindividual differences and the postlunch dip are presented. (Chronobiology International, 17(6), 719–732, 2000)  相似文献   

4.
Agitation is a common problem in institutionalized patientswith Alzheimer's disease (AD). “Sundowning,” or agitationthat occurs primarily in the evening, is estimated to occur in 10—25%of nursing home patients. The current study examined circadian patterns ofagitation in 85 patients with AD living in nursing homes in the San Diego,California, area. Agitation was assessed using behavioral ratings collectedevery 15 minutes over 3 days, and activity and light exposure data were collectedcontinuously using Actillume recorders. A five-parameter extension of thetraditional cosine function was used to describe the circadian rhythms. Themean acrophase for agitation was 14:38, although there was considerable variabilityin the agitation rhythms displayed by the patients. Agitation rhythms weremore robust than activity rhythms. Surprisingly, only 2 patients (2.4%) were“sundowners.”In general, patients were exposed to very low levelsof illumination, with higher illumination during the night being associatedwith less robust agitation rhythms with higher rhythm minima (i.e., some agitationpresent throughout the day and night). Seasonality was examined; however,there were no consistent seasonal patterns found. This is the largest studyto date to examine agitation rhythms using behavioral observations over multiple24h periods. The results suggest that, although sundowning is uncommon, agitationappears to have a strong circadian component in most patients that is relatedto light exposure, sleep, and medication use. Further research into the understandingof agitation rhythms is needed to examine the potential effects of interventionstargeting sleep and circadian rhythms. (ChronobiologyInternational, 17(3), 405–418, 2000)  相似文献   

5.
《Chronobiology international》2013,30(9-10):1930-1942
The authors studied longitudinally four healthy young adults to explore if habitual evening intake of a “moderate” amount of wine alters parameters, including period (τ) of circadian rhythms. Subjects, synchronized by diurnal activity from 07.30?h?±?60?min to 23.00?h?±?90?min and nocturnal rest, were studied during a continuous 22-day span: 11 days without alcohol (control) and 11 days with a glass (200?mL) of wine nightly at supper (alcohol). The amount of alcohol ingested with dinner ranged from 0.28 to 0.42?g/kg/24?h/participant and the estimated evening blood alcohol level ranged from 0.02 to 0.10?g/L/participant. Single reaction time (SRT; yellow light signal), three-choice reaction time (CRT) (red, green, and yellow signals) of both hands, related cumulated errors (c-errors), as well as oral temperature (OT) and grip strength (GS) were measured four to seven times/24?h. Time series were analyzed individually to quantify 24-h means (M), circadian τ (power spectra), and cosinor, and correlation, χ2, and t tests were performed. The sleep-wake τ (actography) was 24?h in every subject for both conditions. With alcohol, all subjects showed an OT circadian τ shorter than the control one. The SRT circadian M was longer (poorer performance) with wine versus control in three subjects, while CRT was longer with wine versus control in only one subject. Correlation analyses also showed the detrimental effect of alcohol on the same variables. Number of days with <2 c-errors was predominant in control and decreased with alcohol, especially for SRT. The desynchronization of the 10 different documented rhythms was greater with alcohol with reference to control in two of the four studied subjects. This work shows that habitual "moderate" wine drinking at supper reduces the performance of subjects, increases the level of c-errors/24?h, especially for SRT, suggesting a “moderate” amount of alcohol has the potential to increase accident risk, and it can also desynchronize circadian time organization. (Author correspondence: )  相似文献   

6.
Since consistent data on endogenous circadian rhythms of Mongolian gerbils are not available, the main aim of our study was to identify suitable conditions to receive stable and reproducible free-running rhythms of activity under different light intensities. Another objective was to determine the role of social cues as an exogenous zeitgeber in the absence of a light-dark (LD) cycle. We performed two long-term sets of experiments with adult male gerbils kept in climatic chambers under various photoperiods of at least 30 days each. In all cases, the time of lights on in the chambers differed from the daily starting hour of work in the animal house. Always, two animals per chamber were kept separately in cages with a running wheel while their activity was monitored continuously. During the first set, only three of eight animals developed intra- and interindividual variable free-running rhythms. The activity patterns seemed to be influenced by human activities outside, indicating high sensitivity to external factors. Subsequently, we damped the chambers and the room and restricted access to the room. In the following noise-reduced set, all gerbils developed comparable free-running rhythms of activity. We determined the mean of the free-running period τ, the activity-rest relationship α/θ and the amount of running wheel activity per day: τ = 23.7h ± 0.08h under low light (5 lux) and 25.5h ± 0.19h under high light intensities (450 lux); α/θ = 0.53 ± 0.08 under 5 lux and 0.34 ± 0.04 under 450 lux. The amount of daily activity was 12 times as high under 5 lux as under 450 lux. There was no indication that the two animals in one chamber socially synchronized each other. In conclusion, the pronounced rhythm changes in accordance with Aschoff's theory support the view that gerbils are mainly nocturnal animals. (Chronobiology International, 17(2), 137–145, 2000)  相似文献   

7.
The locomotor activity of the millipede Glyphiulus cavernicolus (Spirostreptida), which occupies the deeper recesses of a cave, was monitored in light-dark (LD) cycles (12h light and 12h darkness), constant darkness (DD), and constant light (LL) conditions. These millipedes live inside the cave and are apparently never exposed to any periodic factors of the environment such as light-dark, temperature, and humidity cycles. The activity of a considerable fraction of these millipedes was found to show circadian rhythm, which entrained to a 12:12 LD cycle with maximum activity during the dark phase of the LD cycle. Under constant darkness (DD), 56.5% of the millipedes (n = 23) showed circadian rhythms, with average free-running period of 25.7h ± 3.3h (mean ± SD, range 22.3h to 35.0h). The remaining 43.5% of the millipedes, however, did not show any clear-cut rhythm. Under DD conditions following an exposure to LD cycles, 66.7% (n = 9) showed faint circadian rhythm, with average free-running period of 24.0h ± 0.8h (mean ± SD, range 22.9h to 25.2h). Under constant light (LL) conditions, only 2 millipedes of 11 showed free-running rhythms, with average period length of 33.3h ± 1.3h. The results suggest that these cave-dwelling millipedes still possess the capacity to measure time and respond to light and dark situations. (Chronobiology International, 17(6), 757–765, 2000)  相似文献   

8.
The purpose of this study was to describe and compare the circadian rhythm of body temperature and cortisol, as well as self-reported clock times of sleep onset and offset on weekdays and weekends in 19 healthy adult “larks” (morning chronotypes) and “owls” (evening chronotypes), defined by the Horne and Östberg questionnaire. Day-active subjects entered the General Clinical Research Center, where blood was sampled every 2h over 38h for later analysis for cortisol concentration by enzyme immunoassay. Rectal body temperature was measured continuously. Lights were turned off at 22:30 for sleep and turned on at 06:00, when subjects were awakened. The acrophases (peak times) of the cortisol and temperature rhythms occurred 55 minutes (P ≤.05) and 68 minutes (P <.01), respectively, earlier in the morningness group. The amplitude of the cortisol rhythm was lower in the eveningness than in the morningness group (P = n.s.). Subject groups differed on all indices of habitual and preferred timing of sleep and work weekdays and weekends (P =. 05–.001). (Chronobiology International, 18(2), 249–261, 2001)  相似文献   

9.
Previous forced desynchrony (FD) studies have shown that neurobehavioral function is affected by circadian phase and duration of prior wakefulness. There is some evidence that neuromuscular function may also be affected by circadian phase and prior wake, but these effects have not been systematically investigated. This study examined the effects of circadian phase and prior wake on two measures of neuromuscular function—postural balance (PB) and maximal grip strength (MGS)—using a 28-h FD protocol. Eleven male participants (mean?±?SD: 22.7?±?2.5 yr) lived in a sound-attenuated, light- and temperature-controlled time-isolation laboratory for 12 days. Following two training days and a baseline day, participants were scheduled to seven 28-h FD days, with the ratio between sleep opportunity and wake spans kept constant (i.e., 9.3?h sleep period and 18.7?h wake period). PB was measured during 1?min of quiet standing on a force platform. MGS of the dominant hand was measured using a dynamometer. These two measures were obtained every 2.5?h during wake. Core body temperature was continuously recorded with rectal thermistors to determine circadian phase. For both measures of neuromuscular function, individual data points were assigned a circadian phase and a level of prior wake. Data were analyzed by repeated-measures analysis of variance (ANOVA) with two within-subjects factors: circadian phase (six phases) and prior wake (seven levels). For MGS, there was a main effect of circadian phase, but no main effect of prior wake. For PB, there were no main effects of circadian phase or prior wake. There were no interactions between circadian phase and prior wake for MGS or PB. The significant effect of circadian phase on muscle strength is in agreement with previous reports in the literature. In terms of prior wake, both MGS and PB remained relatively stable across wake periods, indicating that neuromuscular function may be more robust than neurobehavioral function when the duration of wakefulness is within a normal range (i.e., 18.7?h). (Author correspondence: )  相似文献   

10.
用放射免疫方法对连续采集的正常树及视交叉上核损毁树尿中的皮质醇进行了测定,以分析其尿中皮质醇浓度及排泄量的昼夜变动规律。结果表明,正常树尿中皮质醇的浓度及单位时间内的排泄量均具有明显的昼夜节律,在一天中,1100前后的浓度最高,000前后的浓度最低,前者约为后者的8倍。视交叉上核损毁后,树皮质醇的这种昼夜节律消失,说明视交叉上核在树中也是机体昼夜节律重要的振荡器。  相似文献   

11.
This study deals with the influence of time of day on neuromuscular efficiency in competitive cyclists during continuous exercise versus continuous rest. Knee extension torque was measured in ultradistance cyclists over a 24h period (13:00 to 13:00 the next day) in the laboratory. The subjects were requested to maintain a constant speed (set at 70% of their maximal aerobic speed obtained during a preliminary test) on their own bicycles, which were equipped with cyclosimulators. Every 4h, torque developed and myoelectric activity were estimated during maximal isometric voluntary contractions of knee extensors using an isokinetic dynamometer. Mesenteric temperature was monitored by telemetry. The same measures were also recorded while the subjects were resting awake until 13:00 the next day. During activity, torque changed within the 24h period (p <. 005), with an acrophase at 19:10 and an amplitude of 7.8% around the mean of 70.7%. At rest, a circadian rhythm was observed in knee extensor torque (p <. 05), with an acrophase at 19:30 and an amplitude of 6% around the mean of 92.3%. Despite the standardized conditions, the results showed that isometric maximal strength varied with time of day during both a submaximal exercise and at rest without prior exercise. The sine waves representing these two rhythms were correlated significantly. Although at rest the diurnal rhythm followed muscular activity (i.e., neurophysiological factors), during exercise, this rhythm was thought to stem more from fluctuations in the contractile state of muscle. (Chronobiology International, 17(5), 693–704, 2000)  相似文献   

12.
高原鼠兔似昼夜活动节律的研究   总被引:2,自引:1,他引:1  
本文对高原鼠兔活动节律的季节变化,不同光强对高原鼠兔似昼夜活动节律的影响,以及温度效应,饥俄效应等问题进行了研究。同时对昼夜节律研究中长期存在的理论问题,内源性和外源性观点提出探讨。  相似文献   

13.
Mammals and birds have evolved the ability to maintain a high and constant body temperature Tb over a wide range of ambient temperatures Ta using endogenous heat production. In many, especially small endotherms, cost for thermoregulatory heat production can exceed available energy; to overcome these energetic bottlenecks, they enter a state of torpor (a regulated reduction of Tb and metabolic rate). Since the occurrence of torpor in many species is a seasonal event and occurs at certain times of the day, we review whether circadian and circannual rhythms, important in the timing of biological events in active animals, also play an important role during torpor when Tb is reduced substantially and may even fall below 0°C. The two distinct patterns of torpor, hibernation (prolonged torpor) and daily torpor, differ substantially in their interaction with the circadian system. Daily torpor appears to be integrated into the normal circadian rhythm of activity and rest, although torpor is not restricted only to the normal rest phase of an animal. In contrast, hibernation can last for several days or even weeks, although torpor never spans the entire hibernation season, but is interrupted by periodic arousals and brief normothermic periods. Clearly, a day is no longer divided in activity and rest, and at first glance the role of the circadian system appears negligible. However, in several hibernators, arousals not only follow a regular pattern consistent with a circadian rhythm, but also are entrainable by external stimuli such as photoperiod and Ta. The extent of the interaction between the circadian and circannual system and hibernation varies among species. Biological rhythms of hibernators for which food availability appears to be predictable seasonally and that hibernate in deep and sealed burrows show little sensitivity to external stimuli during hibernation and hence little entrainability of arousal events. In contrast, opportunistic hibernators, which some times use arousals for foraging and hibernate in open and accessible hibernacula, are susceptible to external zeitgebers. In opportunistic hibernators, the circadian system plays a major role in maintaining synchrony between the normal day-night cycle and occasional foraging. Although the daily routine of activity and rest is abandoned during hibernation, the circadian system appears to remain functional, and there is little evidence it is significantly affected by low Tb. (Chronobiology International, 17(2), 103–128, 2000)  相似文献   

14.
大鼠交叉上核中SS和VIPmRNA昼夜节律的研究   总被引:1,自引:0,他引:1  
杨靖  井上慎一 《动物学报》1995,41(3):322-326
用Northernblot杂交方法分析LD循环条件下大鼠SCN和CX的SSmRNA和VIPmRNA丰度的昼夜变化,结果表明这两种mRNA昼夜间的相对含量在CX中基本不变,而在SCN中则呈现规律性变化的模式,与双侧眼球摘除后大鼠SCNmRNA丰度昼夜变化的实验结果相比较,SSmRNA丰度变化不受外界光的影响,具有内源性的昼夜节律,而VIPmRNA丰度的昼夜变化则受外界光的影响。  相似文献   

15.
《Chronobiology international》2013,30(7):1369-1388
Australian sleepy lizards (Tiliqua rugosa) exhibit marked locomotor activity rhythms in the field and laboratory. Light-dark (LD) and temperature cycles (TCs) are considered important for the entrainment of circadian locomotor activity rhythms and for mediating seasonal adjustments in aspects of these rhythms, such as phase, amplitude, and activity pattern. The relative importance of 24 h LD and TCs in entraining the circadian locomotor activity rhythm in T. rugosa was examined in three experiments. In the first experiment, lizards were held under LD 12:12 and subjected to either a TC of 33:15?°?C in phase with the LD cycle or a reversed TC positioned in antiphase to the LD cycle. Following LD 12:12, lizards were maintained under the same TCs but were subjected to DD. Activity was restricted to the thermophase in LD, irrespective of the lighting regime and during the period of DD that followed, suggesting entrainment by the TC. The amplitude of the TC was lowered by 8?°?C to reduce the intensity and possible masking effect of the TC zeitgeber in subsequent experiments. In the second experiment, lizards were held under LD 12.5:11.5 and subjected to one of three treatments: constant 30?°?C, normal TC (30:20?°?C) in phase with the LD cycle, or reversed TC. Following LD, all lizards were subjected to DD and constant 30?°?C. Post-entrainment free-run records revealed that LD cycles and TCs could both entrain the locomotor rhythms of T. rugosa. In LD, mean activity duration (α) of lizards in the normal TC group was considerably less than that in the constant 30?°?C group. Mean α also increased between LD and DD in lizards in the normal TC group. Although there was large variation in the phasing of the rhythm in relation to the LD cycle in reversed TC lizards, TCs presented in phase with the LD cycle most accurately synchronized the rhythm to the photocycle. In the third experiment, lizards were held in DD at constant 30?°?C before being subjected to a further period of DD and one of four treatments: normal TC (06:00 to 18:00 h thermophase), delayed TC (12:00 to 00:00 h thermophase), advanced TC (00:00 to 12:00 h thermophase), or control (no TC, constant 30?°?C). While control lizards continued to free-run in DD at constant temperature, the locomotor activity rhythms of lizards subjected to TCs rapidly entrained to TCs, whether or not the TC was phase advanced or delayed by 6 h. There was no difference in the phase relationships of lizard activity rhythms to the onset of the thermophase among the normal, delayed, and advanced TC groups, suggesting equally strong entrainment to the TC in each group. The results of this experiment excluded the possibility that masking effects were responsible for the locomotor activity responses of lizards to TCs. The three experiments demonstrated that TCs are important for entraining circadian locomotor activity rhythms of T. rugosa, even when photic cues are conflicting or absent, and that an interaction between LD cycles and TCs most accurately synchronizes this rhythm. (Author correspondence: )  相似文献   

16.
An association between increased risk of mortality and disruptions in rest/activity circadian rhythms (RAR) has been shown among adults with dementia and with metastatic colorectal cancer. However, the association among a more general population of older adults has not been studied. Our study population consisted of 2964 men aged?≥?67 yrs of age enrolled in the Outcomes of Sleep Disorders in Older Men (MrOS Sleep) Study. Rest/activity patterns were measured with wrist actigraphy. RAR parameters were computed and expressed as quintiles, and included acrophase (time of peak activity level), amplitude (peak-to-nadir difference), mesor (middle of the peak), pseudo F-value (overall circadian rhythmicity), beta (steepness), and alpha (peak-to-trough width). After adjustment for multiple potential confounders, men in the lowest quintile of pseudo F-value had a 57% higher mortality rate (hazard ratio [HR]?=?1.57, 95% CI, 1.03–2.39) than men in the highest quintile. This association was even stronger with increased risk of cardiovascular disease-related mortality (CVD) (HR?=?2.32, 95% CI, 1.04–5.22). Additionally, men in the lowest quintile of acrophase had a 2.8-fold higher rate of CVD-related mortality (HR?=?2.84, 95% CI, 1.29–6.24). There was no evidence of independent associations with amplitude, mesor, alpha, beta, and mortality risk. Older men with less robust RAR and earlier acrophase timing have modestly higher all-cause and CVD-related mortality rates. Further research should examine potential biological mechanisms underlying this association. (Author correspondence: )  相似文献   

17.
Our aim was to compare the circadian phase characteristics of healthy adolescent and young adult males in a naturalistic summertime condition. A total of 19 adolescents (mean age 15.7 years) and 18 young adults (mean age 24.5 years) with no sleep problems took part in this study. Two-night polysomnographic (PSG) sleep recordings and 24h secretion patterns of urinary 6-sulfatoxymelatonin were monitored in all 37 subjects. Sleep-wake patterns were initially assessed at home using a standard sleep diary. Circadian assessment included the measure of dim light melatonin offset (DLMOff) and the morningness-eveningness (M/E) questionnaire. As expected, compared to young adults, adolescents habitually spent more nocturnal time in bed and spent more time (and percentage) in delta sleep. No difference was found between adolescents and young adults on multiple sleep latency test (MSLT) sleep onset latencies, M/E, melatonin secretion measures (24h total, nighttime, daytime, and night ratio), and DLMOff. For the subjects as a whole, correlational analyses revealed a significant association between the DLMOff and M/E and between both these phase markers and habitual bedtimes, habitual rising times, and melatonin secretion measures (daytime levels and the night ratio). No association was found between phase markers and daytime sleepiness or sleep consolidation parameters such as sleep efficiency or number of microarousals. These results together indicate that adolescents and young adults investigated during summertime showed similar circadian phase characteristics, and that, in these age groups, an evening phase preference is associated with a delayed melatonin secretion pattern and delayed habitual sleep patterns without a decrease in sleep consolidation or vigilance. (Chronobiology International, 17(4), 489–501, 2000)  相似文献   

18.
Subterranean common mole voles, Ellobius talpinus, were implanted with long-term recording electronic thermometers to obtain hourly body temperature (Tb) data during either the wintertime or summertime. The two individuals tested during the summertime had significant circadian and ultradian rhythms in their Tb. Four of the five mole voles tested during the wintertime lacked rhythmicity in their Tb. The fifth individual lacked circadian rhythms but had ultradian rhythms in its Tb. A loss of circadian rhythms in Tb during deep torpor or hibernation has been reported for a few species of mammals. Inasmuch as the mole voles' wintertime Tb remained at euthermic levels, our results show that a loss of circadian body temperature rhythms in mole voles does not require the low Tb of deep torpor or hibernation. A tentative conclusion, based on these few animals, is that in common mole voles the Tb rhythms may disappear during the wintertime even though their Tb remains high. (Author correspondence: )  相似文献   

19.
We previously reported daily variations in the mitotic activity of the endocrine cells in the pars intermedia of 21- and 28-day-old male mice. Since cellular proliferation might be affected by factors such as sex and age, we undertook the present experiments to study the mitotic activity of the pars intermedia from 14-, 28-, and 150-day-old female mice. Inbred C3H/S mice, grouped according to age, were housed under standard conditions (12h each of light and dark [LD 12:12]) for periodicity analysis and were killed in lots of 5–11 animals every 4h over a single 24h cycle, with each mouse receiving 2 μg/g of colchicine 4h before decapitation. Pituitaries were excised, extracted, fixed in buffered formaldehyde, embedded in celloidin-paraffin, sectioned at 5 μm, and stained with hematoxylin and eosin. We counted the total number of nuclei to estimate the total number of cells monitored and then calculated the mitotic index (metaphases/1000 nuclei). Differences were analyzed for statistical significance by the Student t test. While the 14-day-old animals manifested no significant changes in mitotic activity during the 24h cycle, the 28- and 150-day-old mice showed higher mitotic indices during the period of darkness. The average mitotic activity over the entire cycle, however, was higher in the two groups of younger animals than in the 150-day-old mice. Moreover, the averages for the 28-day-old females were higher than the corresponding values previously reported by us for male mice of the same age. (Chronobiology International, 17(6), 751–756, 2000)  相似文献   

20.
Temporal variation in the motor function of Parkinson's disease (PD) patients suggests the potential importance of a chronobiological and chronopharmacological approach in its clinical management. We previously documented the effects of striatal injection of 6-OHDA (as an animal model of PD) on the circadian rhythms of temperature (T), heart rate (HR), and locomotor activity (A). The present work assessed the possible influence of L-Dopa on these same rhythms in the 6-OHDA animal model of PD. The study began after a four-week recovery period following surgical implantation of telemetric devices to monitor the study variables and/or anaesthesia. The study was divided into an initial one-week control period (W1) for baseline measurement of T, HR, and A rhythms. Thereafter, stereotaxic 6-OHDA lesioning was done. and a second monitoring for two weeks followed (W2, W3). Rats were then randomly divided into two groups: eight control rats received, via a mini-osmotic pump implanted subcutaneously, the excipient saline; the other eight rats received L-Dopa (100?mg/kg SC/day). After a seven-day period (W4), the pumps were removed and the T, HR, and A rhythms were monitored for two weeks (W5 and W6). To control for 6-OHDA striatal dopamine-induced depletion, 12 other rats were injected by identical methods (eight rats with 6-OHDA and four controls with saline) and sacrificed at W1, W3, and W5 for dopamine striatal content determination. To verify the delivery of levodopa from the osmotic pumps, plasma levels of levodopa and its main metabolites 3-OMD, DOPAC, and HVA were determined on separate group of rats receiving the drug under the same experimental conditions (osmotic pumps delivering continuously 10 µl/h for seven days, 100?mg/kg/subcutaneously). Our results agree with previously reported rhythmic changes induced by 6-OHDA—loss of circadian rhythmicity or changes in the main parameters of the registered rhythms. When circadian rhythmicity was abolished, L-Dopa treatment improved or accelerated recovery of the circadian rhythms, the effect being more pronounced for the HR rhythm. When circadian rhythms were not abolished but perturbed, L-Dopa treatment did not improve the 6-OHDA-induced changes in the T and A mesor (24?h mean level), while a significant effect was observed for HR. It appears that constant-rate L-Dopa infusion is unable to totally balance dopamine depletion; taking into account the circadian pattern of many structures implicated in drug effect, a sinusoidal delivery of L-Dopa must be evaluated in future experiments. (Author correspondence: )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号