共查询到20条相似文献,搜索用时 46 毫秒
1.
《Chronobiology international》2013,30(4):430-442
In Djungarian hamsters (Phodopus sungorus) bred at the authors' institute, a certain number of animals show activity patterns incompatible with proper entrainment of their endogenous circadian pacemaker to the environmental light-dark (LD) cycle. Even though the activity-offset in these animals is stably coupled to “light-on,” activity-onset is increasingly delayed, leading to a compression of the activity time (α). If α falls below a critical value, the circadian rhythm in these so called delayed activity-onset (DAO) hamsters starts to free-run and finally breaks down. Animals then show an arrhythmic activity pattern (AR hamsters). Previous studies revealed the mechanisms of photic entrainment have deteriorated (DAO) or the suprachiasmatic nucleus (SCN) does not generate a rhythmic signal (AR). The aim of the present study was to investigate the consequences that these deteriorations have upon photoperiodic time measurement. Animals were bred and kept under standardized housing conditions with food and water ad libitum and a 14L/10D (long day, LD) regimen. Locomotor activity was recorded continuously using passive infrared motion detectors. Body mass, testes size, and fur coloration were measured weekly or biweekly to further quantify the photoperiodic reaction. In a first experiment, adult male wild-type (WT), DAO, and AR hamsters were transferred initially to a 16L/8D cycle. After 3–4 wks, the light period was shortened symmetrically by 8?h. After 14 wks, none of the DAO and AR hamsters, and only 1 of 8 WT hamsters showed short-day (SD) traits. Therefore, in a second experiment, hamsters were transferred to SD conditions (8L/16D cycle) for 8 wks directly from standard LD conditions. In 6 of 7 WT hamsters, activity time expanded, body mass and testes size decreased, and fur coloration changed from summer to winter pelage. In contrast, none of the DAO and AR hamsters displayed an SD response. In a third experiment, DAO and AR hamsters were kept in constant darkness (DD) for 8 and 14 wks. After 8 wks, DAO hamsters showed a similar photoperiodic reaction to WT hamsters that had been kept for 8 wks under SD conditions. However, the level of adaptation was still less compared to WT hamsters, but this difference was not apparent after 14 wks. In contrast, AR animals did not display any photoperiodic reaction, even after 14 wks in DD. Type VI phase response curves (PRCs) were constructed to better understand the mechanism behind the SD response. In WT hamsters, the photosensitive phase, where light pulses induce phase shifts, was lengthened in SD condition. In DAO hamsters, in contrast, the PRCs were similar under LD and SD conditions with a compressed photosensitive phase corresponding to α. Also, “light-on” induced only weak phase advances of activity-onset, insufficient to compensate for the long endogenous period. The results show that physiological mechanisms necessary for seasonal adaptation are working in DAO hamsters and that it is the inadequate interaction of the LD cycle with the SCN that prevents the photoperiodic reaction. AR hamsters, on the other hand, are incapable of measuring photoperiodic time due to a complete disruption of circadian rhythmicity. 相似文献
2.
《Chronobiology international》2013,30(1):58-69
Djungarian hamsters bred at the authors' institute reveal two distinct circadian phenotypes, the wild-type (WT) and DAO type. The latter is characterized by a delayed activity-onset, probably due to a deficient mechanism for photic entrainment. Experiments with zeitgeber shifts have been performed to gain further insight into the mechanisms underlying this phenomenon. Advancing and delaying phase shifts were produced by a single lengthening or shortening of the dark (D) or light (L) time by 6?h. Motor activity was recorded by passive infrared motion detectors. All WT hamsters re-entrained following various zeitgeber shifts and nearly always in the same direction as the zeitgeber shift. On the other hand, a considerable proportion of the DAO animals failed to re-entrain and showed, instead, diurnal, arrhythmic, or free-running activity patterns. All but one of those hamsters that re-entrained did so by delaying their activity rhythm independently of the direction of the LD shift. Resynchronization occurred faster following a delayed than an advanced shift and also after changes of D rather than L. WT animals tended to re-entrain faster, particularly following a zeitgeber advance (where DAO hamsters re-entrained by an 18-h phase delay instead of a 6-h phase advance). However, the difference between phenotypes was statistically significant only with a shortening of L. To better understand re-entrainment behavior, Type VI phase-response curves (PRCs) were constructed. To do this, both WT and DAO animals were kept under LD conditions, and light pulses (15 min, 100 lux) were applied at different times of the dark span. In WT animals, activity-offset always showed phase advances, whereas activity-onset was phase delayed by light pulses applied during the first half of the dark time and not affected by light pulses applied during the second half. When the light pulse was given at the beginning of D, activity-onset responded more strongly, but light pulses given later in D produced significant changes only in activity-offset. In accord with the delayed activity-onset in DAO hamsters, no or only very weak phase-responses were observed when light pulses were given during the first hours of D. However, the second part of the PRCs was similar to that of WT hamsters, even though it was compressed to an interval of only a few hours and the shifts were smaller. Due to these differences, the first light-on or light-off following an LD shift fell into different phases of the PRC and thus caused different re-entrainment behavior. The results show that it is not only steady-state entrainment that is compromised in DAO hamsters but also their re-entrainment behavior following zeitgeber shifts. (Author correspondence: weinert@zoologie.uni-halle.de) 相似文献
3.
R. Kirsch A. Ouarour P. Pévet 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1991,168(1):121-128
1. The daily torpor was measured by oxygen uptake in Djungarian hamsters during adaptation to a short photoperiod (SP: 10L, 14D) at 20 degrees C. In these constant conditions the torpor presented metabolic characteristics and a daily time course independent of the duration of adaptations to SP. 2. The frequency of torpor bouts increased during SP exposure and its maximum was reached after about 130 days. The frequency of torpor was greater in males than in females. 3. The incidence of torpor was increased by constant dark exposure and this is discussed as a protective mechanism for the individual animal's ability to survive. 4. The temporal organization of daily torpor was demonstrated to be directly synchronized by the day-night cycle and to be controlled by an endogenous circadian function. 相似文献
4.
目的:研究生理节律和日常活动分别对人体疲劳程度的影响大小。方法:选取某校7名大学生志愿者,在军训期间对每日军训科目严格限制条件下进行该实验,以闪光临界融合频率、心率变异性、反应时、静态姿势图TLX-NASA量表评分作为指标,对每天分别在训练前和训练后疲劳程度的大小进行测量,以这些指标描述训练前后的疲劳程度。结果:反应时降低(0.60±0.09)、反应正确率提高(0.97±0.03);闪光临界光融合频率升高(40.84±2.14);心率变异性TP(3076.60±382.08)降低、心率变异性SDNN(55.28±16.85)降低;静态姿势图晃动减少,中低频率段(0.15±0.01)、前后方向重心变位(7.92±0.63),TLX-NASA量表评分降低(30.47±10.23)。以上差异均具有统计学意义(P<0.05)。结论:生理节律相对于日常活动对机体的疲劳状态有更大的影响。 相似文献
5.
ABSTRACTThe Djungarian hamsters of our breeding colony show unstable daily activity patterns when kept under standard laboratory conditions. Moreover, part of them develops a delayed activity onset (DAO) or an arrhythmic phenotype. In former studies, we have shown that the system of photic entrainment works at its limits. If the period length (tau) increases, which is the case in DAO hamsters, the light-induced phase advances are too small to compensate the daily delay of the activity rhythm caused by tau being longer than 24 h. Accordingly, under natural conditions, there must be further (environmental) factors to enable a stable entrainment. One of these may be the higher level of motor activity. Animals must cover long distances to search for food, sexual partners and others. In the laboratory, hamsters are kept singly in small cages. This does restrict animals’ options for motor activity. Also, there is less need for moving around as the hamsters are fed ad libitum.In the present study, a series of experiments was performed to investigate the putative effect of the activity level. To begin with, wild type (WT) and DAO animals were given access to running wheels. 50% of DAO hamsters developed a WT activity pattern. As the main reason for the DAO phenomenon is their long tau together with a too weak photic phase response, the effect of wheel running on these parameters was investigated in further experiments. With higher activity level, tau decreased in WT hamsters but increased in DAO animals even though the increase for the activity onset was only close to significance. Moreover, the photic phase responses were weaker though significant only for the activity offset of DAO hamsters.Based on the assumptions that running wheel activity will affect the phase response and/or the free running period, the results of the present paper do not provide an explanation for why part of DAO hamsters developed a WT phenotype when they had access to running wheels. Obviously, mechanisms downstream from the suprachiasmatic nuclei must be taken into account when investigating the stabilizing, improving circadian entrainment effect of motor activity. 相似文献
6.
To investigate the role of non-parametric light effects in entrainment, Djungarian hamsters of two different circadian phenotypes were exposed to skeleton photoperiods, or to light pulses at different circadian times, to compile phase response curves (PRCs). Wild-type (WT) hamsters show daily rhythms of locomotor activity in accord with the ambient light/dark conditions, with activity onset and offset strongly coupled to light-off and light-on, respectively. Hamsters of the delayed activity onset (DAO) phenotype, in contrast, progressively delay their activity onset, whereas activity offset remains coupled to light-on. The present study was performed to better understand the underlying mechanisms of this phenomenon. Hamsters of DAO and WT phenotypes were kept first under standard housing conditions with a 14:10 h light–dark cycle, and then exposed to skeleton photoperiods (one or two 15-min light pulses of 100 lx at the times of the former light–dark and/or dark–light transitions). In a second experiment, hamsters of both phenotypes were transferred to constant darkness and allowed to free-run until the lengths of the active (α) and resting (ρ) periods were equal (α:ρ = 1). At this point, animals were then exposed to light pulses (100 lx, 15 min) at different circadian times (CTs). Phase and period changes were estimated separately for activity onset and offset. When exposed to skeleton-photoperiods with one or two light pulses, the daily activity patterns of DAO and WT hamsters were similar to those obtained under conditions of a complete 14:10 h light–dark cycle. However, in the case of giving only one light pulse at the time of the former light–dark transition, animals temporarily free-ran until activity offset coincided with the light pulse. These results show that photic entrainment of the circadian activity rhythm is attained primarily via non-parametric mechanisms, with the “morning” light pulse being the essential cue. In the second experiment, typical photic PRCs were obtained with phase delays in the first half of the subjective night, phase advances in the second half, and a dead zone during the subjective day. ANOVA indicated no significant differences between WT and DAO animals despite a significantly longer free-running period (tau) in DAO hamsters. Considering the phase shifts induced around CT0 and the different period lengths, it was possible to model the entrainment patterns of both phenotypes. It was shown that light-induced phase shifts of activity offset were sufficient to compensate for the long tau in WT and DAO hamsters, thus enabling a stable entrainment of their activity offsets to be achieved. With respect to activity onsets, phase shifts were sufficient only in WT animals; in DAO hamsters, activity onset showed increasing delays. The results of the present paper clearly demonstrate that, under laboratory conditions, the non-parametric component of light and dark leads to circadian entrainment in Djungarian hamsters. However, a stable entrainment of activity onset can be achieved only if the free-running period does not exceed a certain value. With longer tau values, hamsters reveal a DAO phenotype. Under field conditions, therefore, non-photic cues/zeitgebers must obviously be involved to enable a proper circadian entrainment. 相似文献
7.
Dietmar Weinert Konrad Schöttner Lisa Müller Andreas Wienke 《Chronobiology international》2016,33(9):1161-1170
Circadian rhythms are highly important not only for the synchronization of animals and humans with their periodic environment but also for their fitness. Accordingly, the disruption of the circadian system may have adverse consequences. A certain number of animals in our breeding stock of Djungarian hamsters are episodically active throughout the day. Also body temperature and melatonin lack 24-h rhythms. Obviously in these animals, the suprachiasmatic nuclei (SCN) as the central pacemaker do not generate a circadian signal. Moreover, these so-called arrhythmic (AR) hamsters have cognitive deficits. Since motor activity is believed to stabilize circadian rhythms, we investigated the effect of voluntary wheel running. Hamsters were bred and kept under standardized housing conditions with food and water ad libitum and a 14 L/10 D lighting regimen. AR animals were selected according to their activity pattern obtained by means of passive infrared motion detectors. In a first step, the daily activity behavior was investigated for 3 weeks each without and with running wheels. To estimate putative photic masking effects, hamsters were exposed to light (LPs) and DPs and also released into constant darkness for a minimum of 3 weeks. A novel object recognition (NOR) test was performed to evaluate cognitive abilities both before and after 3 weeks of wheel availability. The activity patterns of hamsters with low wheel activity were still AR. With more intense running, daily patterns with higher values in the dark time were obtained. Obviously, this was due to masking as LPs did suppress and DPs induced motor activity. When transferred to constant darkness, in some animals the daily rhythm disappeared. In other hamsters, namely those which used the wheels most actively, the rhythm was preserved and free-ran, what can be taken as indication of a reconstitution of circadian rhythmicity. Also, animals showing a 24-h activity pattern after 3 weeks of extensive wheel running were able to recognize the novel object in the NOR test but not so before. The results show that voluntary exercise may reestablish circadian rhythmicity and improve cognitive performance. 相似文献
8.
《Chronobiology international》2013,30(3):417-440
Circadian rhythms in mammals are generated by an endogenous pacemaker but are modulated by environmental cycles, principally the alternation of light and darkness. Although much is known about nonparametric effects of light on the circadian system, little is known about other effects of photic stimulation. In the present study, which consists of a series of five experiments in mice, various manipulations of photic stimulation were used to dissect the mechanisms responsible for a variation in the magnitude of light-induced phase-shifts that results from prolonged exposure to darkness. The results confirmed previous observations that prolonged exposure to darkness causes an increase in the magnitude of phase shifts (both phase advances and phase delays) evoked by discrete light pulses. The results also indicated that the increase in responsiveness results from the lack of exposure to light per se and not from collateral effects of exposure to constant darkness such as the lack of previous entrainment. The lack of exposure to light causes the circadian system to undergo a process of dark adaptation similar to dark adaptation in the visual system but with a much slower temporal course. The results suggest that circadian dark adaptation may take place at the retinal level, but it is not clear whether it involves a change in the sensitivity or maximal responsiveness of the system. 相似文献
9.
Colleen E. Carney Jack D. Edinger Björn Meyer Linda Lindman Tai Istre 《Chronobiology international》2013,30(3):623-637
There is growing evidence that social rhythms (e.g., daily activities such as getting into or out of bed, eating, and adhering to a work schedule) have important implications for sleep. The present study used a prospective measure of daily activities to assess the relation between sleep and social rhythms. College students (n=243) 18 to 39 yrs of age, completed the Social Rhythm Metric (SRM) each day for 14 d and then completed the Pittsburgh Sleep Quality Index (PSQI). The sample was divided into groups of good or poor sleepers, according to a PSQI cut‐off score of 5 points and was compared on the regularity, frequency, timing, and extent of social engagement during activities. There was a lower frequency and less regularity of social rhythms in poor sleepers relative to good sleepers. Good sleepers engaged more regularly in activities with active social engagement. Earlier rise time, first consumption of a beverage, going outdoors for the first time, and bedtime were associated with better sleep. Greater variability in rise time, consuming a morning beverage, returning home for the last time, and bedtime were associated with more disturbed sleep. The results are consistent with previous findings of reduced regularity in bedtime and rise time schedules in undergraduates, other age groups, and in clinical populations. Results augment the current thought that regulating behavioral zeitgebers may be important in influencing bed and rise times, and suggest that engaging in activities with other people may increase regularity. 相似文献
10.
There is growing evidence that social rhythms (e.g., daily activities such as getting into or out of bed, eating, and adhering to a work schedule) have important implications for sleep. The present study used a prospective measure of daily activities to assess the relation between sleep and social rhythms. College students (n=243) 18 to 39 yrs of age, completed the Social Rhythm Metric (SRM) each day for 14 d and then completed the Pittsburgh Sleep Quality Index (PSQI). The sample was divided into groups of good or poor sleepers, according to a PSQI cut-off score of 5 points and was compared on the regularity, frequency, timing, and extent of social engagement during activities. There was a lower frequency and less regularity of social rhythms in poor sleepers relative to good sleepers. Good sleepers engaged more regularly in activities with active social engagement. Earlier rise time, first consumption of a beverage, going outdoors for the first time, and bedtime were associated with better sleep. Greater variability in rise time, consuming a morning beverage, returning home for the last time, and bedtime were associated with more disturbed sleep. The results are consistent with previous findings of reduced regularity in bedtime and rise time schedules in undergraduates, other age groups, and in clinical populations. Results augment the current thought that regulating behavioral zeitgebers may be important in influencing bed and rise times, and suggest that engaging in activities with other people may increase regularity. 相似文献
11.
The effects of bright light exposure during the daytime on circadian urinary melatonin and salivary immunoglobulin A (IgA) rhythms were investigated in an environmental chamber controlled at a global temperature of 27°C ± 0.2°C and a relative humidity of 60% ± 5%. Seven diurnally active healthy females were studied twice, in bright and dim light conditions. Bright light of 5000 lux was provided by placing fluorescent lamps about 1 meter in front of the subjects during the daytime exposure (06:30-19:30) from 06:30 on day 1 to 10:30 on day 3. Dim light was controlled at 200 lux, and the subjects were allowed to sleep from 22:30 to 06:30 under both light exposure conditions. Urine and saliva were collected at 4h intervals for assessing melatonin and IgA. Melatonin excretion in the urine was significantly greater during the nighttime (i.e., at 06:30 on day 1 and at 02:30 on day 2) after the bright light condition than during the dim light condition. Furthermore, the concentration and the amount of salivary IgA tended to be higher in the bright light than in the dim light condition, especially during the nighttime. Also, salivary IgA concentration and the total amount secreted in the saliva were significantly positively correlated with urinary melatonin. These results are consistent with the hypothesis that bright light exposure during the daytime enhances the nocturnal melatonin increase and activates the mucosal immune response. 相似文献
12.
The present study is part of a more extensive investigation dedicated to the study and treatment of age‐dependent changes/disturbances in the circadian system in humans. It was performed in the Tyumen Elderly Veteran House and included 97 subjects of both genders, ranging from 63 to 91 yrs of age. They lived a self‐chosen sleep‐wake regimen to suit their personal convenience. The experiment lasted 3 wks. After 1 control week, part of the group (n=63) received 1.5 mg melatonin (Melaxen?) daily at 22:30 h for 2 wks. The other 34 subjects were given placebo. Axillary temperature was measured using calibrated mercury thermometers at 03:00, 08:00, 11:00, 14:00, 17:00, and 23:00 h each of the first and third week. Specially trained personnel took the measurements, avoiding disturbing the sleep of the subjects. To evaluate age‐dependent changes, data obtained under similar conditions on 58 young adults (both genders, 17 to 39 yrs of age) were used. Rhythm characteristics were estimated by means of cosinor analyses, and intra‐ and inter‐individual variability by analysis of variance (ANOVA). In both age groups, the body temperature underwent daily changes. The MESOR (36.38±0.19°C vs. 36.17±0.21°C) and circadian amplitude (0.33±0.01°C vs. 0.26±0.01°C) were slightly decreased in the elderly compared to the young adult subjects (p<0.001). The mean circadian acrophase was similar in both age groups (17.19±1.66 vs. 16.93±3.08 h). However, the inter‐individual differences were higher in the older group, with individual values varying between 10:00 and 23:00 h. It was mainly this phase variability that caused a decrease in the inter‐daily rhythm stability and lower group amplitude. With melatonin treatment, the MESOR was lower by 0.1°C and the amplitude increased to 0.34±0.01°C, a similar value to that found in young adults. This was probably due to the increase of the inter‐daily rhythm stability. The mean acrophase did not change (16.93 vs. 16.75 h), although the inter‐individual variability decreased considerably. The corresponding standard deviations (SD) of the group acrophases were 3.08 and 1.51 h (p<0.01). A highly significant correlation between the acrophase before treatment and the phase change under melatonin treatment indicates that this is due to a synchronizing effect of melatonin. Apart from the difference in MESOR, the body temperature rhythm in the elderly subjects undergoing melatonin treatment was not significantly different from that of young adults. The data clearly show that age‐dependent changes mainly concern rhythm stability and synchronization with the 24 h day. A single daily melatonin dose stabilizes/synchronizes the body temperature rhythm, most probably via hypothermic and sleep‐improving effects. 相似文献
13.
《Chronobiology international》2013,30(9):1206-1215
The daily pattern of blood-borne melatonin varies seasonally under the control of a multi-oscillator circadian pacemaker. Here we examine patterns of melatonin secretion and locomotor activity in Siberian and Syrian hamsters entrained to bimodal LDLD8:4:8:4 and LD20:4 lighting schedules that facilitate novel temporal arrangements of component circadian oscillators. Under LDLD, both species robustly bifurcated wheel-running activity in distinct day scotophase (DS) and night scotophase (NS) bouts. Siberian hamsters displayed significant melatonin increases during each scotophase in LDLD, and in the single daily scotophase of LD20:4. The bimodal melatonin secretion pattern persisted in acutely extended 16 h scotophases. Syrian hamsters, in contrast, showed no significant increases in plasma melatonin during either scotophase of LDLD8:4:8:4 or in LD20:4. In this species, detectable levels were observed only when the DS of LDLD was acutely extended to yield 16 h of darkness. Established species differences in the phase lag of nocturnal melatonin secretion relative to activity onset may underlie the above contrast: In non-bifurcated entrainment to 24 h LD cycles, Siberian hamsters show increased melatonin secretion within ~2 h after activity onset, whereas in Syrian hamsters, detectable melatonin secretion phase lags activity onset and the L/D transition by at least 4?h. The present results provide new evidence indicating multi-oscillator regulation of the waveform of melatonin secretion, specifically, the circadian control of the onset, offset and duration of nocturnal secretion. 相似文献
14.
R. D. NORTH 《Physiological Entomology》1987,12(4):445-454
ABSTRACT. Individual worker ants isolated in an actograph exhibit circadian rhythms of locomotor activity. Entrainment occurs more readily in LD 18:6 h than in LD 12:12 h. The ants are either light-active or dark-active. Phase angle and duration of activity is influenced by photoperiod. 相似文献
15.
《Chronobiology international》2013,30(6):1001-1017
The present article analyzes locomotor activity rhythms in Tinca tinca. To that end, three different experiments were conducted on 24 animals (20 g body weight) kept in pairs in 60‐liter aquaria fitted with infrared sensors connected to a computer to continuously record fish movements. The first experiment was designed to study the endogenous circadian clock under free‐running conditions [ultradian 40:40 min LD pulses and constant dark (DD)] and after shifting the LD cycle. Our results demonstrate that tench has a strictly nocturnal activity pattern, an endogenous rhythm being evident in 45.8% of the fish analyzed. The second experiment was conducted to test the influence of different photoperiods (LD 6:18, 12:12, 18:6, and 22:2) on locomotor activity, the results showing that even under an extremely long photoperiod, tench activity is restricted to dark hours. The third experiment examined the effect of light intensity on locomotor activity rhythms. When fish were exposed to decreasing light intensities (from 300:0 lux to 30:0, 3:0, and 0.3:0 lux) while maintaining a constant photoperiod (LD 12:12), the highest percentage of locomotor activity was in all cases associated with the hours of complete darkness (0 lux). In short, our results clearly show that (a) tench is a species with a strictly nocturnal behavior, and (b) daily activity rhythms gradually entrain after shifting the LD cycle and persist under free‐running conditions, pointing to their circadian nature. However, light strongly influences activity rhythms, since (c) the length of the active phase is directly controlled by the photophase, and (d) strictly nocturnal behavior persists even under very dim light conditions (0.3 lux). The above findings deepen our knowledge of tench behavior, which may help to optimize the aquacultural management of this species, for example, by adjusting feeding strategies to their nocturnal behavior. 相似文献
16.
Bhaskar N. Joshi Mary K. Vaughan Frank Nü rnberger Russel J. Reiter 《Chronobiology international》1985,2(1):47-54
Two different experimental models were used to test if a temporal relationship exists between the rhythm of adrenal steroid secretion and the vulnerability of the hamster reproductive system to short photoperiod exposure or to the daily afternoon injection of melatonin. In the first experiment adrenalectomized hamsters were implanted with a Cortisol pellet to provide a sustained, rather than rhythmic, level of the hormone. The animals were either placed in short photoperiod or given a daily afternoon melatonin injection. In both cases the gonads underwent atrophy. In the second experiment adrenalectomized hamsters were given a Cortisol injection either in the morning (approx. 8 hr before the subsequent afternoon injection of melatonin) or in the afternoon (approx. 1 hr before the subsequent melatonin injection). Measurements of testicular and accessory organ weights 7 weeks later indicated regression of the reproductive system in both the groups when compared with their appropriate controls. Depressed levels of plasma LH. PRL, testosterone and thyroxine (T4) in these animals confirmed the melatonin induced gonadal collapse. The results suggest that apparently there is no temporal correlation between the rhythm of secretion of the adrenal steroids and the responsiveness of the reproductive system to late afternoon injection of melatonin. Interestingly, all the adrenalectomized Cortisol injected control animals (not receiving melatonin) had depressed plasma LH and PRL while the testicular weights and plasma testosterone titers remain unaffected. 相似文献
17.
《Chronobiology international》2013,30(5):596-607
C-Fos expression in the suprachiasmatic nucleus (SCN) and phase shifts of the activity rhythm following photic stimulation were investigated in Djungarian hamsters (Phodopus sungorus) of two different circadian phenotypes. Wild-type (WT) hamsters display robust daily patterns of locomotor activity according to the light/dark conditions. Hamsters of the DAO (delayed activity onset) phenotype, however, progressively delay the activity onset, whereas activity offset remains coupled to “light-on”. Although the exact reason for the delayed activity onset is not yet clarified, it is connected with a disturbed interaction between the light/dark cycle and the circadian clock. The aim was to test the link between photoreception and the behavioral output of the circadian system in hamsters of both phenotypes, to get further insight in the underlying mechanism of the DAO phenomenon. Animals were exposed to short light pulses at different times during the dark period to analyze phase shifts of the activity rhythm and expression of Fos protein in the SCN. The results indicate that the photosensitive phase in DAO hamsters is shifted like the activity onset. Also, phase shifts were significantly smaller in DAO hamsters. At the same time, levels of Fos expression did not differ between phenotypes regarding the circadian phase. The results provide evidence that the shifted photosensitivity of the circadian system in DAO hamsters does not differ from that of WT animals, and lead us to conclude that processes within the SCN that enable light information to reset the circadian pacemaker might offer an explanation for the DAO phenomenon. 相似文献
18.
Circadian rhythms of plasma insulin, Cortisol, and glucose concentrations were examined in scotosensitive (reproductively sensitive to inhibitory effects of short daylengths) and scotorefractory male and female Syrian hamsters (Mesocricetus auratus) maintained on short (LD 10:14) and long (LD 14:10) daylengths. The baseline concentration (mean of all values obtained every 4 hr six times of day) of insulin was much greater in female than in male scotosensitive hamsters kept on short daylengths. These differences in insulin concentration may account for the observed heavy fat stores in female and low fat stores in male scotosensitive hamsters kept on short daylengths. The baseline concentrations of Cortisol were approximately equal in both scotosensitive and scotorefractory males held on short and long daylengths, but were relatively low in females held on short daylengths and especially high in scotorefractory females held on long daylengths.
The plasma concentrations of both cortisol and insulin varied throughout the day in many of the groups tested. However, the variations were not equivalent. The circadian variations of cortisol were similar irrespective of sex, seasonal condition and daylength. Peak concentrations generally occurred about 12 hr after light onset. In contrast, the circadian variations of insulin differed markedly. For example in male hamsters, robust daily variations were found in scotosensitive hamsters held on short daylengths but not on long daylengths and in scotorefractory hamsters held on long daylengths but not on short daylengths. Furthermore, the daily peak occurred during the light in the scotosensitive hamsters and during the dark in the scotorefractory animals. Neither the daily feeding pattern (about 60% consumed during dark) nor the daily variations of glucose concentration varied appreciably with seasonal condition or daylength. They do not appear to determine nor directly reflect the variations in cortisol and glucose concentrations. It is postulated that the daily rhythms of cortisol and insulin are regulated by different neural pacemaker systems and that changes in the phase relations of circadian systems account in part for seasonal changes in body fat stores. 相似文献
The plasma concentrations of both cortisol and insulin varied throughout the day in many of the groups tested. However, the variations were not equivalent. The circadian variations of cortisol were similar irrespective of sex, seasonal condition and daylength. Peak concentrations generally occurred about 12 hr after light onset. In contrast, the circadian variations of insulin differed markedly. For example in male hamsters, robust daily variations were found in scotosensitive hamsters held on short daylengths but not on long daylengths and in scotorefractory hamsters held on long daylengths but not on short daylengths. Furthermore, the daily peak occurred during the light in the scotosensitive hamsters and during the dark in the scotorefractory animals. Neither the daily feeding pattern (about 60% consumed during dark) nor the daily variations of glucose concentration varied appreciably with seasonal condition or daylength. They do not appear to determine nor directly reflect the variations in cortisol and glucose concentrations. It is postulated that the daily rhythms of cortisol and insulin are regulated by different neural pacemaker systems and that changes in the phase relations of circadian systems account in part for seasonal changes in body fat stores. 相似文献
19.
《Chronobiology international》2013,30(10):890-903
The timing of meals has been suggested to play an important role in circadian regulation and metabolic health. Three meals a day is a well-established human feeding habit, which in today's lifestyle may or may not be followed. The aim of this study was to test whether the absence of breakfast or supper significantly affects the circadian system and physiological function. The authors developed a rat model for their daily three meals study, whereby animals were divided into three groups (three meals, TM; no first meal, NF; no last meal, NL) all fed with the same amount of food every day. Rats in the NF group displayed significantly decreased levels of plasma triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and glucose in the activity phase, accompanied by delayed circadian phases of hepatic peripheral clock and downstream metabolic genes. Rats in the NL group showed lower concentration of plasma TC, HDL-C, and glucose in the rest phase, plus reduced adipose tissue accumulation and body weight gain. Real-time polymerase chain reaction (PCR) analysis indicated an attenuated rhythm in the food-entraining pathway, including down-regulated expression of the clock genes Per2, Bmal1, and Rev-erbα, which may further contribute to the delayed and decreased expression of FAS in lipogenesis in this group. Our findings are consistent with the conclusion that the daily first meal determines the circadian phasing of peripheral clocks, such as in the liver, whereas the daily last meal tightly couples to lipid metabolism and adipose tissue accumulation, which suggests differential physiological effects and function of the respective meal timings. (Author correspondence: azwfu2003@yahoo. com. cn) 相似文献
20.
H. Abe S. Honma K. Shinohara K. -I. Honma 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1995,176(2):159-167
Photic induction of immediate early genes including c-fos in the suprachiasmatic nucleus (SCN) has been well demonstrated in the nocturnal rodents. On the other hand, in diurnal rodents, no data is available whether the light can induce c-fos or Fos in the SCN. We therefore examined whether 60 min light exposure induces Fos-like immunoreactivity (Fos-lir) in the SCN cells of diurnal chipmunks and whether the induction is phase dependent, comparing with the results in nocturnal hamsters. We also examined an effect of light on the locomotor activity rhythm under continuous darkness. Fos-lir was induced in the chipmunk SCN. The induction was clearly phase dependent. The light during the subjective night induced strong expression of Fos-lir. This phase dependency is similar to that in hamsters. However, unlike in hamsters, the Fos-lir was induced in some SCN cells of chipmunks exposed to light during the subjective day. In the locomotor rhythm, on the other hand, the light pulse failed to induce the phase shift at phases at which the Fos-lir was induced. These results suggest that the photic induction of Fos-lir in the diurnal chipmunks is gated by a circadian oscillator as well as in the nocturnal hamsters. However, the functional role of Fos protein may be different in the diurnal rodents from in the nocturnal rodents. 相似文献