首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 852 毫秒
1.
This study monitored the endogenous emergence time of the fiddler crab Uca lactea annulipes (Milne-Edwards, 1837) in the field, for the first time, at an intertidal shore in Kuwait, from 1997 to 2001. The results revealed a significant cyclic change in the median emergence time as the season progressed from winter, through spring and summer, to autumn (.44, 1.29, 3.12, and 1.1 h prior to the dead-low tide, respectively). The data also revealed a significant shift in the median emergence time according to moon phase (2.27 h at new moon versus 2.56 h at full moon prior to the dead-low tide).  相似文献   

2.
The present study reports new insights into the complexity of environmental drivers in aquatic animals. The focus of this study was to determine the main forces that drive mollusc bivalve behavior in situ. To answer this question, the authors continuously studied the valve movements of permanently immersed oysters, Crassostrea gigas, during a 1-year-long in situ study. Valve behavior was monitored with a specially build valvometer, which allows continuously recording of up to 16 bivalves at high frequency (10?Hz). The results highlight a strong relationship between the rhythms of valve behavior and the complex association of the sun-earth-moon orbital positions. Permanently immersed C. gigas follows a robust and strong behavior primarily driven by the tidal cycle. The intensity of this tidal driving force is modulated by the neap-spring tides (i.e., synodic moon cycle), which themselves depend of the earth–moon distance (i.e., anomalistic moon cycle). Light is a significant driver of the oysters' biological rhythm, although its power is limited by the tides, which remain the predominant driver. More globally, depending where in the world the bivalves reside, the results suggest their biological rhythms should vary according to the relative importance of the solar cycle and different lunar cycles associated with tide generation. These results highlight the high plasticity of these oysters to adapt to their changing environment. (Author correspondence: )  相似文献   

3.
We assessed the effect of different day/night lengths on the pre-adult developmental time of two species of Camponotus ants that normally develop in dark underground nests. We assayed larval (egg-to-pupal formation), pupal (pupal formation-to-adult emergence), and pre-adult (egg-to-adult emergence) durations in these ants under three different light/dark (LD) cycles of 12:12?h, 10:14?h, and 14:10?h. We observed that the pre-adult development time of ants under these day lengths was significantly different. Although both species developed fastest under 12:12?h LD, when asymmetric LD cycles were compared, night-active species (Camponotus compressus) developed faster under short days (10:14?h) and day-active species (C. paria) developed faster under long days (14:10?h). This day/night-length-mediated difference in pre-adult developmental duration was mostly due to modulation of larval duration; however, in day-active species it was also via altered pupal duration. These results thus indicate that the two species of Camponotus ants respond differently to short and long days, suggesting that seasonal timers regulate pre-adult development time in tropical ant species living in dark underground nests. (Author correspondence: /)  相似文献   

4.
The authors derived early and late populations of fruit flies showing increased incidence of emergence during morning or evening hours by imposing selection for timing of emergence under 12:12?h light/dark (LD) cycles. From previous studies, it was clear that the increased incidence of adult emergence during morning and evening hours in early and late populations was a result of evolution of divergent and characteristic emergence waveforms in these populations. Such characteristic waveforms are henceforth referred to as “evolved emergence waveforms” (EEWs). The early and late populations also evolved different circadian clocks, which is evident from the divergence in their clock period (τ) and photic phase response curve (PRC). Although correlation between emergence waveforms and clock properties suggests functional significance of circadian clocks, τ and PRCs do not satisfactorily explain the early and late emergence phenotypes. In order to understand the functional significance of the PRC for early and late emergence phenotypes, the authors investigated whether circadian clocks of these flies exhibit any difference in photosensitivity under entrained conditions. Such differences would suggest that the light requirement for circadian entrainment of the emergence rhythm in early and late populations is different. To test this, they examined if early and late flies differ in their light utilization behavior, first by assaying their emergence rhythm under complete photoperiod and then in three different skeleton photoperiods. The results showed that early and late populations require different durations of light during the morning and evening to achieve their EEWs, suggesting that for the circadian entrainment of the emergence rhythm, early and late flies utilize light from different parts of the day. (Author correspondence: or )  相似文献   

5.
《Chronobiology international》2013,30(10):1312-1328
Robustness is a fundamental property of biological timing systems that is likely to ensure their efficient functioning under a wide range of environmental conditions. Here we report the findings of our study aimed at examining robustness of circadian clocks in fruit fly Drosophila melanogaster populations selected to emerge as adults within a narrow window of time. Previously, we have reported that such flies display enhanced synchrony, accuracy, and precision in their adult emergence and activity/rest rhythms. Since it is expected that accurate and precise circadian clocks may confer enhanced stability in circadian time-keeping, we decided to examine robustness in circadian rhythms of flies from the selected populations by subjecting them to a variety of environmental conditions comprising of a range of photoperiods, light intensities, ambient temperatures, and constant darkness. The results revealed that adult emergence and activity/rest rhythms of flies from the selected stocks were more robust than controls, as they displayed enhanced stability under a wide variety of environmental conditions. These results suggest that selection for adult emergence within a narrow window of time results in the evolution of robustness in circadian timing systems of the fruit fly D. melanogaster. (Author correspondence: or )  相似文献   

6.
The authors report a phase response curve (PRC) for individual honey bees (Apis mellifera) to single 1-h light pulses (1000 lux) using an Aschoff Type 1 protocol (n?=?134). The bee PRC is a weak (Type 1) PRC with a maximum advance of 1.5?h between circadian time (CT) 18 and 3 and a maximum delay of 1.5?h between CT 12 and 18. This is the first published honey bee light PRC and provides an important resource for chronobiologists and honey bee researchers. It may also have practical applications for what is an economically important species frequently transported across different time zones. (Author correspondence: )  相似文献   

7.
Although a nonlinear time-of-day and prior wake interaction on performance has been well documented, two recent studies have aimed to incorporate the influences of sleep restriction into this paradigm. Through the use of sleep-restricted forced desynchrony protocols, both studies reported a time-of-day?×?sleep restriction interaction, as well as a time-of-day?×?prior wake?×?sleep dose three-way interaction. The current study aimed to investigate these interactions on simulated driving performance, a more complex task with ecological validity for the problem of fatigued driving. The driving performance of 41 male participants (mean?±?SD: 22.8 ±2.2 yrs) was assessed on a 10-min simulated driving task with the standard deviation of lateral position (SDLAT) measured. Using a between-group design, participants were subjected to either a control condition of 9.33?h of sleep/18.66?h of wake, a moderate sleep-restriction (SR) condition of 7?h of sleep/21?h of wake, or a severe SR condition of 4.66?h of sleep/23.33?h of wake. In each condition, participants were tested at 2.5-h intervals after waking across 7?×?28-h d of forced desynchrony. Driving sessions occurred at nine doses of prior wake, within six divisions of the circadian cycle based on core body temperature (CBT). Mixed-models analyses of variance (ANOVAs) revealed significant main effects of time-of-day, prior wake, sleep debt, and sleep dose on SDLAT. Additionally, significant two-way interactions of time-of-day?×?prior wake and time-of-day?×?sleep debt, as well as significant three-way interactions of time-of-day?×?prior wake?×?sleep debt and time-of-day?×?sleep debt?×?sleep dose were observed. Although limitations such as the presence of practice effects and large standard errors are noted, the study concludes with three findings. The main effects demonstrate that extending wake, reducing sleep, and driving at poor times of day all significantly impair driving performance at an individual level. In addition to this, combining either extended wake or a sleep debt with the early morning hours greatly decreases driving performance. Finally, operating under the influence of a reduced sleep dose can greatly decrease performance at all times of the day. (Author correspondence: )  相似文献   

8.
Freshly collected samples of Tylos europaeus from Korba beach (northeast of Tunisia) were housed in an environmental cabinet at controlled temperature (18°C?±?.5°C) and photoperiod. Locomotor activity was recorded under two photoperiodic regimens by infrared actography every 20?min by multichannel data loggers. One regimen simulated the natural light-dark cycle on the day of collection, whereas the second imposed a state of continuous darkness on all individuals. Under entraining conditions, the animals displayed rhythmic activity, in phase with the period of darkness, whereas in continuous darkness these isopods exhibited a strong endogenous rhythm with circadian and semidiurnal components at mean periods of τ (h:min)?=?25:09?±?01:02?h and τ?=?12:32?±?00:26?h, respectively. Under free-running conditions, this endogenous rhythm showed significant intraspecific variability. (Author correspondence: )  相似文献   

9.
Djungarian hamsters (Phodopus sungorus) bred at the Institute of Halle reveal three different circadian phenotypes. The wild type (WT) shows normal locomotor activity patterns, whereas in hamsters of the DAO (delayed activity onset) type, the activity onset is continuously delayed. Since the activity offset in those hamsters remains coupled to “light-on,” the activity time becomes compressed. Hamsters of the AR (arrhythmic) type are episodically active throughout the 24?h. Previous studies showed that a disturbed interaction of the circadian system with the light-dark (LD) cycle contributes to the phenomenon observed in DAO hamsters. To gain better insight into the underlying mechanisms, the authors investigated the daily melatonin rhythm, as it is a reliable marker of the circadian clock. Hamsters were kept individually under standardized laboratory conditions (LD 14:10, T?=?22°C?±?2°C, food and water ad libitum). WT, DAO (with exactly 5?h delay of activity onset), and AR hamsters were used for pineal melatonin and urinary 6-sulfatoxymelatonin (aMT6s) measurement. Pineal melatonin content was determined at 3 time points: 4?h after “light-off” [D?+?4], 1?h before “light-on” [L???1], and 1?h after “light-on” [L?+?1]). The 24-h profile of melatonin secretion was investigated by transferring the animals to metabolic cages for 27?h to collect urine at 3-h intervals for aMT6s analysis. WT hamsters showed high pineal melatonin content during the dark time (D?+?4, L???1), which significantly decreased at the beginning of the light period (L?+?1). In contrast, DAO hamsters displayed low melatonin levels during the part of the dark period when animals were still resting (D?+?4). At the end of the dark period (L???1), melatonin content increased significantly and declined again when light was switched on (L?+?1). AR hamsters showed low melatonin levels, comparable to daytime values, at all 3 time points. The results were confirmed by aMT6s data. WT hamsters showed a marked circadian pattern of aMT6s excretion. The concentration started to increase 3?h after “light-off” and reached daytime values 5?h after “light-on.” In DAO hamsters, in contrast, aMT6s excretion started about 6?h later and reached significantly lower levels compared to WT hamsters. In AR animals, aMT6s excretion was low at all times. The results clearly indicate the rhythm of melatonin secretion in DAO hamsters is delayed in accord with their delayed activity onset, whereas AR hamsters display no melatonin rhythm at all. Since the regulatory pathways for the rhythms of locomotor activity and melatonin synthesis (which are downstream from the suprachiasmatic nucleus [SCN]) are different but obviously convey the same signal, we conclude that the origin of the phenomenon observed in DAO hamsters must be located upstream of the SCN, or in the SCN itself. (Author correspondence: )  相似文献   

10.
11.
This study was designed to examine time-of-day effects on markers of cardiac functional capacity during a standard progressive cycle exercise test. Fourteen healthy, untrained young males (mean?±?SD: 17.9?±?0.7 yrs of age) performed identical maximal cycle tests in the morning (08:00–11:00?h) and late afternoon (16:00–19:00?h) in random order. Cardiac variables were measured at rest, submaximal exercise, and maximal exercise by standard echocardiographic techniques. No differences in morning and afternoon testing values at rest or during exercise were observed for oxygen uptake, heart rate, cardiac output, or markers of systolic and diastolic myocardial function. Values at peak exercise for Vo2 at morning and afternoon testing were 3.20?±?0.49 and 3.24?±?0.55?L min?1, respectively, for heart rate 190?±?11 and 188?±?15?bpm, and for cardiac output 19.5?±?2.8 and 19.8?±?3.5?L min?1. Coefficients of variation for morning and afternoon values for these variables were similar to those previously published for test-retest reproducibility. This study failed to demonstrate evidence for significant time-of-day variation in Vo2max or cardiac function during standard progressive exercise testing in adolescent males. (Author correspondence: )  相似文献   

12.
In order to study circadian rhythms and decompression sickness (DCS), we determined: 1) the baseline circadian time structure in noncompressed rats of potential response variables to compression/decompression (C/D), and 2) whether rats subjected to C/D display a circadian time-dependent difference in inflammatory response intensity and biological tolerance. Subgroups of male rats, standardized to a 12?h light/12?h dark schedule, were evaluated every 4?h over 24?h after they were either compressed to 683?kPa (group E) or remained at sea level (group C). During 60?min recovery, evaluation included gross DCS symptoms and pulmonary edema in all E rats, and cell counts, nitric oxide, protein, thromboxane B2, and leukotriene E4 levels in survivors. Chi-square, ANOVA, and 24?h cosinor analyses were used to test for time-of-day effects. C/D exposures near the end of dark/activity or during light/resting were generally better tolerated, with lowest signs of DCS symptoms and lowest responses by most of the variables monitored. More deaths were observed in the first half of the dark/activity span. Of the 16 subsets of inflammatory-associated variables, overall increases were observed in 13 and decreases in 2. Significant or borderline significant circadian time effects were found in 14 variables in group C, 12 variables in group E, and 13 variables in response (E%C). Thus, nearly all baseline indices of DCS demonstrated circadian time-dependencies in the sea-level exposed control rats (group C), and nearly all were modified by the circadian time of C/D. Such time-of-day effects of DCS are potentially relevant to the operational concerns of occupations involving decompression exposures and the investigation of prevention and treatment intervention strategies of DCS. (Author correspondence: ).  相似文献   

13.
Although a significant body of literature has been devoted to the chronobiology of aquatic animals, how biological rhythms function in molluscan bivalves has been poorly studied. The first objective of this study was to determine whether an endogenous circadian rhythm does exist in the oyster, Crassostrea gigas. The second objective was to characterize it in terms of robustness. To answer these questions, the valve activity of 15 oysters was continuously recorded for 2 mo in the laboratory under different entrainment and free-running regimes using a high-frequency noninvasive valvometer. The present work demonstrates the presence of a circadian rhythm in the oyster Crassostrea gigas. First, oysters were entrained by 12?L:12 D conditions. Then, free-running conditions (D:D and L:L) indicated that the most frequently observed period ranged from 20 to 28?h, the circadian range. That endogenous circadian rhythm was characterized as weak. Indeed, the period (τ) of the individual animals exhibited high plasticity in D:D and L:L, and the animals immediately followed a 4-h phase advance or delay. Additionally, C. gigas appeared as a dual organism: all oysters were nocturnal at the beginning of the laboratory experiment (January), whereas they were diurnal at the end (March). That shift was progressive. Comparison with a full-year in situ record showed the same behavioral duality as observed in the laboratory: the animals were nocturnal in autumn–winter and diurnal in spring–summer. The significant advantage of a plastic and dual circadian rhythm in terms of adaptability in a highly changing environment is discussed. (Author correspondence: )  相似文献   

14.
Hypocretin deficiency causes narcolepsy. It is unknown whether melatonin secretion is affected in this sleep disorder. Therefore, in both narcolepsy patients and matched controls, the authors measured plasma melatonin levels hourly for 24?h before and after 5 days of sodium oxybate (SXB) administration. Although mean melatonin concentrations were similar between patients and controls, in narcoleptics the percentage of 24-h melatonin secreted during the daytime was significantly higher, and melatonin secretion exhibited a weaker coupling to sleep. SXB did not affect melatonin secretion. These findings suggest that hypocretin deficiency might disturb both the circadian control of melatonin release and its temporal association with sleep. (Author correspondence: )  相似文献   

15.
《Chronobiology international》2013,30(10):1352-1357
Infants' sleep-wake rhythms are influenced by multiple factors, including developmental and contextual aspects, as well as circadian cycles. Empirical studies that address the seasonal impact on infants' sleep are scarce. The present study examined aspects of sleep schedule and quality, comparing summer and winter months in a Mediterranean climate. This report is based on a convenience sample of 34 healthy 7-mo-olds, an age in which sleep is well consolidated and regulated compared with the first few months of life. Sleep was measured with actigraphy, in the home context. It was found that compared with winter, in the summer months, sleep onset occurred at a later hour, and more motor activity during sleep was detected. Although the overall sleep quality, as defined by sleep efficiency score, was similar in the two seasons, in the summer, more active sleep was observed. The authors discuss the finding in terms of circadian rhythms, developmental characteristics, as well as possible environmental factors and family routines, and call for more studies, in different climates and geographical zones, and in different developmental periods. (Author correspondence: or )  相似文献   

16.
A daily rhythm of blood pressure (BP), with maximum values in the activity period, carries important prognostic information. The extent to which this rhythm depends on behavioral factors remains debated. Mice are the species of choice for functional genomics. In mice, episodes of wakefulness and sleep are not restricted to particular daily periods, allowing BP in each wake-sleep state to be measured at each time of day. The aim of this study was to investigate whether a circadian rhythm of BP is manifest in each wake-sleep state in mice. Mice with B6 genetic background (n?=?26) were implanted with a telemetric BP transducer and electrodes to discriminate wake-sleep states and recorded while housed under a 12:12?h light-dark period. For each mouse, 8 values of BP were obtained in each wake-sleep state (wakefulness, non-rapid-eye-movement sleep, and rapid-eye-movement sleep) by averaging over successive 3-h time bins. Analysis of variance evidenced a significant time effect in each wake-sleep state as well as a significant wake-sleep state?×?time interaction effect. In an additional group of mice (n?=?3) recorded in constant darkness, the Lomb-Scargle periodogram also revealed a significant circadian rhythm of BP in each wake-sleep state. These findings demonstrate that during each wake-sleep state, mice show daily and circadian rhythms of BP in conditions of entrainment to the light-dark cycle and in free-running conditions of constant darkness, respectively. (Author correspondence: )  相似文献   

17.
《Chronobiology international》2013,30(5):1080-1092
Shiftwork has been associated with a higher propensity for the development of metabolic disorders and obesity. The aim of the study was to investigate concentrations of glucose, cortisol, and insulin among fixed night workers (n?=?9), fixed early morning workers (n?=?6), and day workers (n?=?7). Food intake was recorded for 7 days using a diary. Blood samples were collected every 4?h over the course of 24?h, yielding six samples. Total carbohydrate intake was lowest (p?<?.0005), whereas fat (p?=?.03) and protein (p?<?.0005) were highest on the early morning shifts. Early morning workers also had overall elevated cortisol levels relative to the other two groups. Cortisol levels appeared to be more influenced by time since waking prior to the shift than by time-of-day. Cortisol was highest for the early morning group than the day group 12?h after waking, and both the early morning and night groups had higher levels than the day group 16?h after waking (p?<?.05 in all cases). In contrast, the homesostatsis model assessment of insulin resistance (HOMA-IR) appeared to be more influenced by time-of-day than by time since waking prior to the shift. The early morning group had higher levels of HOMA-IR at 08:00?h than the other groups (p?<?.05). In conclusion, the early morning group had the highest overall concentrations of cortisol and tended to have higher levels of HOMA-IR, indicating that more attention should be given to these workers. Moreover, all three groups showed pronounced cortisol levels on awakening, suggesting that they may have adjusted to their awaking time. (Author: )  相似文献   

18.
Fasted mice show torpor-like hypothermia in the cold in their inactive phase. The aim of the present study was to elucidate whether leptin and/or ghrelin are involved in this reaction and to identify its neurophysiological mechanisms. In ob/ob mice, which lack leptin, metabolic heat production (oxygen consumption, Vo2) was suppressed in 20°C cold in both the light and dark phases, resulting in hypothermia. When wild-type mice received a systemic injection of 8?µg ghrelin in the early light phase, followed by a 2-h cold exposure to 10°C, their core body temperature (Tb) decreased by 1.7°C, and they displayed a less marked increase in Vo2 compared with vehicle-injected mice. However, ghrelin injection in the early dark phase resulted in the maintenance of Tb and increased Vo2 in the mice, which was similar to the result observed in the vehicle-injected mice. The number of doubly labeled neurons with cFos and neuropeptide Y (NPY) in the suprachiasmatic nucleus was greater in the light phase in the ghrelin-injected mice, which may suggest that ghrelin activates NPY neurons. On the contrary, in the paraventricular nucleus, the counts became greater only when they were exposed to the cold in the dark phase. These results indicate that ghrelin plays an important role in inducing time-dependent changes in thermoregulation in the cold via hypothalamic pathways. (Author correspondence: )  相似文献   

19.
This study assessed the influence of sleep loss and circadian rhythm on executive inhibitory control (i.e., the ability to inhibit conflicting response tendencies due to irrelevant information). Twelve ordinarily diurnally active, healthy young male participants performed the Stroop and the Simon task every 3?h in a 40-h constant routine protocol that comprised constant wakefulness under controlled behavioral and environmental conditions. In both tasks, overall performance showed clear circadian rhythm and sleep-loss effects. However, both Stroop and Simon interference remained unchanged across the 40?h of wakefulness, suggesting that neither cumulative sleep loss nor the circadian clock affects executive inhibitory control. The present findings challenge the widely held view that executive functions are especially vulnerable to the influence of sleep loss and circadian rhythm. (Author correspondence: )  相似文献   

20.
《Chronobiology international》2013,30(7):1335-1347
Circadian clocks continue to oscillate in constant conditions with their own period (τ) and entrain to a cyclic environment by adjusting their intrinsic period to that of the zeitgeber. When circadian clocks are released from entrained to constant conditions, the τ of their initial free-run often depends on the nature of the prior zeitgeber. These postentrainment effects on period (τ-aftereffects) have predominantly been reported for animals but, so far, not fungi. The authors therefore investigated τ aftereffects in the classic circadian model system Neurospora crassa. The standard laboratory strain frq+, the short-period mutant frq1, and the long-period mutant frq7 were entrained to 11 different photoperiods in a 24-h day (2–22?h) and to zeitgebers with six different T (16–26?h), and then released to constant darkness. τ-Aftereffects in response to different photoperiods correlated weakly with prior photoperiod in frq+ and were unsystematic in both period mutant strains. Strength and direction of the τ-aftereffect in zeitgeber cycles with different T depended on their length and on the strain, showing a negative correlation with zeitgeber length in frq+ and positive correlations in frq1 and frq7. It has been proposed that τ-aftereffects are based on interactions of oscillators within a cellular network. The present findings in Neurospora, which grows as a syncytium, suggest that τ-aftereffects also exist in circadian systems based on multioscillatory networks organized at the molecular level. (Author correspondence: )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号