首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Our sleep–wake cycles and many other 24-hour rhythms of behavior and physiology persist in the absence of environmental cues. Genetic and biochemical studies have shown that such rhythms are controlled by internal molecular clocks. These are assembled from the cycling RNA and protein products of a small group of genes that are conserved throughout the animal kingdom.  相似文献   

2.
The role of ocelli in circadian singing rhythms of crickets   总被引:1,自引:0,他引:1  
ABSTRACT. . There is a direct quantitative relationship between the free-running period (r) of the circadian stridulation rhythm of male Australian field crickets, Teleogryllus commodus (Walker), and the intensity of the constant light conditions. Both T. commodus and the house cricket, Acheta domesticus (L.), show free-running periods of the singing rhythm of c. 24 h when the light intensity is 0.00025 lux. In both species the severance of the three ocellar nerves significantly slows the circadian period which is indicative of a reduced perception of the available light intensity. To test whether this period reduction is a peripheral or a central effect, electro-retinograms (ERGs) were recorded from compound eyes of male T. commodus with the ocelli fully functional, then occluded, and then uncovered. The size of the compound eye ERG is reduced by 20% with ocellar occlusion and can subsequently be fully restored to the intact level, which indicates that the ocellar effect is a peripheral one. Intensified CoCl2 fills reveal one neurone in A. domesticus and two in T. commodus which travel from the lateral ocellar nerve out into the ipsilateral optic lobe of the compound eye. These neurones all terminate in or distal to the lobular neuropile. The data are interpreted to indicate a role for ocelli in modulating the light intensity perception of the compound eye. The final effect of the ocellar afferents is at a peripheral level prior to the input of the visual information to the optic lobe circadian pacemaker. Hence ocelli play an indirect role in circadian rhythmicity, augmenting the sensitivity of the primary photoreceptors to better perceive photic entrainment signals.  相似文献   

3.
This study investigated the impact of sleep deprivation on the human circadian system. Plasma melatonin and cortisol levels and leukocyte expression levels of 12 genes were examined over 48?h (sleep vs. no-sleep nights) in 12 young males (mean?±?SD: 23?±?5 yrs). During one night of total sleep deprivation, BMAL1 expression was suppressed, the heat shock gene HSPA1B expression was induced, and the amplitude of the melatonin rhythm increased, whereas other high-amplitude clock gene rhythms (e.g., PER1-3, REV-ERBα) remained unaffected. These data suggest that the core clock mechanism in peripheral oscillators is compromised during acute sleep deprivation.  相似文献   

4.
Abstract

Because cats with pontile lesions exhibit an abnormal behavior that is under photoperiodic control, and because circadian rhythms are implicated in photoperiodic control mechanisms, an effort was made to detect circadian rhythms in the cat. Cats were isolated from all extraneous stimuli in soundproof chambers for extended periods of time. Photocells were used to monitor activity, eating and drinking in different LD cycles, in constant light at two intensities, and in constant dark. Freerunning circadian rhythms were found in the constant conditions, and entrained nocturnal patterns occurred in most of the LD cycles. The higher intensities of ambient illumination disrupted the freerunning rhythms. The freerunning rhythms were always greater than 24 h, ranging from 24.2 to 25 h. Measurements of food intake of cats living in a large colony room, obtained by weighing the food, revealed that a nocturnal pattern of entrainment was not present in the majority of the cats. Instead, most cats in the colony exhibited a random pattern of eating throughout the light and dark period of the LD cycle. However, the variation among the cats in the colony was considerable, extending from nocturnal to diurnal patterns of eating. A diurnal pattern of human activity was present in the colony and may account for the disruption of a basic nocturnal pattern. The presence of circadian rhythms in the cat leads us to consider the coincidence models for photoperiodic induction as possible explanations of the photoperiodic control of the lesion‐induced abnormal behavior.  相似文献   

5.
We examined melatonin profiles of ruin lizards in different seasons (spring, summer, and autumn) under light:dark (LD) and concomitant responses when transferred to continuous darkness (DD) to determine the degree to which previously reported seasonally dependent effects of pinealectomy on locomotor behavior are related to melatonin secretion. The amplitude of the melatonin rhythm and the amount of melatonin produced over 24 h varied with season. In spring, the amount of melatonin produced was greatest and the amplitude 4- 5 times that found in summer or autumn. The degree of self-sustainment of the melatonin rhythm when transferred to DD also varied with season. In DD, melatonin levels remained high but did not exhibit circadian variation in spring. In summer, the melatonin profile persisted virtually unchanged in DD, showing the existence of a circadian rhythm. Finally, in the fall there was no circadian variation in DD and levels remained low. These responses correspond closely to previously reported effects of pinealectomy on locomotor behavior where there is little or no effect of pinealectomy in spring or fall but a profound alteration of locomotor behavior in summer. These results suggest that the seasonally dependent effects of pinealectomy on locomotor behavior in ruin lizards are related to a seasonally mediated change in the degree of self-sustainment of some component of the circadian pace-making system of which melatonin plays some role.  相似文献   

6.
Plasticity of diel and circadian activity rhythms in fishes   总被引:15,自引:0,他引:15  
In many fish species, some individuals arediurnal while others are nocturnal. Sometimes,the same individual can be diurnal at first andthen switch to nocturnalism, or vice-versa.This review examines the factors that areassociated with such plasticity. It covers thebreakdown of activity rhythms during migration,spawning, and the parental phase; reversals ofactivity patterns during ontogeny or from oneseason to the next; effects of light intensity,temperature, predation risk, shoal size, foodavailability, and intraspecific competition.Case studies featuring goldfish (Carassiusauratus), golden shiner (Notemigonuscrysoleucas), lake chub (Couesiusplumbeus), salmonids, sea bass (Dicentrarchus labrax), and parentalsticklebacks and cichlids illustrate some ofthese influences. It is argued that mostspecies have a circadian system but that havingsuch a system does not necessarily imply strictdiurnalism or nocturnalism. Rigidity ofactivity phase seems more common in species,mostly marine, that display behavioral sleep,and for these animals the circadian clock canhelp maintain the integrity of the sleepperiod and ensure that its occurrence takes place atthat time of day to which the animal's sensoryequipment is not as well adapted. However, inother fishes, mostly from freshwater habitats,the circadian clock seems to be used mainly foranticipation of daily events such as thearrival of day, night, or food, and possiblyfor other abilities such as time-place learningand sun compass orientation, rather than forstrict control of activity phase. In thesespecies, various considerations relating toforaging success and predation risk maydetermine whether the animal is diurnal ornocturnal at any particular time and place.  相似文献   

7.
We investigated the effect of copper (Cu) on circadian rhythms in red seabream, Pagrus major, under various concentrations of Cu (10, 20, 30 and 40 μg/L). To examine variability in circadian rhythms, we measured changes in the period 2 (Per2), cryptochrome 1 (Cry1), serotonin and arylalkylamine N-acetyltransferase (AANAT2) proteins. We found that circadian rhythm-related plasma proteins were significantly lower in a high-Cu environment (30–40 μg/L) than in low-Cu concentration (0, 10, or 20 μg/L). Our results indicate that environmental Cu at concentrations greater than 30 μg/L can have deleterious effects on fish circadian rhythms.  相似文献   

8.
Abnormalities in circadian rhythms play an important role in the pathogenesis of bipolar disorders (BD). Previous genetic studies have reported discrepant results regarding associations between circadian genes and susceptibility to BD. Furthermore, plausible behavioral consequences of at-risk variants remain unclear since there is a paucity of correlates with phenotypic biomarkers such as chronotypes. Here, we combined association studies with a genotype/phenotype correlation in order to determine which circadian genes variants may be associated with the circadian phenotypes observed in patients with BD. First, we compared the allele frequencies of 353 single nucleotide polymorphisms spanning 21 circadian genes in two independent samples of patients with BD and controls. The meta-analysis combining both samples showed a significant association between rs774045 in TIMELESS (OR?=?1.49 95%CI[1.18–1.88]; p?=?0.0008) and rs782931 in RORA (OR?=?1.31 95%CI[1.12–1.54]; p?=?0.0006) and BD. Then we used a “reverse phenotyping approach” to look for association between these two polymorphisms and circadian phenotypes in a subsample of patients and controls. We found that rs774045 was associated with eveningness (p?=?0.04) and languid circadian type (p?=?0.01), whereas rs782931 was associated with rigid circadian type (p?=?0.01). Altogether, these findings suggest that these variants in the TIMELESS and RORA genes may confer susceptibility to BD and impact on circadian phenotypes in carriers who thus had lower ability to properly adapt to external cues.  相似文献   

9.
A multitasking time-sharing computer system was implemented for studies of different circadian rhythms in individual cells of the unicellular green alga,Acetabularia. This fully automatized system allows simultaneous data acquisition and analysis. Graphical presentation of untreated and mathematically treated data is permanently available on three graphic displays and on a digital plotter. The sampling rate for the data acquisition in each of the 60 channels connected to the system is 720/24 h. Provisions have been made to guarantee uninterrupted data uptake for these long-term measurements by including an auto-restart module and by providing extremely reliable software for the experimenter using menu techniques.  相似文献   

10.
Excessive sucrose intake, known as fructose toxicity, leads to fatty liver, hyperlipidemia, and metabolic syndrome. Circadian disorders also contribute to metabolic syndrome. Here, we investigated the effect of excessive sucrose intake on circadian rhythms of the small intestine, the main location of sucrose absorption, to elucidate a mechanism of sucrose-induced abnormal lipid metabolism. Male Wistar rats were fed control starch or high-sucrose diets for 4 weeks. High-sucrose diet-induced fatty liver and hypertriglyceridemia in rats. Amplitudes of PER1/2 expression oscillations in the small intestine were reduced by excessive sucrose, while gene expression of GLUT5 and gluconeogenic enzymes was enhanced. These changes would contribute to interfering in lipid homeostasis as well as adaptive responses to control fructose toxicity in rats.  相似文献   

11.
Unlike most animals studied so far in which the activity with no circadian rhythms is pathological or linked to deteriorating performance, worker bees and ants naturally care for their sibling brood around the clock with no apparent ill effects. Here, we tested whether bumble-bee queens that care alone for their first batch of offspring are also capable of a similar chronobiological plasticity. We monitored locomotor activity of Bombus terrestris queens at various life cycle stages, and queens for which we manipulated the presence of brood or removed the ovaries. We found that gynes typically emerged from the pupae with no circadian rhythms, but after several days showed robust rhythms that were not affected by mating or diapauses. Colony-founding queens with brood showed attenuated circadian rhythms, irrespective of the presence of ovaries. By contrast, queens that lost their brood switched again to activity with strong circadian rhythms. The discovery that circadian rhythms in bumble-bee queens are regulated by the life cycle and the presence of brood suggests that plasticity in the circadian clock of bees is ancient and related to maternal behaviour or physiology, and is not a derived trait that evolved with the evolution of the worker caste.  相似文献   

12.
13.
Circadian rhythms are ubiquitous in many organisms. Animals that are forced to be active around the clock typically show reduced performance, health and survival. Nevertheless, we review evidence of animals showing prolonged intervals of activity with attenuated or nil overt circadian rhythms and no apparent ill effects. We show that around-the-clock and ultradian activity patterns are more common than is generally appreciated, particularly in herbivores, in animals inhabiting polar regions and habitats with constant physical environments, in animals during specific life-history stages (such as migration or reproduction), and in highly social animals. The underlying mechanisms are diverse, but studies suggest that some circadian pacemakers continue to measure time in animals active around the clock. The prevalence of around-the-clock activity in diverse animals and habitats, and an apparent diversity of underlying mechanisms, are consistent with convergent evolution. We suggest that the basic organizational principles of the circadian system and its complexity encompass the potential for chronobiological plasticity. There may be trade-offs between benefits of persistent daily rhythms versus plasticity, which for reasons still poorly understood make overt daily arrhythmicity functionally adaptive only in selected habitats and for selected lifestyles.  相似文献   

14.
Abstract

A study was made on the developmental rhythms of Ephestia kuehniella during different photoperiods: constant lighting (L/L), under conditions of 12 hours light per day (L/D) and in constant darkness (D/D). Observations were made every 2 hrs, for 3 successive 24‐hr periods, of the number of wandering larvae emerging from food, the number of pupations and of imaginai moults. Emergence of wandering larvae is rhythmic only under L/D conditions, and in addition this is also affected by the density of the larvae. Rhythm is least apparent with greatest density of the larvae. Pupation in E. kuehniella is a non‐rhythmic process with each of the photoperiods examined, whereas the imaginai moult is characterized by an endogenous (existing under D/D conditions) rhythm. Emergence of imagines is non‐rhythmic under L/L, and also when pupae under L/D fail to receive the final period of darkness. The rhythm of the imaginai moult is possibly controlled by the biological clock, which stops under conditions of constant light.  相似文献   

15.
Sex differences have been identified in a variety of circadian rhythms, including free-running rhythms, light-induced phase shifts, sleep patterns, hormonal fluctuations, and rates of reentrainment. In the precocial, diurnal rodent Octodon degus, sex differences have been found in length of free-running rhythm (tau), phase response curves, rates of reentrainment, and in the use of social cues to facilitate reentrainment. Although gonadal hormones primarily organize circadian rhythms during early development, adult gonadal hormones have activational properties on various aspects of circadian rhythms in a number of species examined. Gonadectomy of adult female O. degus did not influence tau, phase angle of entrainment, or activity patterns in previous experiments. The present experiment examined the role of gonadal hormones in adult male degus' circadian wheel-running rhythms. We predicted that male gonadal hormones would have an activational effect on some aspects of circadian rhythms, particularly those in which we see sex differences. Phase angles of entrainment, tau, length of the active period (alpha), maximum and mean activity levels, and activity amplitude were examined for intact and castrated males housed in LD 12:12. Responses to light pulses while housed in constant darkness (DD) were also compared. Castration had no significant effect on tau or light-induced phase shifts. However, castration significantly increased phase angle of entrainment and decreased activity levels. The data indicate that adult gonadal steroids are not responsible for the sex differences in endogenous circadian mechanisms of O. degus (tau, PRC), although they influence activity level and phase angle of entrainment. This is most likely due to masking properties of testosterone, similar to the activity-increasing effects of estrogen during estrus in O. degus females.  相似文献   

16.
The objectives of this study were to test the nighttime effects of the lunar phase on circadian rhythm in the humbug damselfish, Dascyllus aruanus. We measured moonlight intensities at eight different phases across the lunar cycle. At each lunar phase, the circadian rhythm was evaluated by measuring the clock genes cryptochrome 1 and period 2. In addition, we measured arylalkylamine N-acetyltransferase 2 (AANAT2), melatonin and melatonin receptor 1 (MT-R1). The moonlight intensity was highest at full moon and lowest during the waning crescent. Clock gene expression was highest during the full moon compared to the other phases. By contrast, the plasma concentrations of AANAT2 and melatonin and the MT-R1 mRNA expression were highest during the full moon phase. Our results suggest that moonlight affects circadian rhythm patterns in the humbug damselfish. There is a need to investigate potential other physiological effects of lunar phase shifts.  相似文献   

17.
18.
The possible relationship between the circadian rhythm of blood levels of melatonin and corticosterone in ring dove (Streptopelia risoria) subjected to both immobilization stress and immobilization stress plus dexamethasone treatment were studied. The results show changes in the circadian rhythm of melatonin, with increased day-time levels in situations of stress accompanied by increased corticosterone levels. The highest blood melatonin levels over the 24 h of the study were obtained when the animals were treated with dexamethasone and then subjected to stress. Given the antioxidant role of melatonin, our results support the idea of melatonin-corticosterone coupling with the possibility that melatonin released in situations of stress counteracts the adverse effects of glucocorticoids on the organism.  相似文献   

19.
Laposky AD  Bass J  Kohsaka A  Turek FW 《FEBS letters》2008,582(1):142-151
In this review, we present evidence from human and animal studies to evaluate the hypothesis that sleep and circadian rhythms have direct impacts on energy metabolism, and represent important mechanisms underlying the major health epidemics of obesity and diabetes. The first part of this review will focus on studies that support the idea that sleep loss and obesity are "interacting epidemics." The second part will discuss recent evidence that the circadian clock system plays a fundamental role in energy metabolism at both the behavioral and molecular levels. These lines of research must be seen as in their infancy, but nevertheless, have provided a conceptual and experimental framework that potentially has great importance for understanding metabolic health and disease.  相似文献   

20.
Early life nutritional adversity is tightly associated with the development of long-term metabolic disorders. Particularly, maternal obesity and high-fat diets cause high risk of obesity in the offspring. Those offspring are also prone to develop hyperinsulinemia, hepatic steatosis and cardiovascular diseases. However, the precise underlying mechanisms leading to these metabolic dysregulation in the offspring remain unclear. On the other hand, disruptions of diurnal circadian rhythms are known to impair metabolic homeostasis in various tissues including the heart and liver. Therefore, we investigated that whether maternal obesity perturbs the circadian expression rhythms of clock, metabolic and inflammatory genes in offspring heart and liver by using RT-qPCR and Western blotting analysis. Offspring from lean and obese dams were examined on postnatal day 17 and 35, when pups were nursed by their mothers or took food independently. On P17, genes examined in the heart either showed anti-phase oscillations (Cpt1b, Pparα, Per2) or had greater oscillation amplitudes (Bmal1, Tnf-α, Il-6). Such phase abnormalities of these genes were improved on P35, while defects in amplitudes still existed. In the liver of 17-day-old pups exposed to maternal obesity, the oscillation amplitudes of most rhythmic genes examined (except Bmal1) were strongly suppressed. On P35, the oscillations of circadian and inflammatory genes became more robust in the liver, while metabolic genes were still kept non-rhythmic. Maternal obesity also had a profound influence in the protein expression levels of examined genes in offspring heart and liver. Our observations indicate that the circadian clock undergoes nutritional programing, which may contribute to the alternations in energy metabolism associated with the development of metabolic disorders in early life and adulthood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号