首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors derived early and late populations of fruit flies showing increased incidence of emergence during morning or evening hours by imposing selection for timing of emergence under 12:12?h light/dark (LD) cycles. From previous studies, it was clear that the increased incidence of adult emergence during morning and evening hours in early and late populations was a result of evolution of divergent and characteristic emergence waveforms in these populations. Such characteristic waveforms are henceforth referred to as “evolved emergence waveforms” (EEWs). The early and late populations also evolved different circadian clocks, which is evident from the divergence in their clock period (τ) and photic phase response curve (PRC). Although correlation between emergence waveforms and clock properties suggests functional significance of circadian clocks, τ and PRCs do not satisfactorily explain the early and late emergence phenotypes. In order to understand the functional significance of the PRC for early and late emergence phenotypes, the authors investigated whether circadian clocks of these flies exhibit any difference in photosensitivity under entrained conditions. Such differences would suggest that the light requirement for circadian entrainment of the emergence rhythm in early and late populations is different. To test this, they examined if early and late flies differ in their light utilization behavior, first by assaying their emergence rhythm under complete photoperiod and then in three different skeleton photoperiods. The results showed that early and late populations require different durations of light during the morning and evening to achieve their EEWs, suggesting that for the circadian entrainment of the emergence rhythm, early and late flies utilize light from different parts of the day. (Author correspondence: or )  相似文献   

2.
The synchrony effect refers to the beneficial impact of temporal matching between the timing of cognitive task administration and preferred time-of-day for diurnal activity. Aging is often associated with an advance in sleep-wake timing and concomitant optimal performance levels in the morning. In contrast, young adults often perform better in the evening hours. So far, the synchrony effect has been tested at fixed clock times, neglecting the individual's sleep-wake schedule and thus introducing confounds, such as differences in accumulated sleep pressure or circadian phase, which may exacerbate synchrony effects. To probe this hypothesis, the authors tested older morning and young evening chronotypes with a psychomotor vigilance and a Stroop paradigm once at fixed morning and evening hours and once adapting testing time to their preferred sleep-wake schedule in a within-subject design. The authors observe a persistence of synchrony effects for overall median reaction times during a psychomotor vigilance task, even when testing time is adapted to the specific individual's sleep-wake schedule. However, data analysis also indicates that time-of-day modulations are weakened under those conditions for incongruent trials on Stroop performance and the slowest reaction times on the psychomotor vigilance task. The latter result suggests that the classically observed synchrony effect may be partially mediated by a series of parameters, such as differences in socio-professional timing constraints, the amount of accumulated sleep need, or circadian phase, all leading to differential arousal levels at testing. (Author correspondence: )  相似文献   

3.
4.
《Chronobiology international》2013,30(7):1462-1469
In our modern society, we are exposed to different artificial light sources that could potentially lead to disturbances of circadian rhythms and, hence, represent a risk for health and welfare. Investigating the acute impact of light on clock-gene expression may thus help us to better understand the mechanisms underlying disorders rooted in the circadian system. Here, we show an overall significant reduction in PER2 expression in oral mucosa with aging in the morning, noon, and afternoon. In the afternoon, 10?h after exposure to early morning blue light, PER2 was significantly elevated in the young compared to green light exposure and to older participants. Our findings demonstrate that human buccal samples are a valuable tool for studying clock-gene rhythms and the response of PER2 to light. Additionally, our results indicate that the influence of light on clock-gene expression in humans is altered with age. (Author correspondence: )  相似文献   

5.
This study assessed the influence of sleep loss and circadian rhythm on executive inhibitory control (i.e., the ability to inhibit conflicting response tendencies due to irrelevant information). Twelve ordinarily diurnally active, healthy young male participants performed the Stroop and the Simon task every 3?h in a 40-h constant routine protocol that comprised constant wakefulness under controlled behavioral and environmental conditions. In both tasks, overall performance showed clear circadian rhythm and sleep-loss effects. However, both Stroop and Simon interference remained unchanged across the 40?h of wakefulness, suggesting that neither cumulative sleep loss nor the circadian clock affects executive inhibitory control. The present findings challenge the widely held view that executive functions are especially vulnerable to the influence of sleep loss and circadian rhythm. (Author correspondence: )  相似文献   

6.
《Chronobiology international》2013,30(7):1420-1437
The effect of puberty on circadian rhythmicity in nonhuman primates has been little studied, even though it has been demonstrated that puberty-related changes in circadian activity rhythm occur in a number of species, including humans. To characterize the motor activity rhythm during puberty in common marmosets (Callithrix jacchus), six animals was continuously monitored by actimeters between their 5th and 12th months of age. The animals were housed with their families in outdoor cages under seminatural conditions. Onset of puberty was determined from fecal estrogen and progesterone levels in females and androgen levels in males. The spectral power of the circadian component stabilized later in the last two animals to enter puberty. The bimodal characteristic of the active phase in this species became progressively more apparent over the course of the months in which the mean temperature was highest, irrespective of the animal's age. Although the onset of activity advanced after entry into puberty, this parameter showed a strong correlation with sunrise, indicating that seasonality influences this variable. Neither age nor climatic factors included in the regression model influenced the differences in phase angles between sunrise and onset of activity, and between sunset and offset of activity. Total activity was the only parameter influenced by age in the regression model, showing an increase after entry into puberty. Despite the evidence of pubertal influence on both the circadian component and total activity, under seminatural conditions seasonal factors may have a more important effect on motor activity rhythm in common marmosets. (Author correspondence: E-mail: )  相似文献   

7.
Daily exposure to environmental light is the most important zeitgeber in humans, and all studied characteristics of light pattern (timing, intensity, rate of change, duration, and spectrum) influence the circadian system. However, and due to lack of current studies on environmental light exposure and its influence on the circadian system, the aim of this work is to determine the characteristics of a naturalistic regimen of light exposure and its relationship with the functioning of the human circadian system. Eighty-eight undergraduate students (18–23 yrs) were recruited in Murcia, Spain (latitude 38°01′N) to record wrist temperature (WT), light exposure, and sleep for 1 wk under free-living conditions. Light-exposure timing, rate of change, regularity, intensity, and contrast were calculated, and their effects on the sleep pattern and WT rhythm were then analyzed. In general, higher values for interdaily stability, relative amplitude, mean morning light, and light quality index (LQI) correlated with higher interdaily stability and relative amplitude, and phase advance in sleep plus greater stability in WT and phase advance of the WT circadian rhythm. On the other hand, a higher fragmentation of the light-exposure rhythm was associated with more fragmented sleep. Naturalistic studies using 24-h ambulatory light monitoring provide essential information about the main circadian system input, necessary for maintaining healthy circadian tuning. Correcting light-exposure patterns accordingly may help prevent or even reverse health problems associated with circadian disruption. (Author correspondence: )  相似文献   

8.
《Chronobiology international》2013,30(7):1430-1442
Many immune parameters exhibit daily and circadian oscillations, including the number of circulating cells and levels of cytokines in the blood. Mice also have a differential susceptibility to lipopolysaccharide (LPS or endotoxin)-induced endotoxic shock, depending on the administration time in the 24?h light-dark (LD) cycle. We replicated these results in LD, but we did not find temporal differences in LPS-induced mortality in constant darkness (DD). Animals challenged with LPS showed only transient effects on their wheel locomotor activity rhythm without modification of circadian period and phase. Levels of several key factors involved in the pathology of sepsis and septic shock were tested in LD. We found that LPS-induced levels of interleukin (IL)-1β, IL-6, JE (MCP-1), and MIP1α were significantly higher at zeitgeber time (ZT) 11 (time of increased mortality) than at ZT19 (ZT12?=?time of lights-off in the animal quarters for the 12L:12D condition). Our results indicate that the differences found in mortality that are dependent on the time of LPS-challenge are not directly related to an endogenous circadian clock, and that some relevant immune factors in the development of sepsis are highly induced at ZT11, the time of higher LPS-induced mortality, compared to ZT19. (Author correspondence: )  相似文献   

9.
Although a significant body of literature has been devoted to the chronobiology of aquatic animals, how biological rhythms function in molluscan bivalves has been poorly studied. The first objective of this study was to determine whether an endogenous circadian rhythm does exist in the oyster, Crassostrea gigas. The second objective was to characterize it in terms of robustness. To answer these questions, the valve activity of 15 oysters was continuously recorded for 2 mo in the laboratory under different entrainment and free-running regimes using a high-frequency noninvasive valvometer. The present work demonstrates the presence of a circadian rhythm in the oyster Crassostrea gigas. First, oysters were entrained by 12?L:12 D conditions. Then, free-running conditions (D:D and L:L) indicated that the most frequently observed period ranged from 20 to 28?h, the circadian range. That endogenous circadian rhythm was characterized as weak. Indeed, the period (τ) of the individual animals exhibited high plasticity in D:D and L:L, and the animals immediately followed a 4-h phase advance or delay. Additionally, C. gigas appeared as a dual organism: all oysters were nocturnal at the beginning of the laboratory experiment (January), whereas they were diurnal at the end (March). That shift was progressive. Comparison with a full-year in situ record showed the same behavioral duality as observed in the laboratory: the animals were nocturnal in autumn–winter and diurnal in spring–summer. The significant advantage of a plastic and dual circadian rhythm in terms of adaptability in a highly changing environment is discussed. (Author correspondence: )  相似文献   

10.
《Chronobiology international》2013,30(8):1609-1628
Heart-rate variability patterns of 18 women during a 40-h constant routine of prolonged wakefulness under controlled laboratory conditions were analyzed. The authors tested the circadian timing of the autonomic nervous system and the relationship between the sympathetic and vagal branches in women with both a functional disorder of vascular regulation (main symptom: cold hands and feet) and prolonged sleep onset and controls without these symptoms. Spectral analysis of R-R intervals during paced breathing episodes revealed significantly lower power values in the high-frequency band (HF; 0.15–0.4?Hz) but not in the low-frequency band (LF; 0.04–0.15?Hz), leading to a significantly elevated LF/HF ratio in the former group. A significant circadian rhythm in LF power and heart rate occurred in both groups, and a significant correlation was found between sleepiness and sympathovagal balance (r?=?.53, p?<?.05). These findings indicate not only an autonomic imbalance in the first group compared with controls, but also two strategies of the autonomic nervous system to fight against fatigue in women. One implies circadian control and the other homeostatic control, and both are reflected by the LF/HF ratio. (Author correspondence: )  相似文献   

11.
12.
13.
Studies on the rate of adverse events in hospitalized patients seldom examine temporal patterns. This study presents evidence of both weekly and annual cycles. The study is based on a large and diverse data set, with nearly 5 yrs of data from a voluntary staff-incident reporting system of a large public health care provider in rural southeastern Australia. The data of 63 health care facilities were included, ranging from large non-metropolitan hospitals to small community and aged health care facilities. Poisson regression incorporating an observation-driven autoregressive effect using the GLARMA framework was used to explain daily error counts with respect to long-term trend and weekly and annual effects, with procedural volume as an offset. The annual pattern was modeled using a first-order sinusoidal effect. The rate of errors reported demonstrated an increasing annual trend of 13.4% (95% confidence interval [CI] 10.6% to 16.3%); however, this trend was only significant for errors of minor or no harm to the patient. A strong “weekend effect” was observed. The incident rate ratio for the weekend versus weekdays was 2.74 (95% CI 2.55 to 2.93). The weekly pattern was consistent for incidents of all levels of severity, but it was more pronounced for less severe incidents. There was an annual cycle in the rate of incidents, the number of incidents peaking in October, on the 282nd day of the year (spring in Australia), with an incident rate ratio 1.09 (95% CI 1.05 to 1.14) compared to the annual mean. There was no so-called “killing season” or “July effect,” as the peak in incident rate was not related to the commencement of work by new medical school graduates. The major finding of this study is the rate of adverse events is greater on weekends and during spring. The annual pattern appears to be unrelated to the commencement of new graduates and potentially results from seasonal variation in the case mix of patients or the health of the medical workforce that alters health care performance. These mechanisms will need to be elucidated with further research. (Author correspondence: )  相似文献   

14.
An increased understanding of the factors affecting behavioral and neurological responses to alcohol and alcohol physiology is necessary given the tremendous toll alcohol abuse and alcoholism exert on individuals and society. At the behavioral and molecular levels, the response to alcohol appears remarkably conserved from Drosophila to humans, suggesting that investigations across model species can provide insight into the identification of common modulatory factors. We investigated the interaction between the circadian clock and alcohol sensitivity, alcohol tolerance, and alcohol absorbance in Drosophila melanogaster. Using a loss-of-righting reflex (LoRR) assay, we found that flies exhibit a circadian rhythm in the LoRR, with the greatest sensitivity to alcohol occurring from mid to late night, corresponding to the flies' inactive phase. As predicted, a circadian rhythm in the LoRR was absent in circadian mutant flies and under conditions in which the circadian clock was nonfunctional. Circadian modulation of the response to alcohol was not due to circadian regulation of alcohol absorbance. Similar to other animals, Drosophila develop acute and chronic tolerance to alcohol upon repeat exposures. We found that the circadian clock did not modulate the development of acute alcohol tolerance measured as the difference in sensitivity to alcohol between naïve and pre-exposed flies. Thus, the circadian clock modulates some, but not all, of the behavioral responses to alcohol exposure, suggesting that specific mechanisms underlie the observed circadian modulation of LoRR rather than global cellular circadian regulation. This study provides valuable new insights in our understanding of the circadian modulation of alcohol-induced behaviors that ultimately could facilitate preventative measures in combating alcohol abuse and alcoholism. (Author correspondence: )  相似文献   

15.
Among the more than 40 genera of anthropoid primates (monkeys, apes, and humans), only the South American owl monkeys, genus Aotus, are nocturnal. However, the southernmostly distributed species, Aotus azarai azarai, of the Gran Chaco may show considerable amounts of its 24-h activity during bright daylight. Due to seasonal changes in the duration of photophase and climatic parameters in their subtropical habitat, the timing and pattern of their daily activity are expected to show significant seasonal variation. By quantitative long-term activity recordings with Actiwatch AW4 accelerometer data logger devices of 10 wild owl monkeys inhabiting a gallery forest in Formosa, Argentina, the authors analyzed the seasonal variation in the temporal niche and activity pattern resulting from entrainment and masking of the circadian activity rhythm by seasonally and diurnally varying environmental factors. The owl monkeys always displayed a distinct bimodal activity pattern, with prominent activity bouts and peaks during dusk and dawn. Their activity rhythm showed distinct lunar and seasonal variations in the timing and daily pattern. During the summer, the monkeys showed predominantly crepuscular/nocturnal behavior, and a crepuscular/cathemeral activity pattern with similar diurnal and nocturnal activity levels during the cold winter months. The peak times of the evening and morning activity bouts were more closely related to the times of sunset and sunrise, respectively, than activity-onset and -offset. Obviously, they were better circadian markers for the phase position of the entrained activity rhythm than activity-onset and -offset, which were subject to more masking effects of environmental and/or internal factors. Total daily activity was lowest during the two coldest lunar months, and almost twice as high during the warmest months. Nighttime (21:00–06:00?h) and daytime (09:00–18:00?h) activity varied significantly across the year, but in an opposite manner. Highest nighttime activity occurred in summer and maximal daytime activity during the cold winter months. Dusk and dawn activity, which together accounted for 43% of the total daily activity, barely changed. The monkeys tended to terminate their nightly activity period earlier on warm and rainy days, whereas the daily amount of activity showed no significant correlation either with temperature or precipitation. These data are consistent with the dual-oscillator hypothesis of circadian regulation. They suggest the seasonal variations of the timing and pattern of daily activity in wild owl monkeys of the Argentinean Chaco result from a specific interplay of light entrainment of circadian rhythmicity and strong masking effects of various endogenous and environmental factors. Since the phase position of the monkeys' evening and morning activity peaks did not vary considerably over the year, the seasonal change from a crepuscular/nocturnal activity pattern in summer to a more crepuscular/cathemeral one in winter does not depend on a corresponding phase shift of the entrained circadian rhythm, but mainly on masking effects. Thermoregulatory and energetic demands and constraints seem to play a crucial role. (Author correspondence: )  相似文献   

16.
Circadian rhythms are endogenously generated cycles involving physiological parameters, such as core body temperature, hormone levels, blood pressure, sleep, and metabolism, with a period length of around 24?h. The circadian clock in mammals is regulated by a set of clock genes that are functionally linked together, and polymorphisms in clock genes could be associated with differences in circadian rhythms. A variable-number tandem repeat (VNTR) in the human clock gene PERIOD3 (PER3) has been suggested to correlate with a morning (lark) versus evening (owl) chronotype as well as with the circadian rhythm sleep disorder “delayed sleep phase disorder” (DSPD). The authors examined 432 healthy Norwegian university students in search of further support for an association between the PER3 polymorphism and diurnal preference. The Horne-Östberg Morningness-Eveningness Questionnaire (MEQ) and Preferences Scale (PS) were used to evaluate subjective chronotype. DNA samples were genotyped with respect to the 4-repeat and 5-repeat alleles of the VNTR PER3 polymorphism, and the genotype distribution was 192 (4-4), 191 (4-5), and 49 (5-5). The authors estimated that the power to detect an association of the 4-allele with preference for morningness or eveningness was 75%. The authors found no association between the PER3 clock gene and chronotype, indicating that the proposed role of PER3 needs further clarification. (Author correspondence: )  相似文献   

17.
《Chronobiology international》2013,30(8):1545-1558
The principal pacemaker in mammals, controlling physiology and behavior, is located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Early photic experience has long-term effects on the animal's rhythmic behavior, as indicated by alterations in the phase shift induced by a light pulse, and in the expression of the circadian rhythm of locomotor activity under light-dark (LD), constant light (LL), and constant darkness (DD) environments. However, the brain substrates targeted by early light have not yet been identified. Possible candidates are astrocytes, as they develop postnatally in parallel to the circadian system, and are involved in SCN function by modulating intercellular communication and mediating photic input. Here, we reared three groups of mice under different light environments (LD, LL, and DD) during the suckling period. Later on, all mice were entrained to LD, and we determined associated astrocytic modifications by examining the expression of glial fibrillary acidic protein (GFAP) in the SCN. We observed that although LL-reared mice showed lowest GFAP expression in the SCN, as determined by quantification of immunostaining levels, the number of GFAP-positive cells was highest in this group, suggesting structural remodelling of SCN astrocytes by early light experience. These results indicate the postnatal light environment has long-term effects on the astrocytic population of the SCN. We argue that these neurochemical and structural alterations may affect clock function, which may in turn modify animal behavior (Author correspondence: , ).  相似文献   

18.
《Chronobiology international》2013,30(8):1078-1097
Recently, we developed a novel method for estimating human circadian phase with noninvasive ambulatory measurements combined with subject-independent multiple regression models and a curve-fitting approach. With this, we were able to estimate circadian phase under real-life conditions with low subject burden, i.e., without need of constant routine (CR) laboratory conditions, and without measuring standard circadian markers, such as core body temperature (CBT) or pineal hormone melatonin rhythms. The precision of ambulatory-derived estimated circadian phase was within an error of 12?±?41?min (mean?±?SD) in comparison to melatonin phase during a CR protocol. The physiological measures could be reduced to a triple combination: skin temperatures, irradiance in the blue spectral band of ambient light, and motion acceleration. Here, we present a nonlinear regression model approach based on artificial neural networks for a larger data set (25 healthy young males), including both the original data and additional data collected in the same protocol and using the same equipment. Throughout our validation study, subjects wore multichannel ambulatory monitoring devices and went about their daily routine for 1 wk. The devices collected a large number of physiological, behavioral, and environmental variables, including CBT, skin temperatures, cardiovascular and respiratory functions, movement/posture, ambient temperature, spectral composition and intensity of light perceived at eye level, and sleep logs. After the ambulatory phase, study volunteers underwent a 32-h CR protocol in the laboratory for measuring unmasked circadian phase (i.e., “midpoint” of the nighttime melatonin rhythm). To overcome the complex masking effects of many different confounding variables during ambulatory measurements, neural network–based nonlinear regression techniques were applied in combination with the cross-validation approach to subject-independent prediction of circadian phase. The most accurate estimate of circadian phase with a prediction error of ?3?±?23?min (mean?±?SD) was achieved using only two types of the measured variables: skin temperatures and irradiance for ambient light in the blue spectral band. Compared to our previous linear multiple regression modeling approach, motion acceleration data can be excluded and prediction accuracy, nevertheless, improved. Neural network regression showed statistically significant improvement of variance of prediction error over traditional approaches in determining circadian phase based on single predictors (CBT, motion acceleration, or sleep logs), even though none of these variables was included as predictor. We, therefore, have identified two sets of noninvasive measures that, combined with the prediction model, can provide researchers and clinicians with a precise measure of internal time, in spite of the masking effects of daily behavior. This method, here validated in healthy young men, requires testing in a clinical or shiftwork population suffering from circadian sleep-wake disorders. (Author correspondence: )  相似文献   

19.
《Chronobiology international》2013,30(7):1493-1508
Aviation, military, police, and health care personnel have been particularly interested in the operational impact of sleep restriction and work schedules given the potential severe consequences of making fatigue-related errors. Most studies examining the impact of sleep loss or circadian manipulations have been conducted in controlled laboratory settings using small sample sizes. This study examined whether the relationship between prior night sleep duration and performance on the psychomotor vigilance task could be reliably detected in a field study of healthy police academy recruits. Subjects (N?=?189) were medically and psychiatrically healthy. Sleep-wake activity was assessed with wrist actigraphy for 7 days. Subjects performed the psychomotor vigilance task (PVT) for 5?min on a personal digital assistant (PDA) device before and after their police academy workday and on comparable times during their days off. Mixed-effects logistic regression was used to estimate the probability of having ≥1 lapse on the PVT as a function of the previous night sleep duration during the 7 days of field testing. Valid estimates of sleep duration were obtained for 1082 nights of sleep. The probability of a lapse decreased by 3.5%/h sleep the night prior to testing. The overall probability of having a lapse decreased by 0.9%/h since awakening, holding hours of sleep constant. Perceived stress was not associated with sleep duration or probability of performance lapse. These findings demonstrate the feasibility of detecting sleep and circadian effects on cognitive performance in large field studies. These findings have implications regarding the daytime functioning of police officers. (Author correspondence: )  相似文献   

20.
《Chronobiology international》2013,30(7):1307-1322
The neuropeptide pigment-dispersing factor (PDF) plays an essential role in the circadian clock of the fruit fly Drosophila melanogaster, but many details of PDF signaling in the clock network are still unknown. We tried to interfere with PDF signaling by blocking the GTPase Shibire in PDF neurons. Shibire is an ortholog of the mammalian Dynamins and is essential for endocytosis of clathrin-coated vesicles at the plasma membrane. Such endocytosis is used for neurotransmitter reuptake by presynaptic neurons, which is a prerequisite of synaptic vesicle recycling, and receptor-mediated endocytosis in the postsynaptic neuron, which leads to signal termination. By blocking Shibire function via overexpression of a dominant negative mutant form of Shibire in PDF neurons, we slowed down the behavioral rhythm by 3?h. This effect was absent in PDF receptor null mutants, indicating that we interfered with PDF receptor-mediated endocytosis. Because we obtained similar behavioral phenotypes by increasing the PDF level in regions close to PDF neurons, we conclude that blocking Shibire did prolong PDF signaling in the neurons that respond to PDF. Obviously, terminating the PDF signaling via receptor-mediated endocytosis is a crucial step in determining the period of behavioral rhythms. (Author correspondence: )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号