首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent chronobiological studies found significant correlation between lack of clock function and metabolic abnormalities. We previously showed that clock gene expressions were dampened in the peripheral tissues of obese and diabetic ob/ob mice. However, the molecular mechanism of the disturbance remained to be determined. In this study, we demonstrated for the first time that acetylation levels of histone H3 lysine 9 (H3K9) at the promoter regions of clock genes, such as Dbp, Per2, and Bmal1, in the adipose tissue of ob/ob mice were significantly reduced compared with those of its control C57BL/6J mice. Treatment with histone deacetylase (HDAC) inhibitors increased Dbp, but not Per2 or Bmal1, mRNA expression in adipose tissue, and it decreased blood glucose in these animals. In addition, 2-deoxyglucose uptake activity was significantly suppressed by silencing Dbp expression in cultured adipocytes. These results suggest that reduced H3K9 acetylation and subsequent decreased mRNA expression of the Dbp gene in adipose tissue are involved in the mechanism of development of abnormal glucose metabolism in ob/ob mice. (Author correspondence: akiofuji@jichi.ac.jp ).  相似文献   

2.
3.
4.
5.
6.
7.
《Chronobiology international》2013,30(10):1289-1299
The central circadian clock of the mammalian brain resides in the suprachiasmatic nucleus (SCN) of the hypothalamus. At the molecular level, the circadian clockwork of the SCN constitutes a self-sustained autoregulatory feedback mechanism reflected by the rhythmic expression of clock genes. However, recent studies have shown the presence of extrahypothalamic oscillators in other areas of the brain including the cerebellum. In the present study, the authors unravel the cerebellar molecular clock by analyzing clock gene expression in the cerebellum of the rat by use of radiochemical in situ hybridization and quantitative real-time polymerase chain reaction. The authors here show that all core clock genes, i.e., Per1, Per2, Per3, Cry1, Cry2, Clock, Arntl, and Nr1d1, as well as the clock-controlled gene Dbp, are expressed in the granular and Purkinje cell layers of the cerebellar cortex. Among these genes, Per1, Per2, Per3, Cry1, Arntl, Nr1d1, and Dbp were found to exhibit circadian rhythms in a sequential temporal manner similar to that of the SCN, but with several hours of delay. The results of lesion studies indicate that the molecular oscillatory profiles of Per1, Per2, and Cry1 in the cerebellum are controlled, though possibly indirectly, by the central clock of the SCN. These data support the presence of a circadian oscillator in the cortex of the rat cerebellum. (Author correspondence: )  相似文献   

8.
ABSTRACT

Circadian clock-controlled 24-h oscillations in adipose tissues play an important role in the regulation of energy homeostasis, thus representing a potential drug target for prevention and therapy of metabolic diseases. For pharmacological screens, scalable adipose model systems are needed that largely recapitulate clock properties observed in vivo. In this study, we compared molecular circadian clock regulation in different ex vivo and in vitro models derived from murine adipose tissues. Explant cultures from three different adipose depots of PER2::LUC circadian reporter mice revealed stable and comparable rhythms of luminescence ex vivo. Likewise, primary pre- and mature adipocytes from these mice displayed stable luminescence rhythms, but with strong damping in mature adipocytes. Stable circadian periods were also observed using Bmal1-luc and Per2-luc reporters after lentiviral transduction of wild-type pre-adipocytes. SV40 immortalized adipocytes of murine brown, subcutaneous and epididymal adipose tissue origin showed rhythmic mRNA expression of the core clock genes Bmal1, Per2, Dbp and REV-erbα in pre- and mature adipocytes, with a maturation-associated increase in overall mRNA levels and amplitudes. A comparison of clock gene mRNA rhythm phases revealed specific changes between in vivo and ex vivo conditions. In summary, our data indicate that adipose culture systems to a large extent mimic in vivo tissue clock regulation. Thus, both explant and cell systems may be useful tools for large-scale screens for adipose clock regulating factors.  相似文献   

9.
10.
Recent studies suggest that the impairment of circadian clock function causes various pathological conditions, such as obesity, diabetes, and alcoholism, and an altered mRNA expression of clock genes was found under these conditions. However, it remains to be determined whether clock gene expression varies depending on metabolic conditions even in healthy people. To address this issue, we investigated the associations of metabolic parameters and alcohol consumption with mRNA expression of clock genes (CLOCK, BMAL1, PER1, PER2, and PER3) in peripheral blood cells obtained from 29 healthy non-obese elderly men (age 51–78 yrs) who adhered to a regular sleep-wake routine, through a single time-of-day venous blood sampling at ~09:00?h. There were significant correlations between (1) waist circumference and mRNA level of PER1 (r?=?0.43), (2) plasma glucose concentration and PER2 (r?=?0.50), (3) ethanol consumption and BMAL1 (r?=?0.43), and (4) serum γ-GTP concentration (a sensitive marker of alcohol consumption) and PER2 (r?=?0.40). These results suggest mRNA expression of clock genes is associated with obesity, glucose tolerance, and ethanol consumption even in healthy people. (Author correspondence: )  相似文献   

11.
Circadian disruption accelerates malignant growth; thus, it should be avoided in anticancer therapy. The circadian disruptive effects of irinotecan, a topoisomerase I inhibitor, was investigated according to dosing time and sex. In previous work, irinotecan achieved best tolerability following dosing at zeitgeber time (ZT) 11 in male and ZT15 in female mice, whereas worst toxicity corresponded to treatment at ZT23 and ZT3 in male and female mice, respectively. Here, irinotecan (50?mg/kg intravenous [i.v.]) was delivered at the sex-specific optimal or worst circadian timing in male and female B6D2F1 mice. Circadian disruption was assessed with rest-activity, body temperature, plasma corticosterone, and liver mRNA expressions of clock genes Rev-erbα, Per2, and Bmal1. Baseline circadian rhythms in rest-activity, body temperature, and plasma corticosterone were more prominent in females as compared to males. Severe circadian disruption was documented for all physiology and molecular clock endpoints in female mice treated at the ZT of worst tolerability. Conversely, irinotecan administration at the ZT of best tolerability induced slight alteration of circadian physiology and clock-gene expression patterns in female mice. In male mice, irinotecan produced moderate alterations of circadian physiology and clock-gene expression patterns, irrespective of treatment ZT. However, the average expression of Rev-erbα, Per2, and Bmal1 were down-regulated 2- to 10-fold with irinotecan at the worst ZT, while being minimally or unaffected at the best ZT, irrespective of sex. Corticosterone secretion increased acutely within 2?h with a sex-specific response pattern, resulting in a ZT-dependent phase-advance or -delay in both sex. The mRNA expressions of irinotecan clock-controlled metabolism genes Ce2, Ugt1a1, and Top1 were unchanged or down-regulated according to irinotecan timing and sex. This study shows that the circadian timing system represents an important toxicity target of irinotecan in female mice, where circadian disruption persists after wrongly timed treatment. As a result, the mechanisms underling cancer chronotherapeutics are expectedly more susceptible to disruption in females as compared to males. Thus, the optimal circadian timing of chemotherapy requires precise determination according to sex, and should involve the noninvasive monitoring of circadian biomarkers. (Author correspondence: )  相似文献   

12.
The timing of meals has been suggested to play an important role in circadian regulation and metabolic health. Three meals a day is a well-established human feeding habit, which in today's lifestyle may or may not be followed. The aim of this study was to test whether the absence of breakfast or supper significantly affects the circadian system and physiological function. The authors developed a rat model for their daily three meals study, whereby animals were divided into three groups (three meals, TM; no first meal, NF; no last meal, NL) all fed with the same amount of food every day. Rats in the NF group displayed significantly decreased levels of plasma triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and glucose in the activity phase, accompanied by delayed circadian phases of hepatic peripheral clock and downstream metabolic genes. Rats in the NL group showed lower concentration of plasma TC, HDL-C, and glucose in the rest phase, plus reduced adipose tissue accumulation and body weight gain. Real-time polymerase chain reaction (PCR) analysis indicated an attenuated rhythm in the food-entraining pathway, including down-regulated expression of the clock genes Per2, Bmal1, and Rev-erbα, which may further contribute to the delayed and decreased expression of FAS in lipogenesis in this group. Our findings are consistent with the conclusion that the daily first meal determines the circadian phasing of peripheral clocks, such as in the liver, whereas the daily last meal tightly couples to lipid metabolism and adipose tissue accumulation, which suggests differential physiological effects and function of the respective meal timings. (Author correspondence: )  相似文献   

13.
14.
15.
《Chronobiology international》2013,30(9):1195-1205
Circadian rhythms are established very early during vertebrate development. In fish, environmental cues can influence the initiation and synchronization of different rhythmic processes. Previous studies in zebrafish and rainbow trout have shown that circadian oscillation of clock genes represents one of the earliest detectable rhythms in the developing embryo, suggesting their significance in regulating the coordination of developmental processes. In this study, we analyzed the daily expression of the core clock components Per1, Per2, Per3, and Clock during the first several days of Senegalese sole development (0–4 d post fertilization or dpf) under different lighting regimes, with the aim of addressing when the molecular clock first emerges in this species and how it is affected by different photoperiods. Rhythmic expression of the above genes was detected from 0 to 1 dpf, being markedly affected in the next few days by both constant light (LL) and dark (DD) conditions. A gradual entrainment of the clock machinery was observed only under light-dark (LD) cycles, and robust rhythms with increased amplitudes were established by 4 dpf for all clock genes currently studied. Our results show the existence of an embryonic molecular clock from the 1st d of development in Senegalese sole and emphasize the significance of cycling LD conditions when raising embryos and early larvae. (Author correspondence: ; )  相似文献   

16.
Glucocorticoids are considered to synchronize the rhythmicity of clock genes in peripheral tissues; however, the role of circadian variations of endogenous glucocorticoids is not well defined. In the present study, we examined whether peripheral circadian clocks were impaired by adrenalectomy. To achieve this, we tested the circadian rhythmicity of core clock genes (Bmal1, Per1-3, Cry1, RevErbα, Rora), clock-output genes (Dbp, E4bp4) and a glucocorticoid- and clock-controlled gene (Gilz) in liver, jejunum, kidney cortex, splenocytes and visceral adipose tissue (VAT). Adrenalectomy did not affect the phase of clock gene rhythms but distinctly modulated clock gene mRNA levels, and this effect was partially tissue-dependent. Adrenalectomy had a significant inhibitory effect on the level of Per1 mRNA in VAT, liver and jejunum, but not in kidney and splenocytes. Similarly, adrenalectomy down-regulated mRNA levels of Per2 in splenocytes and VAT, Per3 in jejunum, RevErbα in VAT and Dbp in VAT, kidney and splenocytes, whereas the mRNA amounts of Per1 and Per2 in kidney and Per3 in VAT and splenocytes were up-regulated. On the other hand, adrenalectomy had minimal effects on Rora and E4bp4 mRNAs. Adrenalectomy also resulted in decreased level of Gilz mRNA but did not alter the phase of its diurnal rhythm. Collectively, these findings suggest that adrenalectomy alters the mRNA levels of core clock genes and clock-output genes in peripheral organs and may cause tissue-specific modulations of their circadian profiles, which are reflected in changes of the amplitudes but not phases. Thus, the circulating corticosteroids are necessary for maintaining the high-amplitude rhythmicity of the peripheral clocks in a tissue-specific manner.  相似文献   

17.
《Chronobiology international》2013,30(8):1021-1035
In the laboratory rat, a number of physiological parameters display seasonal changes even under constant conditions of temperature, lighting, and food availability. Since there is evidence that prolactin (PRL) is, among the endocrine signals, a major mediator of seasonal adaptations, the authors aimed to examine whether melatonin administration in drinking water resembling in length the exposure to a winter photoperiod could affect accordingly the 24-h pattern of PRL synthesis and release and some of their anterior pituitary redox state and circadian clock modulatory mechanisms. Melatonin (3?µg/mL drinking water) or vehicle was given for 1 mo, and rats were euthanized at six time intervals during a 24-h cycle. High concentrations of melatonin (>2000 pg/mL) were detected in melatonin-treated rats from beginning of scotophase (at 21:00?h) to early photophase (at 09:00?h) as compared with a considerably narrower high-melatonin phase observed in controls. By cosinor analysis, melatonin-treated rats had significantly decreased MESOR (24-h time-series average) values of anterior pituitary PRL gene expression and circulating PRL, with acrophases (peak time) located in the middle of the scotophase, as in the control group. Melatonin treatment disrupted the 24-h pattern of anterior pituitary gene expression of nitric oxide synthase (NOS)-1 and -2, heme oxygenase-1 and -2, glutathione peroxidase, glutathione reductase, Cu/Zn- and Mn-superoxide dismutase, and catalase by shifting their acrophases to early/middle scotophase or amplifying the maxima. Only the inhibitory effect of melatonin on pituitary NOS-2 gene expression correlated temporally with inhibition of PRL production. Gene expression of metallothionein-1 and -3 showed maxima at early/middle photophase after melatonin treatment. The 24-h pattern of anterior pituitary lipid peroxidation did not vary after treatment. In vehicle-treated rats, Clock and Bmal1 expression peaked in the anterior pituitary at middle scotophase, whereas that of Per1 and Per2 and of Cry1 and Cry2 peaked at the middle and late photophase, respectively. Treatment with melatonin raised mean expression of anterior pituitary Per2, Cry1, and Cry2. In the case of Per1, decreased MESOR was observed, although the single significant difference found between the experimental groups when analyzed at individual time intervals was increase at early scotophase in the anterior pituitary of melatonin-treated rats. Melatonin significantly phase-delayed expression of Per1, Per2, and Cry1, also phase-delayed the plasma corticosterone circadian rhythm, and increased the amplitude of plasma corticosterone and thyrotropin rhythms. The results indicate that under prolonged duration of a daily melatonin signal, rat anterior pituitary PRL synthesis and release are depressed, together with significant changes in the redox and circadian mechanisms controlling them. (Author correspondence: ; )  相似文献   

18.
Previous studies have shown that retinal melatonin plays an important role in the regulation of retinal daily and circadian rhythms. Melatonin exerts its influence by binding to G-protein coupled receptors named melatonin receptor type 1 and type 2 and both receptors are present in the mouse retina. Earlier studies have shown that clock genes are rhythmically expressed in the mouse retina and melatonin signaling may be implicated in the modulation of clock gene expression in this tissue. In this study we determined the daily and circadian expression patterns of Per1, Per2, Bmal1, Dbp, Nampt and c-fos in the retina and in the photoreceptor layer (using laser capture microdissection) in C3H-f+/+ and in melatonin receptors of knockout (MT1 and MT2) of the same genetic background using real-time quantitative RT-PCR. Our data indicated that clock and clock-controlled genes are rhythmically expressed in the retina and in the photoreceptor layer. Removal of melatonin signaling significantly affected the pattern of expression in the retina whereas in the photoreceptor layer only the Bmal1 circadian pattern of expression was affected by melatonin signaling removal. In conclusion, our data further support the notion that melatonin signaling may be important for the regulation of clock gene expression in the inner or ganglion cells layer, but not in photoreceptors.  相似文献   

19.
Di-methylation of histone H3 lysine (K) 4, a component of the epigenetic memory, is associated with gene transactivation. In this study, we examined whether the development of diabetes induces di-methylation of histone H3 K4 on the upregulated genes. We searched for upregulated genes in mesenteric adipose tissue of insulin-resistant/diabetic db/db mice compared with non-diabetic db/m mice using microarray analysis. We also performed chromatin immunoprecipitation assays for di-methylation of histone H3 K4 in the upregulated genes in mesenteric adipose tissue of db/m and db/db mice. Di-methylation of histone H3 K4 was enhanced at the upstream and/or transcribed regions of upregulated genes including Atp6v0d2, Mmp12, Trem2 and Clec4d genes in mesenteric adipose tissue of db/db mice, as compared with db/m mice. These results suggest that di-methylation of histone H3 K4 is involved in the induction of Atp6v0d2, Mmp12, Trem2 and Clec4d in mesenteric adipose tissue in db/db mice.  相似文献   

20.
Behavioral and physiological circadian rhythms are controlled by endogenous oscillators in animals. Voluntary wheel-running in rodents is thought to be an appropriate model of aerobic exercise in humans. We evaluated the effects of chronic voluntary exercise on the circadian system by analyzing temporal profiles of feeding, core body temperature, plasma hormone concentrations and peripheral expression of clock and clock-controlled genes in mice housed under sedentary (SED) conditions or given free access to a running-wheel (RW) for four weeks. Voluntary wheel-running activity advanced the circadian phases of increases in body temperature, food intake and corticosterone secretion in the mice. The circadian expression of clock and clock-controlled genes was tissue- and gene-specifically affected in the RW mice. The temporal expression of E-box-dependent circadian clock genes such as Per1, Per2, Nr1d1 and Dbp were slightly, but significantly phase-advanced in the liver and white adipose tissue, but not in brown adipose tissue and skeletal muscle. Peak levels of Per1, Per2 and Nr1d1 expression were significantly increased in the skeletal muscle of RW mice. The circadian phase and levels of hepatic mRNA expression of the clock-controlled genes that are involved in cholesterol and fatty acid metabolism significantly differed between SED and RW mice. These findings indicated that endogenous clock-governed voluntary wheel-running activity provides feedback to the central circadian clock that systemically governs behavioral and physiological rhythms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号