首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trehalose levels were determined over two 24 hr spans in groups of face fly adults 3-4 days after emergence from the puparium. Face fly pupae were placed in rearing chambers at 27° C in a staggered light-dark regimen, LD 16:8, so that at a given clock hour, samples could be obtained at several different hours after lights on (HALO). Trehalose was determined in hemolymph collected from a puncture in the intersegmental membrane of the abdomen. Treated hemolymph samples were passed through a Bio-Rad Amino S-S disaccharide column and a Waters 410 refractive index detector was used to differentiate among sugars. The circadian acrophase derived by cosinor analysis in hemolymph trehalose (when the values were 25.49 and 26.86μg/μ1 on the first and second days respectively) occurred at -226° (ca 15 HALO) and the bathyphase at 24 HALO. The mesor = 11.82μg/μ1 trehalose, the amplitude = 8.57/μg/μ1 trehalose and the P-value for presence of a rhythm was 0.003. Based on these data, differences between control and test flies in a bioassay of hypertrehalosemic activity would be most easily observed at 0-8 HALO, while exogenous hypotrehalosemic activity would be best assayed at 12-20 HALO.  相似文献   

2.
Trehalose levels were determined over two 24 hr spans in groups of face fly adults 3-4 days after emergence from the puparium. Face fly pupae were placed in rearing chambers at 27 degrees C in a staggered light-dark regimen, LD 16:8, so that at a given clock hour, samples could be obtained at several different hours after lights on (HALO). Trehalose was determined in hemolymph collected from a puncture in the intersegmental membrane of the abdomen. Treated hemolymph samples were passed through a Bio-Rad Amino 5-S disaccharide column and a Waters 410 refractive index detector was used to differentiate among sugars. The circadian acrophase derived by cosinor analysis in hemolymph trehalose (when the values were 25.49 and 26.86 micrograms/microliters on the first and second days respectively) occurred at -226 degrees (ca 15 HALO) and the bathyphase at 24 HALO. The mesor = 11.82 micrograms/microliters trehalose, the amplitude = 8.57 micrograms/microliters trehalose and the P-value for presence of a rhythm was 0.003. Based on these data, differences between control and test flies in a bioassay of hypertrehalosemic activity would be most easily observed at 0-8 HALO, while exogenous hypotrehalosemic activity would be best assayed at 12-20 HALO.  相似文献   

3.
Trehalose, the major blood sugar of Phormia regina, is present within its tissues in an amount exceeding that in the total blood volume. A major part of the reserve is found in the abdominal fat body. An investigation of trehalose regulation, pursued with the use of a trehalose tolerance test, indicates that within a period of 4 h the adult fly can remove from its blood amounts of this sugar in excess of twice its normal level. The surplus is dealt with in an as yet unknown way, being either sequestered in the tissues (not as trehalose or glucose), metabolized, or excreted in a form other than trehalose or glucose. The process is regulated by the head, and a link between the body and the head must be maintained throughout the entire period of activity.  相似文献   

4.
Aphids harbor proteobacterial endosymbionts such as Buchnera aphidicola housed in specialized bacteriocytes derived from host cells. The endosymbiont Buchnera supplies essential amino acids such as arginine to the host cells and, in turn, obtains sugars needed for its survival from the hemolymph. The mechanism of sugar supply in aphid bacteriocytes has been rarely studied. It also remains unclear how Buchnera acquires its carbon source. The hemolymph sugars in Acyrthosiphon pisum are composed of the disaccharide trehalose containing two glucose molecules. Here, we report for the first time that trehalose is transported and used as a potential carbon source by Buchnera across the bacteriocyte plasma membrane via trehalose transporters. The current study characterized the bacteriocyte trehalose transporter Ap_ST11 (LOC100159441) using the Xenopus oocyte expression system. The Ap_ST11 transporter was found to be proton-dependent with a Km value ≥700 mM. We re-examined the hemolymph trehalose at 217.8 mM using a fluorescent trehalose sensor. The bacteriocytes did not obtain trehalose by facilitated diffusion along the gradient across cellular membranes. These findings suggest that trehalose influx into the bacteriocytes depends on the extracellular proton-driven secondary electrochemical transporter.  相似文献   

5.
Trehalose is a major blood sugar in insects with a range of physiological functions, including an energy source and a cryoprotectant. Hemolymph trehalose concentrations are tightly regulated according to physiological conditions. An insulin‐like peptide, SeILP1, downregulates hemolymph trehalose concentrations in Spodoptera exigua. Here, we identified a factor that upregulates hemolymph trehalose concentration in S. exigua. Hemolymph trehalose concentrations were significantly increased after immune challenge or under starvation in a time‐dependent manner. To determine endocrine factors responsible for the upregulation, stress‐associated mediators, such as octopamine, serotonin, or eicosanoids were injected, but they did not upregulate hemolymph trehalose. On the other hand, injection with Schistocerca gregaria adipokinetic hormone (AKH) significantly increased hemolymph trehalose concentration in S. exigua. During upregulation of hemolymph trehalose by AKH injection, trehalose degradation appeared to be inhibited because expression of trehalase and SeILP1 were significantly suppressed while that of trehalose phosphate synthase was not significantly changed. Interrogation of a Spodoptera genome database identified an S. exigua AKH‐like gene and its expression was confirmed. During starvation, its expression concentrations were increased, although RNA interference specific to the AKH‐like hypertrehalosemic factor (SeHTF) gene significantly prevented the upregulation of hemolymph trehalose concentrations during starvation. A synthetic peptide of SeHTF was prepared and injected into S. exigua larvae. At nanomolar concentration, the synthetic SeHTF peptide effectively upregulated hemolymph trehalose concentrations. Here we report a novel hypertrehalosemic factor in S. exigua (SeHTF).  相似文献   

6.
Trehalose in ectoderms functions in energy metabolism and protection in extreme environmental conditions. We structurally characterized trehalose 6-phosphate synthase (TPS) from hemocytes of the blue crab, Callinectes sapidus. C. sapidus Hemo TPS (CasHemoTPS), like insect TPS, encodes both TPS and trehalose phosphate phosphatase domains. Trehalose seems to be a major sugar, as it shows higher levels than does glucose in hemocytes and hemolymph. Increases in HemoTPS expression, TPS enzyme activity in hemocytes, and hemolymph trehalose levels were determined 24 h after lipopolysaccharide challenge, suggesting that both TPS and TPP domains of CasHemoTPS are active and functional. The TPS gene has a wide tissue distribution in C. sapidus, suggesting multiple biosynthetic sites. A correlation between TPS activity in hemocytes and hemolymph trehalose levels was found during the molt cycle. The current study provides the first evidence of presence of trehalose in hemocytes and TPS in tissues of C. sapidus and implicates its functional role in energy metabolism and physiological adaptation.  相似文献   

7.
Trehalose and the trehalose biosynthetic pathway are important contributors and regulators of stress responses in plants. Among recent findings for trehalose and its metabolism, the role of signalling in the regulation of growth and development and its potential for use as a storage energy source can be listed. The xerophytic plant Capparis ovata (caper) is well adapted to drought and high temperature stress in arid and semi‐arid regions of the Mediterranean. The contribution of trehalose and the trehalose biosynthetic pathway to drought stress responses and tolerance in C. ovata are not known. We investigated the effects of PEG‐mediated drought stress in caper plants and analysed physiological parameters and trehalose biosynthetic pathway components, trehalose‐6‐phosphate synthase (TPS), trehalose‐6‐phosphate phosphatase (TPP), trehalase activity, trehalose and proline content in drought stress‐treated and untreated plants. Our results indicated that trehalose and the trehalose biosynthetic pathway contributed to drought stress tolerance of C. ovata. Overall growth and leaf water status were not dramatically affected by drought, as both high relative growth rate and relative water content were recorded even after 14 days of drought stress. Trehalose accumulation increased in parallel to induced TPS and TPP activities and decreased trehalase activity in caper plants on day 14. Constitutive trehalose levels were 28.75 to 74.75 μg·g·FW?1, and drought stress significantly induced trehalose accumulation (385.25 μg·g·FW?1 on day 14) in leaves of caper. On day 14 of drought, proline levels were lower than on day 7. Under drought stress the discrepancy between trehalose and proline accumulation trends might result from the mode of action of these osmoprotectant molecules in C. ovata.  相似文献   

8.
长角血蜱雌蜱感染嗜菌异小杆线虫后血淋巴的变化   总被引:1,自引:0,他引:1  
用嗜菌异小杆线虫Heterorhabditis bacteriophora E-6-7(Hb E-6-7)感染长角血蜱Haemaphysalis longicornis雌蜱,测定感染后雌蜱血淋巴总蛋白含量、酯酶活性及酯酶同工酶的变化,以探讨昆虫病原线虫对蜱的致病机理。结果显示,雌蜱血淋巴总蛋白含量在Hb E-6-7感染后12 h显著增加,达到最大值92.21 μg/μL;在感染后24 h明显下降(49.06 μg/μL);至感染后48 h降至34.25 μg/μL。雌蜱血淋巴酯酶活性在线虫感染后0~12 h内无显著变化;在感染24 h后迅速增加(OD24h=0.1840,OD36h=0.1940,OD48h=0.2165),与对照组差异显著。PAGE结果表明,线虫感染后导致雌蜱血淋巴酯酶同工酶电泳图谱发生变化,主要为电泳图谱两端a带和b带的消失以及一条c带的增加。上述结果表明,长角血蜱雌蜱被Hb E-6-7感染后其血淋巴总蛋白含量和酯酶发生变化,这种变化可能与蜱的防御和对昆虫病原线虫的适应有关。  相似文献   

9.
The protective effect of the synthetic compensatory solutes, dimethylthetin (CAS 4727-41-7) and homodeanol betaine (N,?N-dimethyl-N-(2-hydroxyethyl)-N-(2 carboxyethyl) ammonium inner salt, CAS 6249-53-2), on two enzymes: lactate dehydrogenase (LDH from rabbit muscle) and a microbial lipase, was compared with that of glycine betaine, trehalose and sorbitol. When the enzyme plus 1?M solute were heated for 10?min at temperatures between 35–75°C, the temperature at which 50% of enzyme activity was lost increased most in the presence of trehalose (7.9° for LDH, 11.6° for lipase) and homodeanol betaine (10.7° for LDH, 11.0° for lipase). With both enzymes, more activity was retained at extreme temperatures in the presence of homodeanol betaine than with trehalose. Glycine betaine, dimethylthetin and sorbitol were less effective. Enzyme plus 1?M stabilizer solutions were frozen at ?30°C and freeze-dried for 24?h. Trehalose was the most effective stabilizer of lactate dehydrogenase, and homodeanol betaine of lipase, during freeze-drying.  相似文献   

10.
Hemolymph glucose, alkaline phosphatase, lactic dehydrogenase, and creatine phosphokinase in Biomphalaria glabrata infected with Angiostrongylus costaricensis were significantly higher on day 27 postinfection (PI) than in uninfected snails. Hemolymph total calcium from infected snails was less on days 6, 12, and 27 PI than that from controls. Total hemolymph protein was similar for controls and infected animals during the entire study. Throughout the study the mean number of amoebocytes/mm3 hemolymph from infected snails was significantly less than that for controls. Mean total wet weights of digestive gland and foot muscle from infected and uninfected snails was similar throughout the study. Mean μg glycogen/mg wet weight of digestive gland from infected snails was significantly greater on days 24, 27, and 28 PI than that from controls. Mean μg glycogen/mg wet weight of foot muscle from infected snails was significantly reduced between days 12 and 28 PI from that of uninfected snails. It is suggested that hemolymph glucose and digestive gland glycogen in infected snails are augmented by glycogen breakdown in the foot muscle of parasitized animals. Elevations in hemolymph enzymes are due to tissue destruction by larvae emerging from the foot muscle of infected snails. Parasite-induced derangements in shell metabolism underlie observed changes in hemolymph calcium in infected snails.  相似文献   

11.
In 12-h-starved larvae of the tobacco hornworm, Manduca sexta, fat body glycogen phosphorylase was quickly inactivated when insects were refed with normal diet and agar which contained 3% sucrose. Only the first 2 min of refeeding were necessary to induce enzyme inactivation. During this short period, larvae did not ingest enough sucrose to increase the hemolymph glucose concentration. This may indicate that the gut released a hormone(s) which directly or indirectly led to the inactivation of fat body glycogen phosphorylase. Inactivation of the enzyme could also be induced by injection of glucose (30 mg) into the hemolymph of starving M. sexta larvae suggesting that there may be separate control from a neuroendocrine site such as the brain or the corpora cardiaca. Trehalose was less effective. Bovine insulin (2 and 4 μg/starved larva) did not induce phosphorylase inactivation over 20 min or decrease hemolymph carbohydrate or lipid concentrations within 60 min. It is, therefore, necessary to screen insect tissues for substances which could bring about inactivation of fat body glycogen phosphorylase. © 1992 Wiley-Liss, Inc.  相似文献   

12.
Rocket immunoelectrophoresis was used to estimate aldehyde oxidase cross-reacting material (AO-CRM) in larval hemolymph and adult fly extracts in mutants with reduced AO enzymatic activity. Hemolymph of larvae homozygous for Aldox n, which is a mutation of the presumed structural gene for AO, contains 30% of the wild-type CRM. The demonstration of AO-CRM in Aldox n larval hemolymph is surprising since this genotype has been reported to lack CRM. By contrast, adult Aldox n flies lack detectable CRM. The other AO-deficient mutants that were examined are cin, mal, and lxd; each has appreciable levels of CRM in both larval hemolymph and adult extracts. Detection of CRM in these mutants helps to clarify conflicting reports in the literature.This research was supported by a grant from the Natural Sciences and Engineering Research Council of Canada to L.W.B.  相似文献   

13.
To explore possible role of intracellular trehalose accumulation in fungal tolerance to summer-like thermal stress, 3-day colonies of Beauveria bassiana grown on a glucose-free medium at 25°C were separately exposed to 35, 37.5 and 40°C for 1–18 h, respectively. Trehalose accumulation in stressed mycelia increased from initial 4.2 to 88.3, 74.7 and 65.5 mg g−1 biomass after 6-h stress at 35, 37.5 and 40°C, respectively, while intracellular mannitol level generally declined with higher temperatures and longer stress time. The stress-enhanced trehalose level was significantly correlated to decreased trehalase activity (r 2 = 0.73) and mannitol content (r 2 = 0.38), which was inversely correlated to the activity of mannitol dehydrogenase (r 2 = 0.41) or mannitol 1-phosphate dehydrogenase (r 2 = 0.30) under the stresses. All stressed cultures were successfully recovered at 25°C but their vigor depended on stressful temperature, time length and the interaction of both (r 2 = 0.98). The highest level of 6-h trehalose accumulation at 35°C was found enhancing the tolerance of the stressed cultures to the greater stress of 48°C. The results suggest that the trehalose accumulation result partially from metabolized mannitol and contribute to the fungal thermotolerance. Trehalase also contributed to the thermotolerance by hydrolyzing accumulated trehalose under the conditions of thermal stress and recovery.  相似文献   

14.
Summary The mechanism of trehalose absorption was examined in developing ovaries of the silkworm,Bombyx mori. Trehalose and glucose absorption followed saturation kinetics giving an apparentK m value of 8.4 mM and a Vmax of 12.5 moles/30 min per g ovaries for trehalose absorption, and an apparentK m value of 26.4 mM and a Vmax of 36.6 moles/30 min per g ovaries for glucose uptake. Trehalose absorption was clearly inhibited by addition of NaCN or NaN3 to the incubation medium.Cellobiose, maltose, sucrose and turanose were taken up by ovaries at much lower rates than trehalose. Among the disaccharidases which hydrolyse these sugars, trehalase activity was highest. The correlation between trehalase activity and trehalose absorption rate was also demonstrated by a reduction of trehalase activity accompanied by reduced absorption rates after extirpation of the suboesophageal ganglion (SG). During trehalose absorption, glucose was released into the incubation medium, but after SG removal, no liberation of glucose was observed. Furthermore, no accumulation of14C-trehalose, added to the medium, was observed in the cells and almost all radioactivity was recovered as glucose and glycogen in the ovaries.These results suggest that in developing silkworm ovaries, trehalose is absorbed by a specific carriermediated and energy-dependent system, in which the hydrolysis by trehalase is an obligatory step.  相似文献   

15.
Changes, during the reproductive cycle, in fat body, hemolymph, and ovarian proteins of the stable fly Stomoxys calcitrans were characterized quantitatively and qualitatively using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Protein content of all three tissues increased after blood feeding. Fat body protein increased first, followed by hemolymph and ovarian proteins. SDS-PAGE failed to identify vitellogenin in both female hemolymph and fat body samples. No single protein or group of proteins predominated at any stage of the reproductive cycle. Comparisons between male and female stable fly hemolymph and fat body proteins failed to detect female-specific proteins. Female-specific proteins, however, were detected in the hemolymph of four other species of Diptera.  相似文献   

16.
Trehalose 6-phosphate synthase(TPS),an enzyme that hydrolyzes two glucose molecules to yield trchalose,plays a pivotal role in various physiological processes.In this study,we cloned the trehalose-6-phosphate synthase gene(HvTPS)and investigated its expression patterns in various tssues and d:velopmental stages in Heortia vitessoides Moore(Lepidoptera:Crambidac).HvTPS was highly expressed in the fat body and after pupation or before molting.We knocked down TPS in H.vitessoides by RNA interference and found that 3.0μg of dsHvTPS resulted in optimal interference at 24 h and 36 h post-injection and caused a sharp decline in the survival rate during the 5th instar larval-pupal stage and obviously abnormal or lethal phenotypes.Additionally.compared to the controls,TPS activity and trehalose contents were significantly lower and the glucose content was significantly higher 24 h or 36 h after injection with 3.0μg of dsHIvTPS.Furthermore,the silencing of HvTPS suppressed the cxpression of six key genecs in the chitin biosynthesis pathway and one key gene related to lipid catabolism.The expression levels of two genes associated with lipid biosynthesis were upregulated.These results strongly suggest that HvTPS is essential for the normal growth and development of H.vitessoides and provide a reference for further studies of the utility of key genes involved in chitin and lipid biosynthesis for controlling insect development.  相似文献   

17.
The metabolism of trehalose in wild type cells of Escherichia coli and Salmonella typhimurium has been investigated. Intact cells of Escherichia coli (grown on trehalose) accumulated [14C]-trehalose as [14C]-trehalose 6-phosphate. Toluene-treated cells catalyzed the synthesis of the [14C]-sugar phosphate from [14C]-trehalose and phosphoenolpyruvate; ATP did not serve as phosphoryl donor. Trehalose 6-phosphate could subsequently be hydrolyzed by trehalose 6-phosphate hydrolase, an enzyme which catalyzes the hydrolysis of the disaccharide phosphate into glucose and glucose 6-phosphate. Both Escherichia coli and Salmonella typhimurium induced this enzyme when they grew on trehalose.These findings suggest that trehalose is transported in these bacteria by an inducible phosphoenolpyruvate:trehalose phosphotransferase system.The presence of a constitutive trehalase was also detected.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanosulfonic acid - PEP phosphoenolpyruvate - PTS phosphoenolpyruvate: glycose phosphotransferase system - O.D. optical density  相似文献   

18.
During a screening for novel microbial trehalose phosphorylase three Pichia strains were identified as producers of this particular enzyme that have not yet been described. To our knowledge, this is the first time that this enzyme activity has been shown in yeasts. Pichia fermentans formed trehalose phosphorylase when cultivated on a growth medium containing easily metabolizable sugers such as glucose. Addition of NaCl (0.4 M) to the medium increased the synthesis of the enzyme significantly. Production of trehalose phosphorylase was found to be growth-associated with a maximum of activity formed at the transition of the exponential to the stationary phase of growth. Trehalose phosphorylase catalyzes the phosphorolytic cleavage of trehalose, yielding glucose 1-phosphate (glucose-1-P) and glucose as products. In vitro the enzyme readily catalyzes the reverse reaction, the synthesis of trehalose from glucose and glucose-1-P. For this reaction, the enzyme of P. fermentans was found to utilize -glucose-1-P preferentially. A partially purified enzyme preparation showed a pH optimum of 6.3 for the synthesis of trehalose. The enzyme was found to be rather unstable; it was easily inactivated by dilution unless Ca2+ or Mn2+ were added. This instability is presumably caused by dissociation of the enzyme. In contrast to other yeasts, P. fermentans rapidly degraded intracellularly accumulated trehalose when the carbon source in the medium was depleted. Trehalose phosphorylase seems to be a key enzyme in the degradative pathway of trehalose in P. fermentans. Additional enzymes in this catabolic pathway of trehalose include phosphoglucomutase, glucose-6-phosphate dehydrogenase, and gluconolactonase.This contribution is part of the Ph.D. thesis of Ingrid Schick  相似文献   

19.
Trehalose, a naturally occurring osmolyte, is considered as a universal protein stabilizer. We investigated the effect of the disaccharides, trehalose and sucrose, on the thermal stability and conformation of bromelain. To our surprise, bromelain in the presence of 1 M trehalose/sucrose was destabilized under thermal stress. The average Tm values as determined by UV spectroscopy and CD spectropolarimetry decreased by 5° and 7°C for bromelain in 1 M sucrose or trehalose solutions, respectively. The enzyme was also found to inactivate faster at 60°C in the presence of these osmolytes. The tertiary and secondary structure of bromelain undergoes small changes in the presence of sucrose/trehalose. Studies on the binding of these osmolytes with the native and the heat denatured enzyme revealed that sucrose/trehalose lead to preferential hydration of the denatured bromelain as compared to the native one, hence stabilizing more the denatured conformation. This is perhaps the first report on the destabilization of a protein by trehalose.  相似文献   

20.
Trehalose synthase (TreS) is an intramolecular transglycosylase. It specially catalyzes the conversion of maltose and trehalose. In this study, a novel treS gene, which had a length of 1,797 bp and encoded 598 amino acids, was cloned from Arthrobacter aurescens CGMCC 1.1892 and expressed in Escherichia coli. Thin layer chromatography results indicated that it could catalyze the conversion between maltose and trehalose in one step. However, the ion chromatography results showed that, as a byproduct, about 13% glucose was also produced. The purified recombinant enzyme had a molecular weight of 68 kDa and showed its optimal activity at 35 °C and pH 6.5. This enzyme was not thermostable, and its activity was increased by 1 mM Mg2+, Mn2+, and Ca2+ while strongly inhibited by 5 mM Cu2+ and SDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号