首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of vesicular-arbuscular (VA) endomycorrhizal infectionon root morphology and architecture of a woody micropropagatedplant, Vitis vinifera L., has been investigated using morphologicalanalysis, modelling and topological methods. Endomycorrhizaformation caused increases in lateral root number and consequentlytotal root length but did not alter the number of root axes.The rate of production of any order lateral roots was higherin mycorrhizal than non-mycorrhizal controls. The number offirst- and second-order laterals increased linearly with timein mycorrhizal plants whilst in control plants both fitted alogistic function. Topological analysis indicated similar patternsof root branching in the early stages of growth, but the rootsystem of non-mycorrhizal plants adopted a more herringbonepattern after 8 weeks, whereas that of mycorrhizal plants retaineda more dichotomous pattern with repeated bifurcation. Althoughthe root system pattern of non-mycorrhizal vines is more efficientin exploring soil, it is more expensive for the plant in termsof energy cost versus return benefit (nutrient acquisition).In contrast mycorrhizal plants develop a more economical rootsystem which is rendered more efficient by the direct role ofthe mycorrhizal fungus in assisting nutrient absorption. Vitis vinifera L., vine, root system, modelling, topology, vesicular-arbuscular mycorrhizae  相似文献   

2.
Bidirectional nutrient transfer is one of the key features of the arbuscular mycorrhizal symbiosis. Recently we were able to identify a Medicago truncatula mutant (mtha1-2) that is defective in the uptake of phosphate from the periarbuscular space due to a lack of the energy providing proton gradient provided by the symbiosis specific proton ATPase MtHA11 In order to further characterize the impact of fungal colonization on the plant metabolic status, without the beneficial aspect of improved mineral nutrition, we performed leaf ion analyses in mutant and wildtype plants with and without fungal colonization. Although frequency of fungal colonization was unaltered, the mutant did not show a positive growth response to mycorrhizal colonization. This indicates that nutrient transfer into the plant cell fails in the truncated arbuscules due to lacking expression of a functional MtHA1 protein. The leaves of wildtype plants showed clear metabolic responses to root mycorrhizal colonization, whereas no changes of leaf metabolite levels of mycorrhizal mtha1-2 plants were detected, even though they were colonized. These results show that MtHa1 is indispensable for a functional mycorrhizal symbiosis and, moreover, suggest that fungal root colonization per se does not depend on nutrient transfer to the plant host.  相似文献   

3.
The ability of Pinus caribaea var. hondurensis to form mycorrhizae was determined in vitro with seven species of ectomycorrhizal fungi in the presence of six levels of Al (added as AlCl3) in a nutrient solution. The time required for mycorrhizal formation, the number of mycorrhizal root tips and the percent mycorrhizae were measured after 15, 30, 60, 90 and 120 days. Cenococcum graniforme was susceptible to Al toxicity at all Al concentrations. Pisolithus tinctorius and Suillus sp. were depressed at lower but stimulated at higher Al concentrations. The inverse was shown for Rhizopogon reaii and Hebeloma cylindrosporum. Tolerance to Al was verified for R. nigrescens and H. crustuliniforme. Pisolithus tinctorius had the largest mycorrhizal capacity, defined as the sum of the values for time, percent and number of mycorrhizae. Ectomycorrhizal fungi appeared to ameliorate Al damage to plant roots even in treatments where no mycorrhizae formed. Inoculation of pine seedlings with Al-tolerant mycorrhizal fungi is likely to improve reforestation efforts in highly-weathered tropical soils.  相似文献   

4.
The effect of ambient and elevated atmospheric CO(2) on biomass partitioning and nutrient uptake of mycorrhizal and non-mycorrhizal pea plants grown in pots in a controlled environment was studied. The hypothesis tested was that mycorrhizae would increase C assimilation by increasing photosynthetic rates and reduce below-ground biomass allocation by improving nutrient uptake. This effect was expected to be more pronounced at elevated CO(2) where plant C supply and nutrient demand would be increased. The results showed that mycorrhizae did not interact with atmospheric CO(2) concentration in the variables measured. Mycorrhizae did not affect photosynthetic rates, had no effect on root weight or root length density and almost no effect on nutrient uptake, but still significantly increased shoot weight and reduced root/shoot ratio at harvest. Elevated CO(2) increased photosynthetic rates with no evidence for down-regulation, increased shoot weight and nutrient uptake, had no effect on root weight, and actually reduced root/shoot ratio at harvest. Non-mycorrhizal plants growing at both CO(2) concentrations had lower shoot weight than mycorrhizal plants with similar nutritional status and photosynthetic rates. It is suggested that the positive effect of mycorrhizal inoculation was caused by an enhanced C supply and C use in mycorrhizal plants than in non-mycorrhizal plants. The results indicate that plant growth was not limited by mineral nutrients, but partially source and sink limited for carbon. Mycorrhizal inoculation and elevated CO(2) might have removed such limitations and their effects on above-ground biomass were independent, positive and additive.  相似文献   

5.
Frew  Adam  Powell  Jeff R.  Johnson  Scott N. 《Plant and Soil》2020,447(1-2):463-473
Aims

Arbuscular mycorrhizal (AM) fungi associate with the majority of terrestrial plants, influencing their growth, nutrient uptake and defence chemistry. Consequently, AM fungi can significantly impact plant-herbivore interactions, yet surprisingly few studies have investigated how AM fungi affect plant responses to root herbivores. This study aimed to investigate how AM fungi affect plant tolerance mechanisms to belowground herbivory.

Methods

We examined how AM fungi affect plant (Saccharum spp. hybrid) growth, nutrient dynamics and secondary chemistry (phenolics) in response to attack from a root-feeding insect (Dermolepida albohirtum).

Results

Root herbivory reduced root mass by almost 27%. In response, plants augmented investment in aboveground biomass by 25%, as well as increasing carbon concentrations. The AM fungi increased aboveground biomass, phosphorus and carbon. Meanwhile, root herbivory increased foliar phenolics by 31% in mycorrhizal plants, and increased arbuscular colonisation of roots by 75% overall. AM fungi also decreased herbivore performance, potentially via increasing root silicon concentrations.

Conclusions

Our results suggest that AM fungi may be able to augment plant tolerance to root herbivory via resource allocation aboveground and, at the same time, enhance plant root resistance by increasing root silicon. The ability of AM fungi to facilitate resource allocation aboveground in this way may be a more widespread strategy for plants to cope with belowground herbivory.

  相似文献   

6.
Host genotype and the formation and function of VA mycorrhizae   总被引:2,自引:1,他引:1  
VA mycorrhizae, the most ancient type of mycorrhizal symbiosis, are present in the most phytogenetically advanced groups. Few plants have evolved mechanisms to completely prevent infection by VAM fungi. Yet, plant species that are less dependent on VA mycorrhizae for nutrient acquisition (e.g., grasses) generally have less root colonization in the field than more dependent species (e.g., Citrus). Among closely related Citrus genotypes, there is a greater tendency for less dependent species to limit the rate but not the extent of colonization, even in high-P soils. We hypothesize that colonization represents a significant carbon cost that may be regulated by the host genotype. Carbon expenditure on the fungus at high P may result in mycorrhizal-induced growth depression. The potential value of breeding plants for greater susceptibility to colonization will depend on the cost/benefit of VA mycorrhizae for the specific crop, soil and environmental conditions. Although the genetics and physiology of host control over VAM colonization are barely known, recently discovered mycorrhizal colonization mutants (myc-) of pea offer great promise for the study of host-fungus compatibility. Florida Agricultural Experiment Station Journal Series No. R-02765. Florida Agricultural Experiment Station Journal Series No. R-02765.  相似文献   

7.
Liu A  Wang B  Hamel C 《Mycorrhiza》2004,14(2):93-101
Temperature has a strong influence on the activity of living organisms. This study, involving two indoor experiments, evaluated the effects of root zone temperature (10, 15 and 23°C) on the formation and development of arbuscular mycorrhizae (AM). In the first trial, greenhouse-grown sorghum [Sorghum bicolor (L.) Moench] was either colonized by Glomus intraradices Schenck & Smith or left non-mycorrhizal. Root length, root and shoot weight and root colonization were measured after 5, 10 and 15 weeks of plant growth. Although suboptimal root zone temperatures reduced growth in both mycorrhizal and non-mycorrhizal plants, mycorrhizal plants were larger than non-mycorrhizal plants after 15 weeks at 15 and 23°C. At suboptimal root zone temperatures, mycorrhizal inoculation sometimes slightly reduced root development. AM colonization was more affected than root growth at suboptimal root zone temperatures. Colonization was markedly reduced at 15°C compared with 23°C, and almost completely inhibited at 10°C. The second experiment was conducted in vitro using transformed carrot (Daucus carota L.) roots supporting G. intraradices. Mycelium length and spore number were measured weekly for 15 weeks. Spore metabolic activity (iodonitrotetrazolium reduction), root length and percentage root colonization were measured after 15 weeks. G. intraradices sporulation was reduced at temperatures below 23°C, while spore metabolic activity was significantly reduced only at 10°C. Root length and in particular percentage colonization were decreased at suboptimal temperatures. A negative interaction between AM hyphal growth and root growth resulting in reduced probability of contact at suboptimal root zone temperatures is proposed to explain the greater reduction observed in root colonization than in root and hyphal growth.  相似文献   

8.
磷水平对接种丛枝菌根真菌甜玉米苗期生长的影响   总被引:1,自引:0,他引:1  
研究了不同外源磷水平条件下,接种丛枝菌根真菌根内球囊霉(Glomus intraradices)对寄主植物甜玉米菌根侵染率、地上部和地下部鲜重、氮磷含量、精氨酸含量影响。结果表明:丛枝菌根真菌能够很好的侵染于玉米植株根系。且不同磷水平条件下,菌根侵染率差异较显著。在低磷水平下,菌根侵染率较高。孢子数量随着磷水平提高而增加。菌丝室根外菌丝鲜重在P40时最高。菌根化的甜玉米生物量及氮磷含量显著高于对照组。此外,低磷水平促使甜玉米地上部和地下部鲜重显著提高。甜玉米地上部总氮和地下部总氮含量分别在P40、P80和P20、P40时最高。地上部总磷和地下部总磷含量分别在P80和P160时最高。菌根精氨酸含量在低磷(P20)时最高。研究表明接种丛枝菌根真菌可促进甜玉米幼苗生长并与外源磷水平有关。  相似文献   

9.
Abstract

Colonization of plant roots by arbuscular mycorrhizal fungi can greatly increase the plant uptake of phosphorus and nitrogen. The most prominent contribution of arbuscular mycorrhizal fungi to plant growth is due to uptake of nutrients by extraradical mycorrhizal hyphae. Quantification of hyphal nutrient uptake has become possible by the use of soil boxes with separated growing zones for roots and hyphae. Many (but not all) tested fungal isolates increased phosphorus and nitrogen uptake of the plant by absorbing phosphate, ammonium, and nitrate from soil. However, compared with the nutrient demand of the plant for growth, the contribution of arbuscular mycorrhizal fungi to plant phosphorus uptake is usually much larger than the contribution to plant nitrogen uptake. The utilization of soil nutrients may depend more on efficient uptake of phosphate, nitrate, and ammonium from the soil solution even at low supply concentrations than on mobilization processes in the hyphosphere. In contrast to ectomycorrhizal fungi, nonsoluble nutrient sources in soil are used only to a limited extent by hyphae of arbuscular mycorrhizal fungi. Side effects of mycorrhizal colonization on, for example, plant health or root activity may also influence plant nutrient uptake.  相似文献   

10.
The present investigation was undertaken to determine the comparative efficacy of two arbuscular mycorrhizal (AM) fungi (Funneliformis mosseae and Acaulospora laevis) with Trichoderma viride and Pseudomonas fluorescens on growth and yield of red bell pepper. The results indicate that F. mosseae colonized the plant roots better as compared to A. laevis and promoted maximum increment in AM spore number, root colonization, leaf area, acid phosphatase activity, early fruit formation along with maximum increase in fruit nitrogen, and protein content. Whereas F. mosseae+P. fluorescens promoted maximum increase in plant height, shoot weight, mycorrhizal dependency, chlorophyll a, alkaline phosphatase activity, and fruit phosphorus content. Regarding root length, root weight, leaf photosynthesis, chlorophyll b, number of fruits per plant and their fresh weight, it was found best in F. mosseae+A. laevis+P. fluorescens. Therefore, soil inoculation with suitable bioinoculant should be used at nursery stage for better yield.  相似文献   

11.
Abstract

The importance of arbuscular fungi for plant development and health is now widely demonstrated. However, although it is more and more evident that they are not only an integral part of many cultivated plants but also an essential component of soil fertility, their rational use in plant production is still in its infancy. Because of their role as bioregulators, biofertilizers, and biocontrol agents, they represent potentially important tools for new orientations in agriculture, particularly in Europe, where there is increasing demand for development of new plant management techniques that are less dependent on chemical inputs. The discovery of mycmutants turned out to be an excellent tool for better understanding the ecophysiology of arbuscular mycorrhizas under field conditions and for allowing considerable progress in our knowledge on the genes controlling this symbiosis. Progress in this area, together with ongoing generation of specific nucleic acid probes for arbuscular mycorrhizal fungi, appear to be essential for promoting mycorrhizal biotechnology. Despite this, arbuscular mycorrhizal fungi can already be exploited successfully in certain areas of plant production, such as orchards and ornamental nurseries.  相似文献   

12.
Nitrogen (N) transfer among plants has been found where at least one plant can fix N2. In nutrient‐poor soils, where plants with contrasting nutrient‐acquisition strategies (without N2 fixation) co‐occur, it is unclear if N transfer exists and what promotes it. A novel multi‐species microcosm pot experiment was conducted to quantify N transfer between arbuscular mycorrhizal (AM), ectomycorrhizal (EM), dual AM/EM, and non‐mycorrhizal cluster‐rooted plants in nutrient‐poor soils with mycorrhizal mesh barriers. We foliar‐fed plants with a K15NO3 solution to quantify one‐way N transfer from ‘donor’ to ‘receiver’ plants. We also quantified mycorrhizal colonization and root intermingling. Transfer of N between plants with contrasting nutrient‐acquisition strategies occurred at both low and high soil nutrient levels with or without root intermingling. The magnitude of N transfer was relatively high (representing 4% of donor plant N) given the lack of N2 fixation. Receiver plants forming ectomycorrhizas or cluster roots were more enriched compared with AM‐only plants. We demonstrate N transfer between plants of contrasting nutrient‐acquisition strategies, and a preferential enrichment of cluster‐rooted and EM plants compared with AM plants. Nutrient exchanges among plants are potentially important in promoting plant coexistence in nutrient‐poor soils.  相似文献   

13.
Translocation of 14C-photosynthates to mycorrhizal (+ +), half mycorrhizal (0+), and nonmycorrhizal (00) split-root systems was compared to P accumulation in leaves of the host plant. Carrizo citrange seedlings (Poncirus trifoliata [L.] Raf. × Citrus sinensis [L.] Osbeck) were inoculated with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith. Plants were exposed to 14 CO2 for 10 minutes and ambient air for 2 hours. Three to 4% of recently labeled photosynthate was allocated to metabolism of the mycorrhiza in each inoculated root half independent of shoot P concentration, growth response, and whether one or both root halves were colonized. Nonmycorrhizal roots respired more of the label translocated to them than did mycorrhizal roots. Label recovered in the potting medium due to exudation or transport into extraradical hyphae was 5 to 6 times greater for (+ +) versus (00) plants. In low nutrient media, roots of (0+) and (+ +) plants transported more P to leaves per root weight than roots of (00) plants. However, when C translocated to roots utilized for respiration, exudation, etc., as well as growth is considered, (00) plant roots were at least as efficient at P uptake (benefit) per C utilized (cost) as (0+) and (+ +) plants. Root systems of (+ +) plants did not supply more P to leaves than (0+) plants in higher nutrient media, yet they still allocated twice the 14C-photosynthate to the mycorrhiza as did (0+) root systems. This indicates there is an optimal level of mycorrhizal colonization above which the plant receives no enhanced P uptake yet continues to partition photosynthates to metabolism of the mycorrhiza.  相似文献   

14.
Abstract

Recent work has demonstrated indirect effects between mycorrhizal fungi and insect herbivores and pollinators. The existence of indirect effects between mycorrhizal fungi and protection-for-food mutualists, such as extrafloral nectar-foraging ‘bodyguard ants’, is unknown. In this study, we examined the potential for indirect effects of arbuscular mycorrhizal fungi on aggressive ant bodyguards, mediated by changes in the expression of extrafloral nectaries of a shared host plant. We found that mycorrhizal plants grew larger and produced more extrafloral nectaries compared to their non-mycorrhizal counterparts. The difference in the number of nectaries between mycorrhizal and non-mycorrhizal plants, however, was too small to elicit differences in ant attendance. In spite of the lack of a significant indirect effect of mycorrhizal fungi on ant attendance, mycorrhizal plants suffered damage to a significantly greater proportion of their leaves compared to non-mycorrhizal plants. This result likely stems from other (non-ant-mediated) indirect effects of mycorrhizal fungi on herbivores.  相似文献   

15.
Mycorrhizae play a critical role in nutrient capture from soils. Arbuscular mycorrhizae (AM) and ectomycorrhizae (EM) are the most important mycorrhizae in agricultural and natural ecosystems. AM and EM fungi use inorganic NH4 + and NO3 ?, and most EM fungi are capable of using organic nitrogen. The heavier stable isotope 15N is discriminated against during biogeochemical and biochemical processes. Differences in 15N (atom%) or δ15N (‰) provide nitrogen movement information in an experimental system. A range of 20 to 50% of one-way N-transfer has been observed from legumes to nonlegumes. Mycorrhizal fungal mycelia can extend from one plant's roots to another plant's roots to form common mycorrhizal networks (CMNs). Individual species, genera, even families of plants can be interconnected by CMNs. They are capable of facilitating nutrient uptake and flux. Nutrients such as carbon, nitrogen and phosphorus and other elements may then move via either AM or EM networks from plant to plant. Both 15N labeling and 15N natural abundance techniques have been employed to trace N movement between plants interconnected by AM or EM networks. Fine mesh (25~45 μm) has been used to separate root systems and allow only hyphal penetration and linkages but no root contact between plants. In many studies, nitrogen from N2-fixing mycorrhizal plants transferred to non-N2–fixing mycorrhizal plants (one-way N-transfer). In a few studies, N is also transferred from non-N2–fixing mycorrhizal plants to N2-fixing mycorrhizal plants (two-way N-transfer). There is controversy about whether N-transfer is direct through CMNs, or indirect through the soil. The lack of convincing data underlines the need for creative, careful experimental manipulations. Nitrogen is crucial to productivity in most terrestrial ecosystems, and there are potential benefits of management in soil-plant systems to enhance N-transfer. Thus, two-way N-transfer warrants further investigation with many species and under field conditions.  相似文献   

16.
Interactive effects of seven years of compaction due to wheel traffic and tillage on root density, formation of arbuscular mycorrhizae, above-ground biomass, nutrient uptake and yield of corn (Zea mays L.) were measured on a coastal plain soil in eastern Alabama, USA. Tillage and soil compaction treatments initiated in 1987 were: 1) soil compaction from tractor traffic with conventional tillage (C,CT), 2) no soil compaction from tractor traffic with conventional tillage (NC,CT), 3) soil compaction from tractor traffic with no-tillage (C,NT), and, 4) no soil compaction from tractor traffic with no-tillage (NC,NT). The study was arranged as a split plot design with compaction from wheel traffic as main plots and tillage as subplots. The experiment had four replications. In May (49 days after planting) and June, (79 days after planting), root biomass and root biomass infected with arbuscular mycorrhizae was higher in treatments that received the NC,NT treatment than the other three treatments. In June and July (109 days after planting), corn plants that received C,CT treatment had less above-ground biomass, root biomass and root biomass infected with mycorrhizae than the other three treatments. Within compacted treatments, plants that received no-tillage had greater root biomass and root biomass infected with mycorrhizae in May and June than plants that received conventional tillage. Corn plants in no-tillage treatments had higher root biomass and root biomass infected with mycorrhizae than those in conventional tillage. After 7 years of treatment on a sandy Southeastern soil, the interactive effects of tillage and compaction from wheel traffic reduced root biomass and root biomass infected with mycorrhizae but did not affect plant nutrient concentration and yield. ei]J H Graham  相似文献   

17.
Considered to play an important role in plant mineral nutrition, arbuscular mycorrhizal (AM) symbiosis is a common relationship between the roots of a great majority of plant species and glomeromycotan fungi. Its effects on the plant host are highly context dependent, with the greatest benefits often observed in phosphorus (P)‐limited environments. Mycorrhizal contribution to plant nitrogen (N) nutrition is probably less important under most conditions. Moreover, inasmuch as both plant and fungi require substantial quantities of N for their growth, competition for N could potentially reduce net mycorrhizal benefits to the plant under conditions of limited N supply. Further compounded by increased belowground carbon (C) drain, the mycorrhizal costs could outweigh the benefits under severe N limitation. Using a field AM fungal community or a laboratory culture of Rhizophagus irregularis as mycorrhizal inoculants, we tested the contribution of mycorrhizal symbiosis to the growth, C allocation, and mineral nutrition of Andropogon gerardii growing in a nutrient‐poor substrate under variable N and P supplies. The plants unambiguously competed with the fungi for N when its supply was low, resulting in no or negative mycorrhizal growth and N‐uptake responses under such conditions. The field AM fungal communities manifested their potential to improve plant P nutrition only upon N fertilization, whereas the Rirregularis slightly yet significantly increased P uptake of its plant host (but not the host's growth) even without N supply. Coincident with increasing levels of root colonization by the AM fungal structures, both inoculants invariably increased nutritional and growth benefits to the host with increasing N supply. This, in turn, resulted in relieving plant P deficiency, which was persistent in non‐mycorrhizal plants across the entire range of nutrient supplies.  相似文献   

18.
Inoculation of microplants of potato cv. Golden Wonder with Vaminoc, a mycorrhizal inoculum of three arbuscular mycorrhizal fungi (Glomus spp.), resulted in an increase in in‐sand hatch of Globodera pallida, but not G. rostochiensis, within 2 weeks. By this time, mycorrhized plants also supported a larger number of feeding nematodes of both PCN species (50% higher for G. rostochiensis) than did non‐mycorrhized plants, with a higher proportion of the G. pallida population being fertilised females than for G. rostochiensis. After 12 weeks, the multiplication rate of G. rostochiensis on mycorrhized plants was significantly greater than on non‐mycorrhized plants, whereas no such difference was observed for G. pallida. The principal component of PCN multiplication affected by mycorrhization was increased cyst number per plant from 6 to 12 weeks. Over this period, there was no increase in cyst number per plant for either PCN species on non‐mycorrhized plants, whereas the value increased on mycorrhized plants for both G. rostochiensis (by almost 200%) and G. pallida (57%). Mycorrhization resulted in significant increases in the root and shoot dry weights of plants grown in the absence of PCN. Although mycorrhized plants carried a larger PCN burden than non‐mycorrhized plants when grown on PCN‐infested medium, as a result of the increased PCN multiplication rate, they produced larger root systems than did nonmycorrhized plants, suggesting increased tolerance to PCN of the mycorrhized plants, particularly to G. rostochiensis. Of morphological characters investigated in the absence of PCN, only stem height (increased) was significantly affected by mycorrhization. Colonisation by mycorrhizal fungi resulted in increased tuber yield both in the absence (significant increase) and presence (non significant) of PCN, as a result of increased tuber number per plant. These results are discussed in the light of the possible use of AMF as part of an integrated PCN management plan.  相似文献   

19.
Until recently mycorrhizae had not been studied in the Antarctic region. Some studies have demonstrated that mycorrhizae occur in some southern circumpolar islands. This paper gives the first results on the mycorrhizae in the Kerguelen islands (Sub-antarctic). Twenty-one plant root systems, fixed in the field, were examined microscopically in the laboratory to determine their mycorrhizal status. No ectomycorrhiza, arbutoid or ericoid were noted. Six plant species showed vesicular arbuscular mycorrhizae: Ranunculus biternatus, Galium antarcticum, Festuca erecta, Poa kerguelensis, Agrostis magellanica and Poa annua. However, the mycorrhizal status varied according to the site studied.  相似文献   

20.

Questions

Mycorrhizae may be a key element of plant nutritional strategies and of carbon and nutrient cycling. Recent research suggests that in natural conditions, intensity of mycorrhizal colonization should be considered an important plant feature. How are inter‐specific variations in mycorrhizal colonization rate, plant relative growth rate (RGR ) and leaf litter decomposability related? Is (arbuscular) mycorrhizal colonization linked to the dominance of plant species in nutrient‐stressed ecosystems?

Location

Teberda State Biosphere Reserve, northwest Caucasus, Russia.

Methods

We measured plant RGR under mycorrhizal limitation and under natural nutrition conditions, together with leaf litter decomposability and field intensity of mycorrhizal colonization across a wide range of plant species, typical for alpine communities of European mountains. We applied regression analysis to test whether the intensity of mycorrhizal colonization is a good predictor of RGR and decomposition rate, and tested how these traits predict plant dominance in communities.

Results

Forb species with a high level of field mycorrhizal colonization had lower RGR under nutritional and mycorrhizal limitation, while grasses were unaffected. Litter decomposition rate was not related to the intensity of mycorrhizal colonization. Dominant species mostly had a higher level of mycorrhizal colonization and lower RGR without mycorrhizal colonization than subordinate species, implying that they were more dependent on mycorrhizal symbionts. There were no differences in litter decomposability.

Conclusions

In alpine herbaceous plant communities dominated by arbuscular mycorrhizae, nutrient dynamics are to a large extent controlled by mycorrhizal symbiosis. Intensity of mycorrhizal colonization is a negative predictor for whole plant RGR . Our study highlights the importance of mycorrhizal colonization as a key trait underpinning the role of plant species in carbon and nutrient dynamics in nutrient‐limited herbaceous plant communities.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号