首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Growth hormone (GH) transgenes can significantly accelerate growth rates in fish and cause associated alterations to their physiology and behaviour. Concern exists regarding potential environmental risks of GH transgenic fish, should they enter natural ecosystems. In particular, whether they can reproduce and generate viable offspring under natural conditions is poorly understood. In previous studies, GH transgenic salmon grown under contained culture conditions had lower spawning behaviour and reproductive success relative to wild-type fish reared in nature. However, wild-type salmon cultured in equal conditions also had limited reproductive success. As such, whether decreased reproductive success of GH transgenic salmon is due to the action of the transgene or to secondary effects of culture (or a combination) has not been fully ascertained. Hence, salmon were reared in large (350,000 L), semi-natural, seawater tanks (termed mesocosms) designed to minimize effects of standard laboratory culture conditions, and the reproductive success of wild-type and GH transgenic coho salmon from mesocosms were compared with that of wild-type fish from nature. Mesocosm rearing partially restored spawning behaviour and success of wild-type fish relative to culture rearing, but remained lower overall than those reared in nature. GH transgenic salmon reared in the mesocosm had similar spawning behaviour and success as wild-type fish reared in the mesocosm when in full competition and without competition, but had lower success in male-only competition experiments. There was evidence of genotype×environmental interactions on spawning success, so that spawning success of transgenic fish, should they escape to natural systems in early life, cannot be predicted with low uncertainty. Under the present conditions, we found no evidence to support enhanced mating capabilities of GH transgenic coho salmon compared to wild-type salmon. However, it is clear that GH transgenic salmon are capable of successful spawning, and can reproduce with wild-type fish from natural systems.  相似文献   

2.
To extend previous findings regarding fish health and disease susceptibility of growth-enhanced fish, hematological and immunological parameters have been compared between growth hormone (GH) transgenic and wild-type non-transgenic coho salmon (Oncorhynchus kisutch). Compared to non-transgenic coho salmon, transgenic fish had significantly higher hematocrit (Hct), hemoglobin (Hb), mean cellular hemoglobin (MCH), mean cellular volume (MCV), and erythrocyte numbers, and lower white cell numbers. In addition, resistance to the bacterial pathogen Aeromonas salmonicida (causal agent of furunculosis) has been assessed between the strains. Higher susceptibility of transgenic fish to this disease challenge was observed in two separate year classes of fish. The present findings provide fundamental knowledge of the disease resistance on GH enhanced transgenic coho salmon, which is of importance for assessing the fitness of transgenic strains for environmental risk assessments, and for improving our understanding effects of growth modification on basic immune functions.  相似文献   

3.
In a previous study we showed that many of the morphological features of the respiratory system of GH (growth hormone) transgenic Atlantic salmon are greater than similarly sized control salmon. Here we show that the manifestation of GH transgene is similar in two different lines of GH transgenic Pacific coho salmon, but that it is very different from that in the GH transgenic Atlantic salmon. The GH transgenic Pacific coho salmon do not have a larger gill surface area than similarly sized control fish.  相似文献   

4.
Seasonal variation in daily food intake is a well-documented phenomenon in many organisms including wild-type coho salmon where the appetite is noticeably reduced during periods of decreased day length and low water temperature. This reduction may in part be explained by altered production of cholecystokinin (CCK) and growth hormone (GH). CCK is a hormone produced in the brain and gut that mediates a feeling of satiety and thus has an inhibitory effect on food intake and foraging behaviour. Growth hormone (GH) enhances feeding behaviour and consequently growth, but its production is reduced during winter. The objectives of this study were: first, to compare the seasonal feeding behaviour of wild and GH-transgenic coho salmon; second, to determine the behavioural effect of blocking the action of CCK (by using devazepide) on the seasonal food intake; and third, to measure CCK expression in brain and gut tissues between the two genotypes across seasons. We found that, in contrast to wild salmon, food intake in transgenic salmon was not reduced during winter indicating that seasonal control of appetite regulation has been disrupted by constitutive production of GH in transgenic animals. Blocking of CCK increased food intake in both genotypes in all seasons. The increase was stronger in wild genotypes than transgenic fish; however blocking CCK in wild-type fish in winter did not elevate appetites to levels observed in the summer. The response to devazepide was generally faster in transgenic than in wild salmon with more rapid effects observed during summer than during winter, possibly due to a higher temperature in summer. Overall, a seasonal effect on CCK mRNA levels was observed in telencephalon with levels during winter being higher compared to the summer in wild fish, but with no seasonal effect in transgenic fish. No differences in seasonal CCK expression were found in hypothalamus. Higher levels of CCK were detected in the gut of both genotypes in winter compared to summer. Thus, CCK appears to mediate food intake among seasons in both wild-type and GH-transgenic salmon, and an altered CCK regulation may be responsible at least in part for the seasonal regulation of food intake.  相似文献   

5.
Insertion of a growth hormone (GH) transgene in coho salmon results in accelerated growth, and increased feeding and metabolic rates. Whether other physiological systems within the fish are adjusted to this accelerated growth has not been well explored. We examined the effects of a GH transgene and feeding level on the antioxidant glutathione and its associated enzymes in various tissues of coho salmon. When transgenic and control salmon were fed to satiation, transgenic fish had increased tissue glutathione, increased hepatic glutathione reductase activity, decreased hepatic activity of the glutathione synthesis enzyme γ-glutamylcysteine synthetase, and increased intestinal activity of the glutathione catabolic enzyme γ-glutamyltranspeptidase. However, these differences were mostly abolished by ration restriction and fasting, indicating that upregulation of the glutathione antioxidant system was due to accelerated growth, and not to intrinsic effects of the transgene. Increased food intake and ability to digest potential dietary glutathione, and not increased activity of glutathione synthesis enzymes, likely contributed to the higher levels of glutathione in transgenic fish. Components of the glutathione antioxidant system are likely upregulated to combat potentially higher reactive oxygen species production from increased metabolic rates in GH transgenic salmon.  相似文献   

6.

Background

The neuroendocrine system is an important modulator of phenotype, directing cellular genetic responses to external cues such as temperature. Behavioural and physiological processes in poikilothermic organisms (e.g. most fishes), are particularly influenced by surrounding temperatures.

Methodology/Principal Findings

By comparing the development and growth of two genotypes of coho salmon (wild-type and transgenic with greatly enhanced growth hormone production) at six different temperatures, ranging between 8° and 18°C, we observed a genotype-temperature interaction and possible trend in directed neuroendocrine selection. Differences in growth patterns of the two genotypes were compared by using mathematical models, and morphometric analyses of juvenile salmon were performed to detect differences in body shape. The maximum hatching and alevin survival rates of both genotypes occurred at 12°C. At lower temperatures, eggs containing embryos with enhanced GH production hatched after a shorter incubation period than wild-type eggs, but this difference was not apparent at and above 16°C. GH transgenesis led to lower body weights at the time when the yolk sack was completely absorbed compared to the wild genotype. The growth of juvenile GH-enhanced salmon was to a greater extent stimulated by higher temperatures than the growth of the wild-type. Increased GH production significantly influenced the shape of the salmon growth curves.

Conclusions

Growth hormone overexpression by transgenesis is able to stimulate the growth of coho salmon over a wide range of temperatures. Temperature was found to affect growth rate, survival, and body morphology between GH transgenic and wild genotype coho salmon, and differential responses to temperature observed between the genotypes suggests they would experience different selective forces should they ever enter natural ecosystems. Thus, GH transgenic fish would be expected to differentially respond and adapt to shifts in environmental conditions compared with wild type, influencing their ability to survive and interact in ecosystems. Understanding these relationships would assist environmental risk assessments evaluating potential ecological effects.  相似文献   

7.
Domesticated and growth hormone (GH) transgenic salmon provide an interesting model to compare effects of selected versus engineered phenotypic change on relative fitness in an ecological context. Phenotype in domestication is altered via polygenic selection of traits over multiple generations, whereas in transgenesis is altered by a single locus in one generation. These established and emerging technologies both result in elevated growth rates in culture, and are associated with similar secondary effects such as increased foraging, decreased predator avoidance, and similar endocrine and gene expression profiles. As such, there is concern regarding ecological consequences should fish that have been genetically altered escape to natural ecosystems. To determine if the type of genetic change influences fitness components associated with ecological success outside of the culture environments they were produced for, we examined growth and survival of domesticated, transgenic, and wild-type coho salmon fry under different environmental conditions. In simple conditions (i.e. culture) with unlimited food, transgenic fish had the greatest growth, while in naturalized stream tanks (limited natural food, with or without predators) domesticated fish had greatest growth and survival of the three fish groups. As such, the largest growth in culture conditions may not translate to the greatest ecological effects in natural conditions, and shifts in phenotype over multiple rather than one loci may result in greater success in a wider range of conditions. These differences may arise from very different historical opportunities of transgenic and domesticated strains to select for multiple growth pathways or counter-select against negative secondary changes arising from elevated capacity for growth, with domesticated fish potentially obtaining or retaining adaptive responses to multiple environmental conditions not yet acquired in recently generated transgenic strains.  相似文献   

8.
Cholesterol (CH) homeostasis in the liver is regulated by enzymes of CH synthesis such as 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and catabolic enzymes such as cytochrome P-450, family 7, subfamily A, and polypeptide 1 (CYP7A1). Since a circadian clock controls the gene expression of these enzymes, these genes exhibit circadian rhythm in the liver. In this study, we examined the relationship between a diet containing CH and/or cholic acid (CA) and the circadian regulation of Hmgcr, low-density lipoprotein receptor (Ldlr), and Cyp7a1 gene expression in the mouse liver. A 4-wk CA diet lowered and eventually abolished the circadian expression of these genes. Not only clock genes such as period homolog 2 (Drosophila) (Per2) and brain and muscle arnt-like protein-1 (Bmal1) but also clock-controlled genes such as Hmgcr, Ldlr, and Cyp7a1 showed a reduced and arrhythmic expression pattern in the liver of Clock mutant mice. The reduced gene expression of Cyp7a1 in mice fed a diet containing CA or CH + CA was remarkable in the liver of Clock mutants compared with wild-type mice, and high liver CH accumulation was apparent in Clock mutant mice. In contrast, a CH diet without CA only elevated Cyp7a1 expression in both wild-type and Clock mutant mice. The present findings indicate that normal circadian clock function is important for the regulation of CH homeostasis in the mouse liver, especially in conjunction with a diet containing high CH and CA.  相似文献   

9.
Survival, competition, growth and reproductive success in fishes are highly dependent on food intake, food availability and feeding behavior and are all influenced by a complex set of metabolic and neuroendocrine mechanisms. Overexpression of growth hormone (GH) in transgenic fish can result in greatly enhanced growth rates, feed conversion, feeding motivation and food intake. The objectives of this study were to compare seasonal feeding behavior of non-transgenic wild-type (NT) and GH-transgenic (T) coho salmon (Oncorhynchus kisutch), and to examine the effects of intraperitoneal injections of the appetite-regulating peptides cholecystokinin (CCK-8), bombesin (BBS), glucagon-like peptide-1 (GLP-1), and alpha-melanocyte-stimulating hormone (α-MSH) on feeding behavior. T salmon fed consistently across all seasons, whereas NT dramatically reduced their food intake in winter, indicating the seasonal regulation of appetite can be altered by overexpression of GH in T fish. Intraperitoneal injections of CCK-8 and BBS caused a significant and rapid decrease in food intake for both genotypes. Treatment with either GLP-1 or α-MSH resulted in a significant suppression of food intake for NT but had no effect in T coho salmon. The differential response of T and NT fish to α-MSH is consistent with the melanocortin-4 receptor system being a significant pathway by which GH acts to stimulate appetite. Taken together, these results suggest that chronically increased levels of GH alter feeding regulatory pathways to different extents for individual peptides, and that altered feeding behavior in transgenic coho salmon may arise, in part, from changes in sensitivity to peripheral appetite-regulating signals.  相似文献   

10.
11.
Diploid and triploid coho salmon Oncorhynchus kisutch transgenic for growth hormone (GH) and control coho salmon were compared for differences in disease resistance and stress response. Resistance to the bacterial pathogen Vibrio anguillarum was not affected in transgenic fish relative to their non‐transgenic counterparts when they were infected at the fry stage, but was lower in transgenic fish when infected near smolting. Vaccination against vibriosis provided equal protection to both transgenic and non‐transgenic fish. Triploid fish showed a lower resistance to vibriosis than their diploid counterparts. Diploid transgenic fish and non‐transgenic fish appeared to show similar physiological and cellular stress responses to a heat shock. These studies provide information useful for both performance and ecological risk assessments of growth‐accelerated coho salmon.  相似文献   

12.
A circadian clock, with physiological characteristics similar to those of eukaryotes, functions in the photosynthetic prokaryote, cyanobacteria. The molecular mechanism of this clock has been efficiently dissected using a luciferase reporter gene that reports the status of the clock. A circadian clock gene cluster, kaiABC, has been cloned via rhythm mutants of cyanobacterium, Synechococcus, and many clock mutations mapped to the three kai genes. Although kai genes do not share any homology with clock genes so far identified in eukaryotes, analysis of their expression suggests that a negative feedback control of kaiC expression by KaiC generates the circadian oscillation and that KaiA functions as a positive factor to sustain this oscillation. BioEssays 22:10-15, 2000.  相似文献   

13.
14.
15.
Growth and development in fish are regulated to a major extent by growth-related factors, such as liver-derived insulin-like growth factor (IGF) -1 in response to pituitary-secreted growth hormone (GH) binding to the GH receptor (GHR). Here, we report on the changes in the expressions of gh, ghr, and igf1 genes and the circulating levels of GH and IGF-1 proteins in juvenile coho salmon (Oncorhynchus kisutch) in response to handling as an acute physiological stressor. Plasma GH levels were not significantly different between stressed fish and prestressed control. Plasma IGF-1 concentrations in stressed fish 1.5 h post-stress were the same as in control fish, but levels in stressed fish decreased significantly 16 h post-stress. Real-time quantitative PCR (qPCR) analysis showed that ghr mRNA levels in pituitary, liver, and muscle decreased gradually in response to the stressor. After exposure to stress, hepatic igf1 expression transiently increased, whereas levels decreased 16 h post-stress. On the other hand, the pituitary gh mRNA level did not change in response to the stressor. These observations indicate that expression of gh, ghr, and igf1 responded differently to stress. Our results show that acute physiological stress can mainly down-regulate the expressions of growth-related genes in coho salmon in vivo. This study also suggests that a relationship between the neuroendocrine stress response and growth-related factors exists in fish.  相似文献   

16.
17.
There is increasing awareness of the link between impaired circadian clocks and multiple metabolic diseases. However, the impairment of the circadian clock by type 2 diabetes has not been fully elucidated. To understand whether and how the function of circadian clock is impaired under the diabetic condition, we examined not only the expression of circadian genes in the heart and pineal gland but also the behavioral rhythm of type 2 diabetic and control rats in both the nighttime restricted feeding (NRF) and daytime restricted feeding (DRF) conditions. In the NRF condition, the circadian expression of clock genes in the heart and pineal gland was conserved in the diabetic rats, being similar to that in the control rats. DRF shifted the circadian phases of peripheral clock genes more efficiently in the diabetic rats than those in the control rats. Moreover, the activity rhythm of rats in the diabetic group was completely shifted from the dark phase to the light phase after 5 days of DRF treatment, whereas the activity rhythm of rats in the control group was still under the control of the suprachiasmatic nucleus (SCN) after the same DRF treatment. Furthermore, the serum glucose rhythm of type 2 diabetic rats was also shifted and controlled by the external feeding schedule, ignoring the SCN rhythm. Therefore, DRF shows stronger effect on the reentrainment of circadian rhythm in the type 2 diabetic rats, suggesting that the circadian system in diabetes is unstable and more easily shifted by feeding stimuli.  相似文献   

18.
19.
20.
Abstract Growth hormone (GH) transgenic fish have dramatically enhanced growth rates, increased oxygen demands and reactive oxygen species production. GH-transgenic coho salmon provide an opportunity to address effects of increased metabolism on physiological aging. The objective of this study was to compare oxidative stress in wild-type (WT) and GH-transgenic (T) coho salmon (Oncorhynchus kisutch) of different ages (1 and 2 years). Antioxidant enzyme activity, protein carbonyls (PC) and glutathione (GSH, GSSG) were measured. PC correlated to growth rates in individual fish. T fish exhibited lower antioxidant enzyme activities and GSH levels compared to the WT, while levels of PC and GSSG were higher. Age affects were observed in both WT and T fish; enzyme activities and GSH decreased while PC and GSSG increased. Our results support the metabolic rate theory of aging. This study aims to be a platform for continued studies of the theories of aging using fish as model organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号