首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As heart-rate variability (HRV) is under evaluation in clinical applications, the authors sought to better define the interdependent impact of age, maximal exercise, and diurnal variation under physiologic conditions. The authors evaluated the diurnal changes in HRV 24-h pre- and post-maximal aerobic exercise testing to exhaustion in young (19-25 yrs, n?=?12) and middle-aged (40-55 yrs, n?=?12) adults. Subjects wore a portable 5-lead electrocardiogram holter for 48?h (24?h prior to and following a maximal aerobic capacity test). Time-, frequency-, time-frequency-, and scale-invariant-domain measures of HRV were computed from RR-interval data analyzed using a 5-min window size and a 2.5-min step size, resulting in a different set of outputs every 2.5?min. Results were averaged (mean?±?SE) over four prespecified time periods during the morning, afternoon, evening, and night on Day 1 and Day 2. Diurnal changes in HRV in young and middle-aged adults were compared using a two-way, repeated-measures analysis of variance (ANOVA). Young adults demonstrated higher HRV compared to middle-aged adults during periods of wakefulness and sleep prior to maximal exercise stress testing (i.e., high-frequency power during Day 1: young adults: morning 1862?±?496?ms(2), afternoon 1797?±?384?ms(2), evening 1908?±?431?ms(2), and night 3202?±?728?ms(2); middle-aged adults: morning 341?±?53?ms(2), afternoon 405?±?68?ms(2), evening 469?±?80?ms(2), and night 836?±?136?ms(2)) (p < .05). Exercise resulted in reductions in HRV such that multiple measures of HRV were not significantly different between age groups during the afternoon and evening periods. All measures of HRV demonstrated between-group differences overnight on Day 2 (p < .05). Young adults are associated with higher baseline HRV during the daytime. Sleep increases variability equally and proportionally to daytime variability. Given the higher baseline awake HRV and equal rise in HRV during sleep, the change in HRV from sleep to morning with exercise is greater in younger subjects. These physiologic results have clinical significance in understanding the pathophysiology of altered variability in ill patients.  相似文献   

2.
This study was designed to examine time-of-day effects on markers of cardiac functional capacity during a standard progressive cycle exercise test. Fourteen healthy, untrained young males (mean?±?SD: 17.9?±?0.7 yrs of age) performed identical maximal cycle tests in the morning (08:00–11:00?h) and late afternoon (16:00–19:00?h) in random order. Cardiac variables were measured at rest, submaximal exercise, and maximal exercise by standard echocardiographic techniques. No differences in morning and afternoon testing values at rest or during exercise were observed for oxygen uptake, heart rate, cardiac output, or markers of systolic and diastolic myocardial function. Values at peak exercise for Vo2 at morning and afternoon testing were 3.20?±?0.49 and 3.24?±?0.55?L min?1, respectively, for heart rate 190?±?11 and 188?±?15?bpm, and for cardiac output 19.5?±?2.8 and 19.8?±?3.5?L min?1. Coefficients of variation for morning and afternoon values for these variables were similar to those previously published for test-retest reproducibility. This study failed to demonstrate evidence for significant time-of-day variation in Vo2max or cardiac function during standard progressive exercise testing in adolescent males. (Author correspondence: )  相似文献   

3.
The present study was designed to investigate if the suggested greater fatigability during repeated exercise in the afternoon, compared to the morning, represents a true time-of-day effect on fatigability or a consequence of a higher initial power. In a counterbalanced order, eight subjects performed a repeated-sprint test [10?×?(6 s of maximal cycling sprint?+?30 s of rest)] on three different occasions between: 08:00–10:00, 17:00–19:00, and 17:00-19:00?h controlled (17:00–19:00?hcont, i.e., initial power controlled to be the same as the two first sprints of the 08:00–10:00?h trial). Power output was significantly (p?<?0.05) higher for sprints 1, 2, and 3 in the afternoon than in the morning (e.g., sprint 1: 23.3 ±1 versus 21.2 ±1 W·kg?1), but power decrement for the 10 sprints was also higher in the afternoon. Based on the following observations, we conclude that this higher power decrement is a consequence of the higher initial power output in the afternoon. First, there was no difference in power during the final five sprints (e.g., 20.4 ±1 versus 19.7 ±1 W·kg?1 for sprint 10 in the afternoon and morning, respectively). Second, the greater decrement in the afternoon was no longer present when participants were producing the same initial power output in the afternoon as in the morning. Third, electromyographic activity of the vastus lateralis decreased during the exercise (p?<?0.05), but without a time-of-day effect. (Author correspondence: )  相似文献   

4.
Due to personal and working necessities, the time for exercise is often short, and scheduled early in the morning or late in the afternoon. Cortisol plays a central role in the physiological and behavioral response to a physical challenge and can be considered as an index of exercise stress. Therefore, the aim of this study was to evaluate the influence of the circadian phenotype classification on salivary cortisol concentration in relation to an acute session of high-intensity interval exercise (HIIE) performed at different times of the day. Based on the morningness–eveningness questionnaire, 12 M-types (N = 12; age 21 ± 2 years; height 179 ± 5 cm; body mass 74 ± 12 kg, weekly training volume 8 ± 1 hours) and 11 E-types (N = 11; age 21 ± 2 years; height 181 ± 11 cm; body mass 76 ± 11 kg, weekly training volume 7 ± 2 hours) were enrolled in a randomized crossover study. All subjects underwent measurements of salivary cortisol secretion before (PRE), immediately after (POST), and 15 min (+15 min), 30 min (+30 min), 45 min (+45 min) and 60 min (+60 min) after the completion of both morning (08.00 am) and evening (08.00 p.m.) high-intensity interval exercise. Two-way analysis of variance with Tuckey’s multiple comparisons test showed significant increments over PRE-cortisol concentrations in POSTcondition both in the morning (4.88 ± 1.19 ng · mL?1 vs 6.60 ± 1.86 ng · mL?1, +26.1%, P < 0.0001, d > 0.8) and in the evening (1.56 ± 0.48 ng · mL?1 vs 2.34 ± 0.37, +33.4%, P = 0.034, d > 0.6) exercise in all the 23 subject that performed the morning and the evening HIIE. In addition, during morning exercise, significant differences in cortisol concentration between M-types and E-types at POST (5.49 ± 0.98 ng · mL?1 versus 8.44 ± 1.08 ng · mL?1, +35%, P < 0.0001, d > 0.8), +15 min (4.52 ± 0.42 ng · mL?1 versus 6.61 ± 0.62 ng · mL?1, +31.6%, P < 0.0001, d > 0.8), +30 min (4.10 ± 1.44 ng · mL?1 versus 6.21 ± 1.60 ng · mL?1, +34.0%, P < 0.0001, d = 0.7), + 45 min (3.78 ± 0.55 ng · mL?1 versus 5.80 ± 0.72 ng · mL?1, +34.9%, P < 0.0001, d = 0.7), and + 60 min condition(3.53 ± 0.45 ng · mL?1 versus 5.78 ± 1.13 ng · mL?1, 38.9%, P = 0.0008, d = 0.7) were noted. No statistical significant differences between M-types and E-types during evening HIIE on post-exercise cortisol concentration were detected. E-types showed a higher morning peak of salivary cortisol respect to M-types when performing a HIIE early in the morning and produced higher salivary cortisol concentrations after the cessation of the exercise. Practical applications suggest that it is increasingly important for the exercise professionals to identify the compatibility between time of day for exercising and chronotype to find the individual’s favorable circadian time to perform a HIIE.  相似文献   

5.
Muscle force production and power output in active males, regardless of the site of measurement (hand, leg, or back), are higher in the evening than the morning. This diurnal variation is attributed to motivational, peripheral, and central factors and higher core and, possibly, muscle temperatures in the evening. This study investigated whether decreasing evening resting rectal temperatures to morning values, by immersion in a water tank, leads to muscle force production and power output becoming equal to morning values in motivated subjects. Ten healthy active males (mean?±?SD: age, 22.5?±?1.3 yrs; body mass, 80.1?±?7.8?kg; height, 1.72?±?0.05?m) completed the study, which was approved by the local ethics committee of the university. The subjects were familiarized with the techniques and protocol and then completed three sessions (separated by at least 48?h): control morning (07:30?h) and evening (17:30?h) sessions (with an active 5-min warm-up on a cycle ergometer at 150?W) and then a further session at 17:30?h but preceded by an immersion in cold water (~16.5?°C) to lower rectal temperature (Trec) to morning values. During each trial, three measures of grip strength, isokinetic leg strength measurements (of knee flexion and extension at 1.05 and 4.19?rad?s?1 through a 90° range of motion), and three measures of maximal voluntary contraction (MVC) on an isometric dynamometer (utilizing the twitch-interpolation technique) were performed. Trec, rating of perceived exertion (RPE), and thermal comfort (TC) were also measured after the subjects had reclined for 30?min at the start of the protocol and prior to the measures for grip, isokinetic, and isometric dynamometry. Muscle temperature was taken after the warm-up or water immersion and immediately before the isokinetic and MVC measurements. Data were analyzed using general linear models with repeated measures. Trec values were higher at rest in the evening (by 0.37?°C; p?<?0.05) than the morning, but values were no different from morning values immediately after the passive pre-cooling. However, Trec progressively decreased throughout the experiments, this being reflected in the subjects’ ratings of thermal comfort. Muscle temperatures also displayed significant diurnal variation, with higher values in the evening (by 0.39?°C; p?<?0.05). Right grip strength, isometric peak power, isokinetic knee flexion and extension for peak torque and peak power at 1.05?rad?s?1, and knee extension for peak torque at 4.19?rad?s?1 all showed higher values in the evening (a range of 3–14%), and all other measures of strength or power showed a statistical trend to be higher in the evening (0.10?>?p?>?0.05). Pre-cooling in the evening significantly reduced force or power variables towards morning values. In summary, effects of time of day were seen in some measures of muscle performance, in agreement with past research. However, in this population of motivated subjects, there was evidence that decreasing evening Trec to morning values by coldwater immersion decreased muscle strength to values similar to those found in the morning. It is concluded that diurnal changes in muscle performance are linked to diurnal changes in Trec. (Author correspondence: B.J.Edwards@ljmu.ac.uk)  相似文献   

6.
The adequate time to perform physical activity (PA) to maintain optimal circadian system health has not been defined. We studied the influence of morning and evening PA on circadian rhythmicity in 16 women with wrist temperature (WT). Participants performed controlled PA (45?min continuous-running) during 7 days in the morning (MPA) and evening (EPA) and results were compared with a no-exercise-week (C). EPA was characterized by a lower amplitude (evening: 0.028?±?0.01?°C versus control: 0.038?±?0.016?°C; p?<?0.05) less pronounced second-harmonic (power) (evening: 0.41?±?0.47 versus morning: 1.04?±?0.59); and achrophase delay (evening: 06:35?±?02:14?h versus morning: 04:51?±?01:11?h; p?<?0.05) as compared to MPA and C. Performing PA in the late evening might not be as beneficial as in the morning.  相似文献   

7.
The aim of the present study was to examine the effects of time of day on stroke parameters and motor organization in front-crawl swimmers. In a randomized order, fourteen regional swimmers (age: 18.7 ± 1.6 years) performed maximal front crawls over 12.5 m during two experimental sessions; the morning sessions were conducted between 07:00 and 09:00 h and the evening experiments were conducted between 17:00 and 19:00 h. Stroke parameters (swim velocity, stroke rate [SR], and stroke length), motor organization (arm stroke phases and arm coordination) were calculated from aerial and underwater side-view cameras. Arm coordination was quantified in terms of an index of coordination (Idc). Results showed that oral temperature was significantly higher in the evening 36.8 ± 0.2 °C than in the morning 36.1 ± 0.2 °C (p < 0.001), with a morning–evening difference of ?0.7 ± 0.1 °C. Performance was also higher in the evening (7.4 ± 0.6 s) than in the morning (8.0 ± 0.8 s) (p < 0.001), with a morning–evening difference of 0.55 ± 0.30 s. Likewise, values of swim velocity and SR were higher in the evening than in the morning (p < 0.001) with morning–evening differences of ?0.10 ± 0.04 m s?1 and ?3.99 ± 2.91 cycles min?1, respectively. Percentage Idc increased significantly (p < 0.01) between the morning (?5.1 ± 6.5%) and evening (?1.6 ± 7.0%). It is concluded that maximal swimming trials are performed better in the evening than the morning, and that this might be explained by better stroke parameters and motor organization at this time.  相似文献   

8.
9.
We investigated the effect of time‐of‐day on both maximal sprint power and repeated‐sprint ability (RSA). Nine volunteers (22±4 yrs) performed a RSA test both in the morning (07:00 to 09:00 h) and evening (17:00 to 19:00 h) on different days in a random order. The RSA cycle test consisted of five, 6 sec maximal sprints interspersed by 24 sec of passive recovery. Both blood lactate concentration and heart rate were higher in the evening than morning RSA (lactate values post exercise: 13±3 versus 11±3 mmol/L?1, p<0.05). The peak power developed during the first sprint was higher in the evening than morning (958±112 vs. 915±133 W, p<0.05), but this difference was not apparent in subsequent sprints, leading to a higher power decrement across the 5×6 sec test in the evening (11±2 vs. 7±3%, p<0.05). Both the total work during the RSA cycle test and the power developed during bouts 2 to 5 failed to be influenced by time‐of‐day. This suggests that the beneficial effect of time‐of‐day may be limited to a single expression of muscular power and fails to advantage performance during repeated sprints.  相似文献   

10.
《Chronobiology international》2013,30(8):1636-1646
Although the effects of aerobic exercise on resting heart rate, heart rate variability, and blood pressure have been investigated, there are scant data on the effects of aerobic exercise on the circadian rhythm of such cardiovascular parameters. In this study, we investigated the effects of aerobic exercise on the 24?h rhythm of heart rate and ambulatory blood pressure in the morning, when cardiovascular events are more common. Thirty-five healthy young subjects were randomized to control and aerobic exercise groups. Subjects in the latter group participated in their respective exercise program for two months, while those in the former group did not exercise. Twenty-four-hour electrocardiogram and ambulatory blood pressure monitoring data were obtained at baseline and at the end of the exercise intervention. The control group showed no changes, while the aerobic exercise group showed a significant decrease in heart rate (73.7?±?6.6?bpm to 69.5?±?5.1?bpm, p?<?0.005) and sympathetic activity such as LF/HF ratio (2.0?±?0.7 to 1.8?±?0.6, p?<?0.05) throughout the 24?h period, particularly in the daytime. The decrease in the heart rate was most prominent in the morning. However, heart rate and LF/HF ratio showed no statistical changes during the night. No significant changes were observed in blood pressure. These findings suggest aerobic exercise exerts beneficial effects on the circadian rhythm of heart rate, especially in the morning. (Author correspondence: hshio@kobe-u.ac.jp)  相似文献   

11.
Incidence of cardiovascular events follows a circadian rhythm with peak occurrence during morning. Disturbance of autonomic control caused by exercise had raised the question of the safety in morning exercise and its recovery. Furthermore, we sought to investigate whether light aerobic exercise performed at night would increase HR and decrease HRV during sleep. Therefore, the aim of this study was to test the hypothesis that morning exercise would delay HR and HRV recovery after light aerobic exercise, additionally, we tested the impact of late night light aerobic exercise on HR and HRV during sleep in sedentary subjects. Nine sedentary healthy men (age 24 ± 3 yr; height 180 ± 5 cm; weight 79 ± 8 kg; fat 12 ± 3%; mean±SD) performed 35 min of cycling exercise, at an intensity of first anaerobic threshold, at three times of day (7 a.m., 2 p.m. and 11 p.m.). R-R intervals were recorded during exercise and during short-time (60 min) and long-time recovery (24 hours) after cycling exercise. Exercise evoked increase in HR and decrease in HRV, and different times of day did not change the magnitude (p < 0.05 for time). Morning exercise did not delay exercise recovery, HR was similar to rest after 15 minutes recovery and HRV was similar to rest after 30 minutes recovery at morning, afternoon, and night. Low frequency power (LF) in normalized unites (n.u.) decreased during recovery when compared to exercise, but was still above resting values after 60 minutes of recovery. High frequency power (HF-n.u.) increased after exercise cessation (p < 0.05 for time) and was still below resting values after 60 minutes of recovery. The LF/HF ratio decreased after exercise cessation (p < 0.05 for time), but was still different to baseline levels after 60 minutes of recovery. In conclusion, morning exercise did not delay HR and HRV recovery after light aerobic cycling exercise in sedentary subjects. Additionally, exercise performed in the night did change autonomic control during the sleep. So, it seems that sedentary subjects can engage physical activity at any time of day without higher risk.  相似文献   

12.
《Chronobiology international》2013,30(9):1211-1222
The aim of this study was to investigate the effect of an Olympic-Weightlifting-session followed by 48-h recovery period on the oxidative and antioxidant parameters’ diurnal variation. Nine weightlifters (21?±?0.5 years) performed, in randomized order, three Olympic-Weightlifting-sessions at 08?h:00, 14?h:00 and 18?h:00. Blood samples were collected: at rest and 3?min and 48?h after each session. C-reactive protein (CRP), rate of lipid peroxidation and antioxidant activities were assessed. At rest, analysis of variance showed a significant time of day (TOD) effect (p?<?0.05) for uric acid, catalase and glutathione peroxidase with higher values at 14?h:00 and 18?h:00 compared with 08?h:00. However, no significant TOD effect for malondialdehyde, total bilirubin and CRP was observed. Given the profound changes (p?<?0.001) in the post-training session values, these diurnal variations have been altered immediately and even 48?h after the training sessions. Despite the significant decreases in the post-training values after the 48-h recovery period (p?<?0.05), levels of lipid peroxidation and enzymatic defense remained elevated (p?<?0.05) 48?h after the morning training session. However, after the afternoon and evening sessions, the same period was sufficient to return values to the baseline levels. In conclusion, the morning session seems to generate the most important acute and delayed lipid peroxidation responses. Therefore, weightlifting coaches should avoid scheduling their training sessions in the morning-hours.  相似文献   

13.
This study analyzed diurnal variations in oxygen (O2) uptake kinetics and efficiency during a moderate cycle ergometer exercise. Fourteen physically active diurnally active male subjects (age 23±5 yrs) not specifically trained at cycling first completed a test to determine their ventilatory threshold (Tvent) and maximal oxygen consumption (VO2max); one week later, they completed four bouts of testing in the morning and evening in a random order, each separated by at least 24 h. For each period of the day (07:00–08:30 h and 19:00–20:30 h), subjects performed two bouts. Each bout was composed of a 5 min cycling exercise at 45 W, followed after 5 min rest by a 10 min cycling exercise at 80% of the power output associated with Tvent. Gas exchanges were analyzed breath‐by‐breath and fitted using a mono‐exponential function. During moderate exercise, the time constant and amplitude of VO2 kinetics were significantly higher in the morning compared to the evening. The net efficiency increased from the morning to evening (17.3±4 vs. 20.5±2%; p<0.05), and the variability of cycling cadence was greater during the morning than evening (+34%; p<0.05). These findings suggest that VO2 responses are affected by the time of day and could be related to variability in muscle activity pattern.  相似文献   

14.
The present study was designed to evaluate time-of-day effects on electromyographic (EMG) activity changes during a short-term intense cycling exercise. In a randomized order, 22 male subjects were asked to perform a 30-s Wingate test against a constant braking load of 0.087?kg·kg?1 body mass during two experimental sessions, which were set up either at 07:00 or 17:00?h. During the test, peak power (Ppeak), mean power (Pmean), fatigue index (FI; % of decrease in power output throughout the 30 s), and evolution of power output (5-s span) throughout the exercise were analyzed. Surface EMG activity was recorded in both the vastus lateralis and vastus medialis muscles throughout the test and analyzed over a 5-s span. The root mean square (RMS) and mean power frequency (MPF) of EMG were calculated. Neuromuscular efficiency (NME) was estimated from the ratio of power to RMS. Resting core temperature, Ppeak, Pmean, and FI were significantly higher (p?<?.05) in the evening than morning test (e.g., Ppeak: 11.6?±?0.8 vs. 11.9?±?1 W·kg?1). The results showed that power output decreased following two phases. During the first phase (first 20s), power output decreased rapidly and values were higher (p?<?.05) in the evening than in the morning. During the second phase (last 10s), power decreased slightly and appeared independent of the time of day of testing. This power output decrease was paralleled by evolution of the MPF and NME. During the first phase, NME and MPF were higher (p <?.05) in the evening. During the second phase, NME and MPF were independent of time of day. In addition, no significant differences were noticed between 7:00 and 17:00?h for EMG RMS during the whole 30 s. Taken together, these results suggest that peripheral mechanisms (i.e., muscle power and fatigue) are more likely the cause of the diurnal variation of the Wingate-test performance rather than central mechanisms. (Author correspondence: )  相似文献   

15.
There is evidence for the reciprocal interaction between circadian oscillation and reproduction, and disruption of circadian rhythms has been associated with impaired menstrual functions and reduced fertility in women. However, only little information is available on the relationship between reproduction and chronotype. The aim of the present study is to better assess this relationship. The participants (aged 25 to 74?yrs) were selected randomly from the Finnish Population Information System. The data from 2672 female participants of the National FINRISK Survey 2007 were analyzed to test the associations between chronotype (morning, intermediate, or evening) and reproductive features. Of the participants, 139 (5.6%) were evening, 1217 (48.7%) intermediate, and 1145 (45.8%) morning chronotypes. Among the participants aged 25 to 54?yrs, the duration of menstrual cycle was longer among evening chronotypes (28.8?±?4.4?d) than among morning (27.7?±?2.6?d; p?<?0.01) and intermediate (27.8?±?3.3?d; p?=?0.05) chronotypes. Significant correlations were found between the higher morningness-eveningness scores (the more of morning chronotype) and the shorter durations of menstrual bleeding, both in the whole sample (p?<?0.001) and after limiting the analyses to women younger than 55?yrs (p?<?0.05). In multivariable analyses on the whole sample, as compared with morning chronotypes, intermediate chronotypes had a significantly longer duration of menstrual bleeding (B?=?0.160, 95% confidence interval [CI]?=?0.044 to 0.276; p?<?0.01) as well as a higher odds for difficulties in getting pregnant (odds ratio [OR]?=?1.464, 95% CI?=?1.118 to 1.917; p?<?0.01). Our findings suggest that chronotype is related to the reproductive function in women.  相似文献   

16.
Although vascular function is lower in the morning than afternoon, previous studies have not assessed the influence of prior sleep on this diurnal variation. The authors employed a semiconstant routine protocol to study the contribution of prior nocturnal sleep to the previously observed impairment in vascular function in the morning. Brachial artery vascular function was assessed using the flow-mediated dilation technique (FMD) in 9 healthy, physically active males (mean?±?SD: 27?±?9 yrs of age), at 08:00 and 16:00?h following, respectively, 3.29?±?.37 and 3.24?±?.57?h prior sleep estimated using actimetry. Heart rate and systolic and diastolic blood pressures were also measured. The data of the experimental sleep condition were compared with the data of the “normal” diurnal sleep condition, in which FMD measurements were obtained from 21 healthy individuals who slept only during the night, as usual, before the morning test session. The morning-afternoon difference in FMD was 1?±?4% in the experimental sleep condition compared with 3?±?4% in the normal sleep condition (p?=?.04). This difference was explained by FMD being 3?±?3% lower in afternoon following the prior experimental sleep (p?=?.01). These data suggest that FMD is more dependent on the influence of supine sleep than the endogenous circadian timekeeper, in agreement with our previous finding that diurnal variation in FMD is influenced by exercise. These findings also raise the possibility of a lower homeostatic “set point” for vascular function following a period of sleep and in the absence of perturbing hemodynamic fluctuation. (Author correspondence: )  相似文献   

17.
The aim of this study was to investigate the effect of time-of-day on Preferred Transition Speed (PTS) and spatiotemporal organization of walking and running movements. Twelve active male subjects participated in the study (age: 27.2?±?4.9 years; height: 177.9?±?5.4?cm; body mass: 75.9?±?5.86?kg). First, PTS was determined at 08:00?h and 18:00?h. The mean of the two PTS recorded at the two times-of-day tested was used as a reference (PTSm). Then, subjects were asked to walk and run on a treadmill at three imposed speeds (PTSm, PTSm?+?0.3?m.s?1, and PTSm???0.3?m.s?1) at 08:00?h and 18:00?h. Mean stride length, temporal stride, spatial stride variability, and temporal stride variability were used for gait analysis. The PTS observed at 08:00?h (2.10?±?0.17?m.s?1) tends to be lower (p?=?0.077) than that recorded at 18:00?h (2.14?±?0.19?m.s?1). Stride lengths recorded while walking (p?=?0.038) and running (p?=?0.041) were shorter at 08:00?h than 18:00?h. No time-of-day effect was observed for stride frequency during walking and running trials. When walking, spatial stride variability (p?=?0.020) and temporal stride variability (p?=?0.028) were lower at 08:00?h than at 18:00?h. When running, no diurnal variation of spatial stride variability or temporal stride variability was detected.  相似文献   

18.
Twelve healthy male subjects each undertook two bouts of moderate exercise (70% VO2max for 30 minutes) in the morning (08:00) and late afternoon (18:00) at least 4 days apart. Measurements were made of heart rate, core (rectal) temperature, sternum skin temperature, and forearm skin blood flow during baseline conditions, during the bout of exercise, and throughout a 30-minute recovery period. Comparisons were made of the changes of heart rate, temperature, and skin blood flow produced by the exercise at the two times of day. Student t tests indicated that baseline values for core temperature (37.15°C ±. 06°C vs. 36.77°C ± 0.06°C) and sternum temperature (33.60°C ± 0.29°C vs. 32.70°C ± 0.38°C) were significantly (p <. 05) higher in the late afternoon than the early morning. Two-way analysis of variance (ANOVA) indicated that the increases in core and sternum temperatures during exercise were significantly less (p =. 0039 and. 0421, respectively) during the afternoon bout of exercise compared with the morning, even though the work loads, as determined by changes in heart rate, were not significantly different (p =. 798) at the two times of testing. There were also tendencies for resting forearm skin blood flow to be higher in the afternoon than in the morning and for exercise to produce a more rapid rise in this variable in the afternoon. The possible mechanisms producing these responses to exercise are discussed in terms of those that are responsible for the normal circadian rhythm of core temperature. It is concluded that the body's ability to remove a heat load is less in the early morning, when the circadian system is in a “heat gain” mode, than in the late afternoon, when heat gain and “heat loss” modes are balanced more evenly. (Chronobiology International, 17(2), 197–207, 2000)  相似文献   

19.
This study examined the effects of Ramadan fasting on anaerobic performances and their diurnal fluctuations. In a balanced and randomized study design, 12 subjects were measured for maximal power (Pmax; force‐velocity test), peak power (Ppeak), and mean power (Pmean) with the Wingate test at 07:00, 17:00, and 21:00 h on four different occasions: one week before Ramadan (BR), the second week of Ramadan (SWR), the fourth week of Ramadan (ER), and two weeks after Ramadan (AR). There was an interval of 28 h between any two successive tests. Oral temperature was measured before each test. Under each condition, the results showed a time‐of‐day effect on oral temperature. Analysis of variance revealed a significant (Ramadan×time‐of‐day of test) interaction effect on Pmax. This variable improved significantly from morning to evening before Ramadan (1.1±0.2 W · kg?1), during the second week of Ramadan (0.6±0.2 W · kg?1), and two weeks after the end of Ramadan (0.9±0.2 W · kg?1). However, daily fluctuations disappeared during the fourth week of Ramadan. For Ppeak and Pmean, there was no significant Ramadan×test‐time interaction. These variables improved significantly from morning to evening before Ramadan ([1±0.3 W · kg?1] for Ppeak and [1.7±1.6 W · kg?1] for Pmean) and in the second week of Ramadan ([0.9±0.6 W · kg?1] for Ppeak and [1.7±1.5 W · kg?1] for Pmean). However, they were not affected by time‐of‐day in the fourth week of Ramadan. Considering the effect of Ramadan on anaerobic performances, in comparison with before Ramadan, no significant difference was observed during Ramadan at 07:00 h. The variables were significantly lower in the second week of Ramadan and in the fourth week of Ramadan at 17:00 h and 21:00 h. Pmean was not affected during the second week of Ramadan. In conclusion, the time‐of‐day effect on anaerobic power variables tends to disappear during Ramadan. In comparison with the period before Ramadan, anaerobic performances were unaffected in the morning but impaired in the evening during Ramadan.  相似文献   

20.
Approximately 10% of employees undertake night work, which is a significant predictor of weight gain, possibly because responses to activity and eating are altered at night. It is known that the appetite-related hormone, acylated ghrelin, is suppressed after an acute bout of exercise during the day, but no researcher has explored whether evening exercise alters acylated ghrelin and other appetite-related outcomes during a subsequent night shift. Six healthy men (mean?±?SD: age 30?±?8 yrs, body mass index 23.1?±?1.1?kg/m2) completed two crossover trials (control and exercise) in random order. Participants fasted from 10:00?h, consumed a test meal at 18:00?h, and then cycled at 50% peak oxygen uptake or rested between 19:00–20:00?h. Participants then completed light activities during a simulated night shift which ended at 05:00?h. Two small isocaloric meals were consumed at 22:00 and 02:00?h. Venous blood samples were drawn via cannulation at 1?h intervals between 19:00–05:00?h for the determination of acylated ghrelin, leptin, insulin, glucose, triglyceride, and non-esterified fatty acids concentrations. Perceived hunger and wrist actimetry were also recorded. During the simulated night shift, mean?±?SD acylated ghrelin concentration was 86.5?±?40.8 pg/ml following exercise compared with 71.7?±?37.7 pg/ml without prior exercise (p?=?0.015). Throughout the night shift, leptin concentration was 263?±?242 pg/ml following exercise compared with 187?±?221 pg/ml without prior exercise (p?=?0.017). Mean levels of insulin, triglyceride, non-esterified fatty acids, and wrist actimetry level were also higher during the night shift that followed exercise (p?<?0.05). These data indicate that prior exercise increases acylated ghrelin and leptin concentrations during a subsequent simulated night shift. These findings differ from the known effects of exercise on acylated ghrelin and leptin during the day, and therefore have implications for energy balance during night work. (Author correspondence: ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号