首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.  相似文献   

2.
3.
Cost-effective and efficient ethanol production from lignocellulosic materials requires the fermentation of all sugars recovered from such materials including glucose, xylose, mannose, galactose, and l-arabinose. Wild-type strains of Saccharomyces cerevisiae used in industrial ethanol production cannot ferment d-xylose and l-arabinose. Our genetically engineered recombinant S. cerevisiae yeast 424A(LNH-ST) has been made able to efficiently ferment xylose to ethanol, which was achieved by integrating multiple copies of three xylose-metabolizing genes. This study reports the efficient anaerobic fermentation of l-arabinose by the derivative of 424A(LNH-ST). The new strain was constructed by over-expression of two additional genes from fungi l-arabinose utilization pathways. The resulting new 424A(LNH-ST) strain exhibited production of ethanol from l-arabinose, and the yield was more than 40%. An efficient ethanol production, about 72.5% yield from five-sugar mixtures containing glucose, galactose, mannose, xylose, and arabinose was also achieved. This co-fermentation of five-sugar mixture is important and crucial for application in industrial economical ethanol production using lignocellulosic biomass as the feedstock.  相似文献   

4.
Hemicellulose hydrolysates of agricultural residues often contain mixtures of hexose and pentose sugars. Ethanologenic Escherichia coli that have been previously investigated preferentially ferment hexose sugars. In some cases, xylose fermentation was slow or incomplete. The purpose of this study was to develop improved ethanologenic E. coli strains for the fermentation of pentoses in sugar mixtures. Using fosfomycin as a selective agent, glucose-negative mutants of E. coli KO11 (containing chromosomally integrated genes encoding the ethanol pathway from Zymomonas mobilis) were isolated that were unable to ferment sugars transported by the phosphoenolpyruvate-dependent phosphotransferase system. These strains (SL31 and SL142) retained the ability to ferment sugars with independent transport systems such as arabinose and xylose and were used to ferment pentose sugars to ethanol selectively in the presence of high concentrations of glucose. Additional fosfomycin-resistant mutants were isolated that were superior to strain KO11 for ethanol production from hexose and pentose sugars. These hyperproductive strains (SL28 and SL40) retained the ability to metabolize all sugars tested, completed fermentations more rapidly, and achieved higher ethanol yields than the parent. Both SL28 and SL40 produced 60 gl–1 ethanol from 120 gl–1 xylose in 60 h, 20% more ethanol than KO11 under identical conditions. Further studies illustrated the feasibility of sequential fermentation. A mixture of hexose and pentose sugars was fermented with near theoretical yield by SL40 in the first step followed by a second fermentation in which yeast and glucose were added. Such a two-step approach can combine the attributes of ethanologenic E. coli for pentoses with the high ethanol tolerance of conventional yeasts in a single vessel.  相似文献   

5.
Clostridial fermentation of cellulose and hemicellulose relies on the cellular physiology controlling the metabolism of the cellulosic hexose sugar (glucose) with respect to the hemicellulosic pentose sugars (xylose and arabinose) and the hemicellulosic hexose sugars (galactose and mannose). Here, liquid chromatography–mass spectrometry and stable isotope tracers in Clostridium acetobutylicum were applied to investigate the metabolic hierarchy of glucose relative to the different hemicellulosic sugars towards two important biofuel precursors, acetyl‐coenzyme A and butyryl‐coenzyme A. The findings revealed constitutive metabolic hierarchies in C. acetobutylicum that facilitate (i) selective investment of hemicellulosic pentoses towards ribonucleotide biosynthesis without substantial investment into biofuel production and (ii) selective contribution of hemicellulosic hexoses through the glycolytic pathway towards biofuel precursors. Long‐term isotopic enrichment demonstrated incorporation of both pentose sugars into pentose‐phosphates and ribonucleotides in the presence of glucose. Kinetic labelling data, however, showed that xylose was not routed towards the biofuel precursors but there was minor contribution from arabinose. Glucose hierarchy over the hemicellulosic hexoses was substrate‐dependent. Kinetic labelling of hexose‐phosphates and triose‐phosphates indicated that mannose was assimilated but not galactose. Labelling of both biofuel precursors confirmed this metabolic preference. These results highlight important metabolic considerations in the accounting of clostridial mixed‐sugar utilization.  相似文献   

6.
Robust microorganisms are necessary for economical bioethanol production. However, such organisms must be able to effectively ferment both hexose and pentose sugars present in lignocellulosic hydrolysate to ethanol. Wild type Saccharomyces cerevisiae can rapidly ferment hexose, but cannot ferment pentose sugars. Considerable efforts were made to genetically engineer S. cerevisiae to ferment xylose. Our genetically engineered S cerevisiae yeast, 424A(LNH-ST), expresses NADPH/NADH xylose reductase (XR) that prefer NADPH and NAD+-dependent xylitol dehydrogenase (XD) from Pichia stipitis, and overexpresses endogenous xylulokinase (XK). This strain is able to ferment glucose and xylose, as well as other hexose sugars, to ethanol. However, the preference for different cofactors by XR and XD might lead to redox imbalance, xylitol excretion, and thus might reduce ethanol yield and productivity. In the present study, genes responsible for the conversion of xylose to xylulose with different cofactor specificity (1) XR from N. crassa (NADPH-dependent) and C. parapsilosis (NADH-dependent), and (2) mutant XD from P. stipitis (containing three mutations D207A/I208R/F209S) were overexpressed in wild type yeast. To increase the NADPH pool, the fungal GAPDH enzyme from Kluyveromyces lactis was overexpressed in the 424A(LNH-ST) strain. Four pentose phosphate pathway (PPP) genes, TKL1, TAL1, RKI1 and RPE1 from S. cerevisiae, were also overexpressed in 424A(LNH-ST). Overexpression of GAPDH lowered xylitol production by more than 40%. However, other strains carrying different combinations of XR and XD, as well as new strains containing the overexpressed PPP genes, did not yield any significant improvement in xylose fermentation.  相似文献   

7.
The use of lignocellulose as a source of sugars for bioproducts requires the development of biocatalysts that maximize product yields by fermenting mixtures of hexose and pentose sugars to completion. In this study, we implicate mgsA encoding methylglyoxal synthase (and methylglyoxal) in the modulation of sugar metabolism. Deletion of this gene (strain LY168) resulted in the co-metabolism of glucose and xylose, and accelerated the metabolism of a 5-sugar mixture (mannose, glucose, arabinose, xylose and galactose) to ethanol.  相似文献   

8.
This study presents a detailed in silico analysis of bioethanol production from glucose/xylose mixtures of various compositions by fed-batch co-culture and mono-culture fermentation of specialized microbes. The mono-culture consists of recombinant Saccharomyces cerevisise that can metabolize both hexose and pentose sugars while the co-culture system consists of substrate-selective microbes. Dynamic flux balance models based on available genome-scale reconstructions of the microorganisms have been used to analyze bioethanol production in fed-batch culture with constant feed rates and the maximization of ethanol productivity is addressed by computing optimal aerobic-anaerobic switching times. The simulation results clearly point to the superior performance of fed-batch fermentation of microbial co-culture against fed-batch fermentation of mono-culture for bioethanol production from glucose/xylose mixtures. A set of potential genetic engineering strategies for enhancement of S. cerevisiae and Escherichia coli strains performance have been identified. Such in silico predictions using genome-scale models provide valuable guidance for conducting in vivo metabolic engineering experiments.  相似文献   

9.
Fuel ethanol production from plant biomass hydrolysates by Saccharomyces cerevisiae is of great economic and environmental significance. This paper reviews the current status with respect to alcoholic fermentation of the main plant biomass-derived monosaccharides by this yeast. Wild-type S. cerevisiae strains readily ferment glucose, mannose and fructose via the Embden–Meyerhof pathway of glycolysis, while galactose is fermented via the Leloir pathway. Construction of yeast strains that efficiently convert other potentially fermentable substrates in plant biomass hydrolysates into ethanol is a major challenge in metabolic engineering. The most abundant of these compounds is xylose. Recent metabolic and evolutionary engineering studies on S. cerevisiae strains that express a fungal xylose isomerase have enabled the rapid and efficient␣anaerobic fermentation of this pentose. l-Arabinose fermentation, based on the expression of a prokaryotic pathway in S. cerevisiae, has also been established, but needs further optimization before it can be considered for industrial implementation. In addition to these already investigated strategies, possible approaches for metabolic engineering of galacturonic acid and rhamnose fermentation by S. cerevisiae are discussed. An emerging and major challenge is to achieve the rapid transition from proof-of-principle experiments under ‘academic’ conditions (synthetic media, single substrates or simple substrate mixtures, absence of toxic inhibitors) towards efficient conversion of complex industrial substrate mixtures that contain synergistically acting inhibitors.  相似文献   

10.

Background

Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose.

Results

The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase/xylitol dehydrogenase strain and the xylose isomerase strain, respectively.

Conclusion

The combination of the xylose reductase/xylitol dehydrogenase pathway and the bacterial arabinose isomerase pathway resulted in both higher pentose sugar uptake and higher overall ethanol production than the combination of the xylose isomerase pathway and the bacterial arabinose isomerase pathway. Moreover, the flux through the bacterial arabinose pathway did not increase when combined with the xylose isomerase pathway. This suggests that the low activity of the bacterial arabinose pathway cannot be ascribed to arabitol formation via the xylose reductase enzyme.  相似文献   

11.
Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.  相似文献   

12.
Specific growth rates of Bacteroides thetaiotaomicron NCTC 10582 with either glucose, arabinose, mannose, galactose or xylose as sole carbon sources were 0.42/h, 0.10/h, 0.38/h, 0.38/h and 0.16/h respectively, suggesting that hexose metabolism was energetically more efficient than pentose fermentation in this bacterium. Batch culture experiments to determine whether carbohydrate utilization was controlled by substrate-induced regulatory mechanisms demonstrated that mannose inhibited uptake of glucose, galactose and arabinose, but had less effect on xylose. Arabinose and xylose were preferentially utilized at high dilution rates (D > 0.26/h) in carbon-limited continuous cultures grown on mixtures of arabinose, xylose, galactose and glucose. When mannose was also present, xylose was co-assimilated at all dilution rates. Under nitrogen-limited conditions, however, mannose repressed uptake of all sugars, showing that its effect on xylose utilization was strongly concentration dependent. Studies with individual D-ZU-14C]-labelled substrates showed that transport systems for glucose, galactose, xylose and mannose were inducible. Measurements to determine incorporation of these sugars into trichloroacetic acid-precipitable material indicated that glucose and mannose were the principal precursor monosaccharides. Xylose was only incorporated into intracellular macromolecules when it served as growth substrate. Phosphoenolpyruvate:phosphotransferase systems were not detected in preliminary experiments to elucidate the mechanisms of sugar uptake, and studies with inhibitors of carbohydrate transport showed no consistent pattern of inhibition with glucose, galactose, xylose and mannose. These results indicate the existence of a variety of different systems involved in sugar transport in B. thetaiotaomicron.  相似文献   

13.
An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.  相似文献   

14.
A study was taken up to evaluate the role of some fermentation parameters like inoculum concentration, temperature, incubation period and agitation time on ethanol production from kinnow waste and banana peels by simultaneous saccharification and fermentation using cellulase and co-culture of Saccharomyces cerevisiae G and Pachysolen tannophilus MTCC 1077. Steam pretreated kinnow waste and banana peels were used as substrate for ethanol production in the ratio 4:6 (kinnow waste: banana peels). Temperature of 30°C, inoculum size of S. cerevisiae G 6% and (v/v) Pachysolen tannophilus MTCC 1077 4% (v/v), incubation period of 48 h and agitation for the first 24 h were found to be best for ethanol production using the combination of two wastes. The pretreated steam exploded biomass after enzymatic saccharification containing 63 gL−1 reducing sugars was fermented with both hexose and pentose fermenting yeast strains under optimized conditions resulting in ethanol production, yield and fermentation efficiency of 26.84 gL−1, 0.426 gg −1 and 83.52 % respectively. This study could establish the effective utilization of kinnow waste and banana peels for bioethanol production using optimized fermentation parameters.  相似文献   

15.
The ability of a recombinant Saccharomyces yeast strain to ferment the sugars glucose, xylose, arabinose and galactose which are the predominant monosaccharides found in corn fibre hydrolysates has been examined. Saccharomyces strain 1400 (pLNH32) was genetically engineered to ferment xylose by expressing genes encoding a xylose reductase, a xylitol dehydrogenase and a xylulose kinase. The recombinant efficiently fermented xylose alone or in the presence of glucose. Xylose-grown cultures had very little difference in xylitol accumulation, with only 4 to 5g/l accumulating, in aerobic, micro-aerated and anaerobic conditions. Highest production of ethanol with all sugars was achieved under anaerobic conditions. From a mixture of glucose (80g/l) and xylose (40g/l), this strain produced 52g/l ethanol, equivalent to 85% of theoretical yield, in less than 24h. Using a mixture of glucose (31g/l), xylose (15.2g/l), arabinose (10.5g/l) and galactose (2g/l), all of the sugars except arabinose were consumed in 24h with an accumulation of 22g ethanol/l, a 90% yield (excluding the arabinose in the calculation since it is not fermented). Approximately 98% theoretical yield, or 21g ethanol/l, was achieved using an enzymatic hydrolysate of ammonia fibre exploded corn fibre containing an estimated 47.0g mixed sugars/l. In all mixed sugar fermentations, less than 25% arabinose was consumed and converted into arabitol.  相似文献   

16.
Towards industrial pentose-fermenting yeast strains   总被引:15,自引:0,他引:15  
Production of bioethanol from forest and agricultural products requires a fermenting organism that converts all types of sugars in the raw material to ethanol in high yield and with a high rate. This review summarizes recent research aiming at developing industrial strains of Saccharomyces cerevisiae with the ability to ferment all lignocellulose-derived sugars. The properties required from the industrial yeast strains are discussed in relation to four benchmarks: (1) process water economy, (2) inhibitor tolerance, (3) ethanol yield, and (4) specific ethanol productivity. Of particular importance is the tolerance of the fermenting organism to fermentation inhibitors formed during fractionation/pretreatment and hydrolysis of the raw material, which necessitates the use of robust industrial strain background. While numerous metabolic engineering strategies have been developed in laboratory yeast strains, only a few approaches have been realized in industrial strains. The fermentation performance of the existing industrial pentose-fermenting S. cerevisiae strains in lignocellulose hydrolysate is reviewed. Ethanol yields of more than 0.4 g ethanol/g sugar have been achieved with several xylose-fermenting industrial strains such as TMB 3400, TMB 3006, and 424A(LNF-ST), carrying the heterologous xylose utilization pathway consisting of xylose reductase and xylitol dehydrogenase, which demonstrates the potential of pentose fermentation in improving lignocellulosic ethanol production.  相似文献   

17.
There is increasing interest in production of transportation fuels and commodity chemicals from lignocellulosic biomass, most desirably through biological fermentation. Considerable effort has been expended to develop efficient biocatalysts that convert sugars derived from lignocellulose directly to value-added products. Glucose, the building block of cellulose, is the most suitable fermentation substrate for industrial microorganisms such as Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae. Other sugars including xylose, arabinose, mannose, and galactose that comprise hemicellulose are generally less efficient substrates in terms of productivity and yield. Although metabolic engineering including introduction of functional pentose-metabolizing pathways into pentose-incompetent microorganisms has provided steady progress in pentose utilization, further improvements in sugar mixture utilization by microorganisms is necessary. Among a variety of issues on utilization of sugar mixtures by the microorganisms, recent studies have started to reveal the importance of sugar transporters in microbial fermentation performance. In this article, we review current knowledge on diversity and functions of sugar transporters, especially those associated with pentose uptake in microorganisms. Subsequently, we review and discuss recent studies on engineering of sugar transport as a driving force for efficient bioconversion of sugar mixtures derived from lignocellulose.  相似文献   

18.
Metabolic engineering for improved fermentation of pentoses by yeasts   总被引:23,自引:0,他引:23  
The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing genes for aldose (xylose) reductase, xylitol dehydrogenase and moderate levels of xylulokinase enable xylose assimilation and fermentation, but a balanced supply of NAD(P) and NAD(P)H must be maintained to avoid xylitol production. Reducing production of NADPH by blocking the oxidative pentose phosphate cycle can reduce xylitol formation, but this occurs at the expense of xylose assimilation. Respiration is critical for growth on xylose by both native xylose-fermenting yeasts and recombinant S, cerevisiae. Anaerobic growth by recombinant mutants has been reported. Reducing the respiration capacity of xylose-metabolizing yeasts increases ethanol production. Recently, two routes for arabinose metabolism have been engineered in S. cerevisiae and adapted strains of Pichia stipitis have been shown to ferment hydrolysates with ethanol yields of 0.45 g g–1 sugar consumed, so commercialization seems feasible for some applications.  相似文献   

19.
Conversion of agricultural residues, energy crops and forest residues into bioethanol requires hydrolysis of the biomass and fermentation of the released sugars. During the hydrolysis of the hemicellulose fraction, substantial amounts of pentose sugars, in particular xylose, are released. Fermentation of these pentose sugars to ethanol by engineered Saccharomyces cerevisiae under industrial process conditions is the subject of this review. First, fermentation challenges originating from the main steps of ethanol production from lignocellulosic feedstocks are discussed, followed by genetic modifications that have been implemented in S. cerevisiae to obtain xylose and arabinose fermenting capacity per se. Finally, the fermentation of a real lignocellulosic medium is discussed in terms of inhibitory effects of furaldehydes, phenolics and weak acids and the presence of contaminating microbiota.  相似文献   

20.
Bioethanol production from xylose is important for utilization of lignocellulosic biomass as raw materials. The research on yeast conversion of xylose to ethanol has been intensively studied especially for genetically engineered Saccharomyces cerevisiae during the last 20 years. S. cerevisiae, which is a very safe microorganism that plays a traditional and major role in industrial bioethanol production, has several advantages due to its high ethanol productivity, as well as its high ethanol and inhibitor tolerance. However, this yeast cannot ferment xylose, which is the dominant pentose sugar in hydrolysates of lignocellulosic biomass. A number of different strategies have been applied to engineer yeasts capable of efficiently producing ethanol from xylose, including the introduction of initial xylose metabolism and xylose transport, changing the intracellular redox balance, and overexpression of xylulokinase and pentose phosphate pathways. In this review, recent progress with regard to these studies is discussed, focusing particularly on xylose-fermenting strains of S. cerevisiae. Recent studies using several promising approaches such as host strain selection and adaptation to obtain further improved xylose-utilizing S. cerevisiae are also addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号