首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the possibility of an endogenous circadian rhythm in retinal cone function in humans. A full-field cone electroretinogram (ERG) was performed every 2 h for 24 h under continuous rod-saturating ambient white light (53 ± 30 lux; pupils dilated) in nine healthy subjects. Distinct circadian variations were superimposed upon a gradual decrease in cone responsiveness to light, demonstrated most reliably in the implicit times of b-wave and oscillatory potentials, and to a lesser extent in amplitude and a-wave implicit times. After mathematical correction of the linear trend, the cone response was found to be greatest around 20:00 h and least around 06:00 h. The phase of the ERG circadian rhythm was not synchronized with the phase of the salivary melatonin rhythm measured the previous evening. Melatonin levels measured under constant light on the day of ERG assessments were suppressed by 53% on average compared to melatonin profiles obtained previously under near-total darkness in seven participants. The progressive decline in cone responsiveness to light over the 24 h may reflect an adaptation of the cone-driven retinal system to constant light, although the mechanism is unclear. The endogenous rhythm of cone responsiveness to light may be used as an additional index of central or retinal circadian clock time.  相似文献   

2.
The rods in the retina are responsible for night vision, whereas the cone system enables day vision. We studied whether rod function in humans exhibits an endogenous circadian rhythm and if changes occur in conditions of prolonged darkness. Seven healthy subjects (mean age±SD: 25.6±12.3 yr) completed a 4.5‐day protocol during which they were kept in complete darkness (days 1 and 4) and near darkness (<0.1 lux red light, days 2 and 3). Electroretinography (ERG) and saliva collections were done at intervals of at least 3 h for 27 h on days 1 and 4. Full‐field ERGs were recorded over 10 low‐intensity green light flashes known to test predominantly rod function. As a circadian marker, salivary melatonin concentration was measured by radioimmunoassay. The ERG data showed that rod responsiveness to light progressively diminished in darkness (significantly lower a‐ and b‐wave amplitudes, longer b‐wave implicit time). The decrease in amplitude (b‐wave) from day 1 to day 4 averaged 22±14%. After correction for the darkness‐related linear trend, the circadian variations in ERG indices were weak and usually non‐significant, with slightly higher responsiveness to light during the day than night. Rod sensitivity (by K index) tended to decrease. Strikingly, the overall amount of melatonin secretion (area under 24 h curve) also decreased from day 1 to day 4 by 33.1±18.9% (p=.017). The drift of the melatonin rhythm phase was within the normal range, less than 56 min over three days. There was no significant correlation between the changes in ERG responses and melatonin. In conclusion, scotopic retinal response to (low‐intensity) light and the amount of melatonin secreted are diminished when humans are kept in continuous darkness. Both processes may have a common underlying mechanism implicating a variety of neurochemicals known to be involved in the regulation of both photoreceptor and pineal gland function.  相似文献   

3.
Sleep disturbances in alcohol-dependent (AD) individuals may persist despite abstinence from alcohol and can influence the course of the disorder. Although the mechanisms of sleep disturbances of AD are not well understood and some evidence suggests dysregulation of circadian rhythms, dim light melatonin onset (DLMO) has not previously been assessed in AD versus healthy control (HC) individuals in a sample that varied by sex and race. The authors assessed 52 AD participants (mean?±?SD age: 36.0?±?11.0 yrs of age, 10 women) who were 3–12 wks since their last drink (abstinence: 57.9?±?19.3 d) and 19 age- and sex-matched HCs (34.4?±?10.6 yrs, 5 women). Following a 23:00–06:00?h at-home sleep schedule for at least 5 d and screening/baseline nights in the sleep laboratory, participants underwent a 3-h extension of wakefulness (02:00?h bedtime) during which salivary melatonin samples were collected every 30?min beginning at 19:30?h. The time of DLMO was the primary measure of circadian physiology and was assessed with two commonly used methodologies. There was a slower rate of rise and lower maximal amplitude of the melatonin rhythm in the AD group. DLMO varied by the method used to derive it. Using 3 pg/mL as threshold, no significant differences were found between the AD and HC groups. Using 2 standard deviations above the mean of the first three samples, the DLMO in AD occurred significantly later, 21:02?±?00:41?h, than in HC, 20:44?±?00:21?h (t?=??2.4, p?=?.02). Although melatonin in the AD group appears to have a slower rate of rise, using well-established criteria to assess the salivary DLMO did not reveal differences between AD and HC participants. Only when capturing melatonin when it is already rising was DLMO found to be significantly delayed by a mean 18?min in AD participants. Future circadian analyses on alcoholics should account for these methodological caveats. (Author correspondence: )  相似文献   

4.
Freshly collected samples of Tylos europaeus from Korba beach (northeast of Tunisia) were housed in an environmental cabinet at controlled temperature (18°C?±?.5°C) and photoperiod. Locomotor activity was recorded under two photoperiodic regimens by infrared actography every 20?min by multichannel data loggers. One regimen simulated the natural light-dark cycle on the day of collection, whereas the second imposed a state of continuous darkness on all individuals. Under entraining conditions, the animals displayed rhythmic activity, in phase with the period of darkness, whereas in continuous darkness these isopods exhibited a strong endogenous rhythm with circadian and semidiurnal components at mean periods of τ (h:min)?=?25:09?±?01:02?h and τ?=?12:32?±?00:26?h, respectively. Under free-running conditions, this endogenous rhythm showed significant intraspecific variability. (Author correspondence: )  相似文献   

5.
The authors previously observed blunted phase-shift responses to morning bright light in women with premenstrual dysphoric disorder (PMDD). The aim of this study was to determine if these findings could be replicated using a higher-intensity, shorter-duration light pulse and to compare these results with the effects of an evening bright-light pulse. In 17 PMDD patients and 14 normal control (NC) subjects, the authors measured plasma melatonin at 30-min intervals from 18:00 to 10:00?h in dim (<30 lux) or dark conditions the night before (Night 1) and after (Night 3) a bright-light pulse (administered on Night 2) in both follicular and luteal menstrual cycle phases. The bright light (either 3000 lux for 6?h or 6000 lux for 3?h) was given either in the morning (AM light), 7?h after the dim light melatonin onset (DLMO) measured the previous month, or in the evening (PM light), 3?h after the DLMO. In the luteal, but not in the follicular, phase, AM light advanced melatonin offset between Night 1 and Night 3 significantly less in PMDD than in NC subjects. The effects of PM light were not significant, nor were there significant effects of the light pulse on melatonin measures of onset, duration, peak, or area under the curve. These findings replicated the authors’ previous finding of a blunted phase-shift response to morning bright light in the luteal, but not the follicular, menstrual cycle phase in PMDD compared with NC women, using a brighter (6000 vs. 3000 lux) light pulse for a shorter duration (3 vs. 6?h). As the effect of PM bright light on melatonin phase-shift responses did not differ between groups or significantly alter other melatonin measures, these results suggest that in PMDD there is a luteal-phase subsensitivity or an increased resistance to morning bright-light cues that are critical in synchronizing human biological rhythms. The resulting circadian rhythm malsynchonization may contribute to the occurrence of luteal phase depressive symptoms in women with PMDD. (Author correspondence: )  相似文献   

6.
Melatonin concentration and core body temperature (CBT) follow endogenous circadian biological rhythms. In the evening, melatonin level increases and CBT decreases. These changes are involved in the regulation of the sleep-wake cycle. Therefore, the authors hypothesized that age-related changes in these rhythms affect sleep quality in older people. In a cross-sectional study design, 11 older poor-sleeping women (aged 62–72 yrs) and 9 older good-sleeping women (60–82 yrs) were compared with 10 younger good-sleeping women (23–28 yrs). The older groups were matched by age and body mass index. Sleep quality was assessed by the Pittsburgh Sleep Quality Index questionnaire. As an indicator of CBT, oral temperature was measured at 1-h intervals from 17:00 to 24:00?h. At the same time points, saliva samples were collected for determining melatonin levels by enzyme-linked immunosorbent assay (ELISA). The dim light melatonin onset (DLMO), characterizing the onset of melatonin production, was calculated. Evening changes in melatonin and CBT levels were tested by the Friedman test. Group comparisons were performed with independent samples tests. Predictors of sleep-onset latency (SOL) were assessed by regression analysis. Results show that the mean CBT decreased in the evening from 17:00 to 24:00?h in both young women (from 36.57°C to 36.25°C, p < .001) and older women (from 36.58°C to 35.88°C, p < .001), being lowest in the older poor sleepers (p < .05). During the same time period, mean melatonin levels increased in young women (from 16.2 to 54.1 pg/mL, p < .001) and older women (from 10.0 to 23.5 pg/mL, p < .001), being lowest among the older poor sleepers (from 20:00 to 24:00?h, p < .05 vs. young women). Older poor sleepers also showed a smaller increase in melatonin level from 17:00 to 24:00?h than older good sleepers (mean?±?SD: 7.0?±?9.63 pg/mL vs. 15.6?±?24.1 pg/mL, p = .013). Accordingly, the DLMO occurred at similar times in young (20:10?h) and older (19:57?h) good-sleeping women, but was delayed ~50?min in older poor-sleeping women (20:47?h). Older poor sleepers showed a shorter phase angle between DLMO and sleep onset, but a longer phase angle between CBT peak and sleep onset than young good sleepers, whereas older good sleepers had intermediate phase angles (insignificant). Regression analysis showed that the DLMO was a significant predictor of SOL in the older women (R2?=?0.64, p < .001), but not in the younger women. This indicates that melatonin production started later in those older women who needed more time to fall asleep. In conclusion, changes in melatonin level and CBT were intact in older poor sleepers in that evening melatonin increased and CBT decreased. However, poor sleepers showed a weaker evening increase in melatonin level, and their DLMO was delayed compared with good sleepers, suggesting that it is not primarily the absolute level of endogenous melatonin, but rather the timing of the circadian rhythm in evening melatonin secretion that might be related to disturbances in the sleep-wake cycle in older people. (Author correspondence: )  相似文献   

7.
This study investigated the physiological function of suppressed melatonin through thermoregulation in a cold environment. Interactions between thermoregulation directly affected by exposure to a cold environment and indirectly affected by endogenous melatonin suppression by bright-light exposure were examined. Ten male subjects were exposed to two different illumination intensities (30 and 5000 lux) for 4.5?h, and two different ambient temperatures (15 and 27°C) for 2?h before sleep under dark and thermoneutral conditions. Salivary melatonin level was suppressed by bright light (p?<?0.001), although the ambient temperature condition had no significant effect on melatonin. During sleep, significant effects of pre-sleep exposure to a cold ambient temperature (p?<?0.001) and bright light (p?<?0.01) on rectal temperature (Tre) were observed. Pre-sleep, bright-light exposure led to an attenuated fall in Tre during sleep. Moreover, Tre dropped more precipitously after cold exposure than thermoneutral conditions (cold: ?0.54?±?0.07°C/h; thermoneutral: ?0.16?±?0.03°C/h; p?<?0.001). Pre-sleep, bright-light exposure delayed the nadir time of Tre under thermoneutral conditions (p?<?0.05), while cold exposure masked the circadian rhythm with a precipitous decrease in Tre. A significant correlation between the Tre nadir and melatonin level (r?=??0.774, p?<?0.05) indicated that inter-individual differences with higher melatonin levels lead to a reduction in Tre after cold exposure. These results suggest that suppressed endogenous melatonin inhibits the downregulation of the body temperature set-point during sleep. (Author correspondence: )  相似文献   

8.
We investigated the effects of sleep loss and circadian rhythm on number comparison performance. Magnitude comparison of single-digits is robustly characterized by a distance effect: Close numbers (e.g., 5 versus 6) produce longer reaction times than numbers further apart (e.g., 2 versus 8). This distance effect is assumed to reflect the difficulty of a comparison process based on an analogous representation of general magnitude. Twelve male participants were required to stay awake for 40?h in a quasi-constant-routine protocol. Response speed and accuracy deteriorated between 00:00 and 06:00?h but recovered afterwards during the next day, indicating a circadian rhythm of elementary cognitive function (i.e., attention and speed of mental processing). The symbolic distance effect, however, did not increase during the nighttime, indicating that neither cumulative sleep loss nor the circadian clock prolongs numerical comparison processes. The present findings provide first evidence for a relative insensitivity of symbolic magnitude processing against the temporal variation in energy state. (Author correspondence: )  相似文献   

9.
Most night workers are unable to adjust their circadian rhythms to the atypical hours of sleep and wake. Between 10% and 30% of shiftworkers report symptoms of excessive sleepiness and/or insomnia consistent with a diagnosis of shift work disorder (SWD). Difficulties in attaining appropriate shifts in circadian phase, in response to night work, may explain why some individuals develop SWD. In the present study, it was hypothesized that disturbances of sleep and wakefulness in shiftworkers are related to the degree of mismatch between their endogenous circadian rhythms and the night-work schedule of sleep during the day and wake activities at night. Five asymptomatic night workers (ANWs) (3 females; [mean?±?SD] age: 39.2?±?12.5 yrs; mean yrs on shift?=?9.3) and five night workers meeting diagnostic criteria (International Classification of Sleep Disorders [ICSD]-2) for SWD (3 females; age: 35.6?±?8.6 yrs; mean years on shift?=?8.4) participated. All participants were admitted to the sleep center at 16:00?h, where they stayed in a dim light (<10 lux) private room for the study period of 25 consecutive hours. Saliva samples for melatonin assessment were collected at 30-min intervals. Circadian phase was determined from circadian rhythms of salivary melatonin onset (dim light melatonin onset, DLMO) calculated for each individual melatonin profile. Objective sleepiness was assessed using the multiple sleep latency test (MSLT; 13 trials, 2-h intervals starting at 17:00?h). A Mann-Whitney U test was used for evaluation of differences between groups. The DLMO in ANW group was 04:42?±?3.25?h, whereas in the SWD group it was 20:42?±?2.21?h (z = 2.4; p?<?.05). Sleep did not differ between groups, except the SWD group showed an earlier bedtime on off days from work relative to that in ANW group. The MSLT corresponding to night work time (01:00–09:00?h) was significantly shorter (3.6?±?.90?min: [M?±?SEM]) in the SWD group compared with that in ANW group (6.8?±?.93?min). DLMO was significantly correlated with insomnia severity (r = ?.68; p < .03), indicating that the workers with more severe insomnia symptoms had an earlier timing of DLMO. Finally, SWD subjects were exposed to more morning light (between 05:00 and 11:00?h) as than ANW ones (798 vs. 180 lux [M?±?SD], respectively z?=??1.7; p?<?.05). These data provide evidence of an internal physiological delay of the circadian pacemaker in asymptomatic night-shift workers. In contrast, individuals with SWD maintain a circadian phase position similar to day workers, leading to a mismatch/conflict between their endogenous rhythms and their sleep-wake schedule. (Author correspondence: )  相似文献   

10.
Djungarian hamsters (Phodopus sungorus) bred at the Institute of Halle reveal three different circadian phenotypes. The wild type (WT) shows normal locomotor activity patterns, whereas in hamsters of the DAO (delayed activity onset) type, the activity onset is continuously delayed. Since the activity offset in those hamsters remains coupled to “light-on,” the activity time becomes compressed. Hamsters of the AR (arrhythmic) type are episodically active throughout the 24?h. Previous studies showed that a disturbed interaction of the circadian system with the light-dark (LD) cycle contributes to the phenomenon observed in DAO hamsters. To gain better insight into the underlying mechanisms, the authors investigated the daily melatonin rhythm, as it is a reliable marker of the circadian clock. Hamsters were kept individually under standardized laboratory conditions (LD 14:10, T?=?22°C?±?2°C, food and water ad libitum). WT, DAO (with exactly 5?h delay of activity onset), and AR hamsters were used for pineal melatonin and urinary 6-sulfatoxymelatonin (aMT6s) measurement. Pineal melatonin content was determined at 3 time points: 4?h after “light-off” [D?+?4], 1?h before “light-on” [L???1], and 1?h after “light-on” [L?+?1]). The 24-h profile of melatonin secretion was investigated by transferring the animals to metabolic cages for 27?h to collect urine at 3-h intervals for aMT6s analysis. WT hamsters showed high pineal melatonin content during the dark time (D?+?4, L???1), which significantly decreased at the beginning of the light period (L?+?1). In contrast, DAO hamsters displayed low melatonin levels during the part of the dark period when animals were still resting (D?+?4). At the end of the dark period (L???1), melatonin content increased significantly and declined again when light was switched on (L?+?1). AR hamsters showed low melatonin levels, comparable to daytime values, at all 3 time points. The results were confirmed by aMT6s data. WT hamsters showed a marked circadian pattern of aMT6s excretion. The concentration started to increase 3?h after “light-off” and reached daytime values 5?h after “light-on.” In DAO hamsters, in contrast, aMT6s excretion started about 6?h later and reached significantly lower levels compared to WT hamsters. In AR animals, aMT6s excretion was low at all times. The results clearly indicate the rhythm of melatonin secretion in DAO hamsters is delayed in accord with their delayed activity onset, whereas AR hamsters display no melatonin rhythm at all. Since the regulatory pathways for the rhythms of locomotor activity and melatonin synthesis (which are downstream from the suprachiasmatic nucleus [SCN]) are different but obviously convey the same signal, we conclude that the origin of the phenomenon observed in DAO hamsters must be located upstream of the SCN, or in the SCN itself. (Author correspondence: )  相似文献   

11.
This study assessed the influence of sleep loss and circadian rhythm on executive inhibitory control (i.e., the ability to inhibit conflicting response tendencies due to irrelevant information). Twelve ordinarily diurnally active, healthy young male participants performed the Stroop and the Simon task every 3?h in a 40-h constant routine protocol that comprised constant wakefulness under controlled behavioral and environmental conditions. In both tasks, overall performance showed clear circadian rhythm and sleep-loss effects. However, both Stroop and Simon interference remained unchanged across the 40?h of wakefulness, suggesting that neither cumulative sleep loss nor the circadian clock affects executive inhibitory control. The present findings challenge the widely held view that executive functions are especially vulnerable to the influence of sleep loss and circadian rhythm. (Author correspondence: )  相似文献   

12.
《Chronobiology international》2013,30(8):1011-1020
Retinal ganglion cells (RGCs) contain circadian clocks driving melatonin synthesis during the day, a subset of these cells acting as nonvisual photoreceptors sending photic information to the brain. In this work, the authors investigated the temporal and light regulation of arylalkylamine N-acetyltransferase (AA-NAT) activity, a key enzyme in melatonin synthesis. The authors first examined this activity in RGCs of wild-type chickens and compared it to that in photoreceptor cells (PRs) from animals maintained for 48?h in constant dark (DD), light (LL), or regular 12-h:12-h light-dark (LD) cycle. AA-NAT activity in RGCs displayed circadian rhythmicity, with highest levels during the subjective day in both DD and LL as well as in the light phase of the LD cycle. In contrast, AA-NAT activity in PRs exhibited the typical nocturnal peak in DD and LD, but no detectable oscillation was observed under LL, under which conditions the levels were basal at all times examined. A light pulse of 30–60?min significantly decreased AA-NAT activity in PRs during the subjective night, but had no effect on RGCs during the day or night. Intraocular injection of dopamine (50 nmol/eye) during the night to mimic the effect of light presented significant inhibition of AA-NAT activity in PRs compared to controls but had no effect on RGCs. The results clearly demonstrate that the regulation of the diurnal increase in AA-NAT activity in RGCs of chickens undergoes a different control mechanism from that observed in PRs, in which the endogenous clock, light, and dopamine exhibited differential effects. (Author correspondence: )  相似文献   

13.
《Chronobiology international》2013,30(7):1369-1388
Australian sleepy lizards (Tiliqua rugosa) exhibit marked locomotor activity rhythms in the field and laboratory. Light-dark (LD) and temperature cycles (TCs) are considered important for the entrainment of circadian locomotor activity rhythms and for mediating seasonal adjustments in aspects of these rhythms, such as phase, amplitude, and activity pattern. The relative importance of 24 h LD and TCs in entraining the circadian locomotor activity rhythm in T. rugosa was examined in three experiments. In the first experiment, lizards were held under LD 12:12 and subjected to either a TC of 33:15?°?C in phase with the LD cycle or a reversed TC positioned in antiphase to the LD cycle. Following LD 12:12, lizards were maintained under the same TCs but were subjected to DD. Activity was restricted to the thermophase in LD, irrespective of the lighting regime and during the period of DD that followed, suggesting entrainment by the TC. The amplitude of the TC was lowered by 8?°?C to reduce the intensity and possible masking effect of the TC zeitgeber in subsequent experiments. In the second experiment, lizards were held under LD 12.5:11.5 and subjected to one of three treatments: constant 30?°?C, normal TC (30:20?°?C) in phase with the LD cycle, or reversed TC. Following LD, all lizards were subjected to DD and constant 30?°?C. Post-entrainment free-run records revealed that LD cycles and TCs could both entrain the locomotor rhythms of T. rugosa. In LD, mean activity duration (α) of lizards in the normal TC group was considerably less than that in the constant 30?°?C group. Mean α also increased between LD and DD in lizards in the normal TC group. Although there was large variation in the phasing of the rhythm in relation to the LD cycle in reversed TC lizards, TCs presented in phase with the LD cycle most accurately synchronized the rhythm to the photocycle. In the third experiment, lizards were held in DD at constant 30?°?C before being subjected to a further period of DD and one of four treatments: normal TC (06:00 to 18:00 h thermophase), delayed TC (12:00 to 00:00 h thermophase), advanced TC (00:00 to 12:00 h thermophase), or control (no TC, constant 30?°?C). While control lizards continued to free-run in DD at constant temperature, the locomotor activity rhythms of lizards subjected to TCs rapidly entrained to TCs, whether or not the TC was phase advanced or delayed by 6 h. There was no difference in the phase relationships of lizard activity rhythms to the onset of the thermophase among the normal, delayed, and advanced TC groups, suggesting equally strong entrainment to the TC in each group. The results of this experiment excluded the possibility that masking effects were responsible for the locomotor activity responses of lizards to TCs. The three experiments demonstrated that TCs are important for entraining circadian locomotor activity rhythms of T. rugosa, even when photic cues are conflicting or absent, and that an interaction between LD cycles and TCs most accurately synchronizes this rhythm. (Author correspondence: )  相似文献   

14.
Cloistered monks and nuns adhere to a 10-century-old strict schedule with a common zeitgeber of a night split by a 2- to 3-h-long Office (Matins). The authors evaluated how the circadian core body temperature rhythm and sleep adapt in cloistered monks and nuns in two monasteries. Five monks and five nuns following the split-sleep night schedule for 5 to 46 yrs without interruption and 10 controls underwent interviews, sleep scales, and physical examination and produced a week-long sleep diary and actigraphy, plus 48-h recordings of core body temperature. The circadian rhythm of temperature was described by partial Fourier time-series analysis (with 12- and 24-h harmonics). The temperature peak and trough values and clock times did not differ between groups. However, the temperature rhythm was biphasic in monks and nuns, with an early decrease at 19:39?±?4:30?h (median?±?95% interval), plateau or rise of temperature at 22:35?±?00:23?h (while asleep) lasting 296?±?39?min, followed by a second decrease after the Matins Office, and a classical morning rise. Although they required alarm clocks to wake-up for Matins at midnight, the body temperature rise anticipated the nocturnal awakening by 85?±?15?min. Compared to the controls, the monks and nuns had an earlier sleep onset (20:05?±?00:59?h vs. 00:00?±?00:54?h, median?±?95% confidence interval, p?=?.0001) and offset (06:27?±?0:22?h, vs. 07:37?±?0:33?h, p?=?.0001), as well as a shorter sleep time (6.5?±?0.6 vs. 7.6?±?0.7?h, p?=?.05). They reported difficulties with sleep latency, sleep duration, and daytime function, and more frequent hypnagogic hallucinations. In contrast to their daytime silence, they experienced conversations (and occasionally prayers) in dreams. The biphasic temperature profile in monks and nuns suggests the human clock adapts to and even anticipates nocturnal awakenings. It resembles the biphasic sleep and rhythm of healthy volunteers transferred to a short (10-h) photoperiod and provides a living glance into the sleep pattern of medieval time. (Author correspondence: )  相似文献   

15.
The objective of this study was to quantify daytime sleep in night-shift workers with and without an intervention designed to recover the normal relationship between the endogenous circadian pacemaker and the sleep/wake cycle. Workers of the treatment group received intermittent exposure to full-spectrum bright light during night shifts and wore dark goggles during the morning commute home. All workers maintained stable 8-h daytime sleep/darkness schedules. The authors found that workers of the treatment group had daytime sleep episodes that lasted 7.1?±?.1?h (mean?±?SEM) versus 6.6?±?.2?h for workers in the control group (p?=?.04). The increase in total sleep time co-occurred with a larger proportion of the melatonin secretory episode during daytime sleep in workers of the treatment group. The results of this study showed reestablishment of a phase angle that is comparable to that observed on a day-oriented schedule favors longer daytime sleep episodes in night-shift workers. (Author correspondence: )  相似文献   

16.
Hypocretin deficiency causes narcolepsy. It is unknown whether melatonin secretion is affected in this sleep disorder. Therefore, in both narcolepsy patients and matched controls, the authors measured plasma melatonin levels hourly for 24?h before and after 5 days of sodium oxybate (SXB) administration. Although mean melatonin concentrations were similar between patients and controls, in narcoleptics the percentage of 24-h melatonin secreted during the daytime was significantly higher, and melatonin secretion exhibited a weaker coupling to sleep. SXB did not affect melatonin secretion. These findings suggest that hypocretin deficiency might disturb both the circadian control of melatonin release and its temporal association with sleep. (Author correspondence: )  相似文献   

17.
《Chronobiology international》2013,30(8):1078-1097
Recently, we developed a novel method for estimating human circadian phase with noninvasive ambulatory measurements combined with subject-independent multiple regression models and a curve-fitting approach. With this, we were able to estimate circadian phase under real-life conditions with low subject burden, i.e., without need of constant routine (CR) laboratory conditions, and without measuring standard circadian markers, such as core body temperature (CBT) or pineal hormone melatonin rhythms. The precision of ambulatory-derived estimated circadian phase was within an error of 12?±?41?min (mean?±?SD) in comparison to melatonin phase during a CR protocol. The physiological measures could be reduced to a triple combination: skin temperatures, irradiance in the blue spectral band of ambient light, and motion acceleration. Here, we present a nonlinear regression model approach based on artificial neural networks for a larger data set (25 healthy young males), including both the original data and additional data collected in the same protocol and using the same equipment. Throughout our validation study, subjects wore multichannel ambulatory monitoring devices and went about their daily routine for 1 wk. The devices collected a large number of physiological, behavioral, and environmental variables, including CBT, skin temperatures, cardiovascular and respiratory functions, movement/posture, ambient temperature, spectral composition and intensity of light perceived at eye level, and sleep logs. After the ambulatory phase, study volunteers underwent a 32-h CR protocol in the laboratory for measuring unmasked circadian phase (i.e., “midpoint” of the nighttime melatonin rhythm). To overcome the complex masking effects of many different confounding variables during ambulatory measurements, neural network–based nonlinear regression techniques were applied in combination with the cross-validation approach to subject-independent prediction of circadian phase. The most accurate estimate of circadian phase with a prediction error of ?3?±?23?min (mean?±?SD) was achieved using only two types of the measured variables: skin temperatures and irradiance for ambient light in the blue spectral band. Compared to our previous linear multiple regression modeling approach, motion acceleration data can be excluded and prediction accuracy, nevertheless, improved. Neural network regression showed statistically significant improvement of variance of prediction error over traditional approaches in determining circadian phase based on single predictors (CBT, motion acceleration, or sleep logs), even though none of these variables was included as predictor. We, therefore, have identified two sets of noninvasive measures that, combined with the prediction model, can provide researchers and clinicians with a precise measure of internal time, in spite of the masking effects of daily behavior. This method, here validated in healthy young men, requires testing in a clinical or shiftwork population suffering from circadian sleep-wake disorders. (Author correspondence: )  相似文献   

18.
Although a significant body of literature has been devoted to the chronobiology of aquatic animals, how biological rhythms function in molluscan bivalves has been poorly studied. The first objective of this study was to determine whether an endogenous circadian rhythm does exist in the oyster, Crassostrea gigas. The second objective was to characterize it in terms of robustness. To answer these questions, the valve activity of 15 oysters was continuously recorded for 2 mo in the laboratory under different entrainment and free-running regimes using a high-frequency noninvasive valvometer. The present work demonstrates the presence of a circadian rhythm in the oyster Crassostrea gigas. First, oysters were entrained by 12?L:12 D conditions. Then, free-running conditions (D:D and L:L) indicated that the most frequently observed period ranged from 20 to 28?h, the circadian range. That endogenous circadian rhythm was characterized as weak. Indeed, the period (τ) of the individual animals exhibited high plasticity in D:D and L:L, and the animals immediately followed a 4-h phase advance or delay. Additionally, C. gigas appeared as a dual organism: all oysters were nocturnal at the beginning of the laboratory experiment (January), whereas they were diurnal at the end (March). That shift was progressive. Comparison with a full-year in situ record showed the same behavioral duality as observed in the laboratory: the animals were nocturnal in autumn–winter and diurnal in spring–summer. The significant advantage of a plastic and dual circadian rhythm in terms of adaptability in a highly changing environment is discussed. (Author correspondence: )  相似文献   

19.
Using a discrete trials (DT) procedure, we have previously shown that rats exhibit variations in their pattern of cocaine self-administration relative to the time-of-day, often producing a daily rhythm of intake in which the majority of infusions occur during the dark phase of the 24?h light-dark cycle. We have sought to determine if cocaine self-administration demonstrates free-running circadian characteristics under constant-lighting conditions in the absence of external environmental cues. Rats self-administering cocaine (1.5?mg/kg/infusion) under a DT3 procedure (three trials/h) were kept in constant-dim (<2 lux, DIM) conditions, and the pattern of intake was analyzed for free-running behavior. We show that cocaine self-administration has a period length (τ) of 24.14?±?0.07?h in standard 12?h light:12?h dark conditions, which is maintained for at least five days in constant-dim conditions. With longer duration DIM exposure, cocaine self-administration free-runs with a τ of approximately 24.92?±?0.16?h. Exposure to constant-light conditions (1000 lux, LL) lengthened τ to 26.46?±?0.23?h; this was accompanied by a significant decrease in total cocaine self-administered during each period. The pattern of cocaine self-administration, at the dose and availability used in this experiment, is circadian and is likely generated by an endogenous central oscillator. The DT procedure is therefore a useful model to examine the substrates underlying the relationship between circadian rhythms and cocaine intake. (Author correspondence: )  相似文献   

20.
《Chronobiology international》2013,30(8):1021-1035
In the laboratory rat, a number of physiological parameters display seasonal changes even under constant conditions of temperature, lighting, and food availability. Since there is evidence that prolactin (PRL) is, among the endocrine signals, a major mediator of seasonal adaptations, the authors aimed to examine whether melatonin administration in drinking water resembling in length the exposure to a winter photoperiod could affect accordingly the 24-h pattern of PRL synthesis and release and some of their anterior pituitary redox state and circadian clock modulatory mechanisms. Melatonin (3?µg/mL drinking water) or vehicle was given for 1 mo, and rats were euthanized at six time intervals during a 24-h cycle. High concentrations of melatonin (>2000 pg/mL) were detected in melatonin-treated rats from beginning of scotophase (at 21:00?h) to early photophase (at 09:00?h) as compared with a considerably narrower high-melatonin phase observed in controls. By cosinor analysis, melatonin-treated rats had significantly decreased MESOR (24-h time-series average) values of anterior pituitary PRL gene expression and circulating PRL, with acrophases (peak time) located in the middle of the scotophase, as in the control group. Melatonin treatment disrupted the 24-h pattern of anterior pituitary gene expression of nitric oxide synthase (NOS)-1 and -2, heme oxygenase-1 and -2, glutathione peroxidase, glutathione reductase, Cu/Zn- and Mn-superoxide dismutase, and catalase by shifting their acrophases to early/middle scotophase or amplifying the maxima. Only the inhibitory effect of melatonin on pituitary NOS-2 gene expression correlated temporally with inhibition of PRL production. Gene expression of metallothionein-1 and -3 showed maxima at early/middle photophase after melatonin treatment. The 24-h pattern of anterior pituitary lipid peroxidation did not vary after treatment. In vehicle-treated rats, Clock and Bmal1 expression peaked in the anterior pituitary at middle scotophase, whereas that of Per1 and Per2 and of Cry1 and Cry2 peaked at the middle and late photophase, respectively. Treatment with melatonin raised mean expression of anterior pituitary Per2, Cry1, and Cry2. In the case of Per1, decreased MESOR was observed, although the single significant difference found between the experimental groups when analyzed at individual time intervals was increase at early scotophase in the anterior pituitary of melatonin-treated rats. Melatonin significantly phase-delayed expression of Per1, Per2, and Cry1, also phase-delayed the plasma corticosterone circadian rhythm, and increased the amplitude of plasma corticosterone and thyrotropin rhythms. The results indicate that under prolonged duration of a daily melatonin signal, rat anterior pituitary PRL synthesis and release are depressed, together with significant changes in the redox and circadian mechanisms controlling them. (Author correspondence: ; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号