首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Four commercially available lipases, both free and immobilized, were tested for their ability to catalyze hydrolysis of blackcurrant (Ribes nigrum) oil using two different approaches. The lipase from Mucor miehei was studied free and immobilized in two different ways. The former series of enzymic reactions were performed in tap water at 40 degrees C, but the latter series of enzymic processes were carried out in mixtures of isooctane and phosphate buffer (in a typical 2/1 ratio of the components) at 30 degrees C. These conditions were optimized to increase and/or to maximize the yields of the products, which were priority targets in this study. A rate of hydrolysis and a selective preference of the hydrolytic enzymes towards fatty acids, with a special focus on enrichment of alpha-linolenic acid and/or gamma-linolenic acid, were studied. Higher rates of hydrolysis of the blackcurrant oil in the former series of reactions were observed with the immobilized lipase from Pseudomonas cepacia used as biocatalyst. In the latter approach, the most favorable results of the rate of hydrolysis of the target blackcurrant oil were achieved with the immobilized lipase from Mucor miehei employed as biocatalyst. Only three lipases, selected from a series of lipases tested during this investigation, displayed specificity towards alpha-linolenic acid and gamma-linolenic acid, i.e. the immobilized lipase from P. cepacia, lipase from M. miehei and lipase from P. fluorescens.  相似文献   

2.
Yan J  Liu S  Hu J  Gui X  Wang G  Yan Y 《Bioresource technology》2011,102(14):7154-7158
Novel modification methods for lipase biocatalysts effective in hydrolysis of fish oil for enrichment of polyunsaturated fatty acids (PUFAs) were described. Based on conventional immobilization in single aqueous medium, immobilization of lipase in two phase medium composed of buffer and octane was employed. Furthermore, immobilization (in single aqueous or in two phase medium) coupled to fish oil treatment was integrated. Among these, lipase immobilized in two phase medium coupled to fish oil treatment (IMLAOF) had advantages over other modified lipases in initial reaction rate and hydrolysis degree. The hydrolysis degree increased from 12% with the free lipase to 40% with IMLAOF. Strong polar and hydrophobic solvents had negative impact on immobilization-fish oil treatment lipases, while low polar solvents were helpful to maintain the modification effect of immobilization-fish oil treatment. After five cycles of usage, the immobilization-fish oil treatment lipases still maintained more than 80% of relative hydrolysis degree.  相似文献   

3.
Hydrolysis of castor oil using lipase enzyme is carried out in a batch reactor at room temperature (35–40 °C). In order to reduce the cost of enzyme catalyzed reaction, water in oil emulsion and a 3:1 ratio of oil to water is selected. The concentration of enzyme in the reaction mixture is optimized. The effect of various additives like solvent and salt which can enhance the rate of reaction is studied. It is found that the glycerol has no effect on the hydrolysis of oil. The reusability of the lipase enzyme has also been tested. The yield of enzymatic hydrolysis of castor oil is compared with those of coconut oil and olive oil.  相似文献   

4.
The castor-bean endosperm-the best-studied material of reserve lipid hydrolysis in seed germination-was previously shown to have an acid lipase and an alkaline lipase having reciprocal patterns of development during germination. We studied oil seeds from 7 species, namely castor bean (Ricinus communis L.), peanut (Arachis hypogaea L.), sunflower (Helianthus annus L.), cucumber (Cucumis sativus L.), cotton (Gossypisum hirsutum L.), corn (Zea mays. L.) and tomato (Lycopersicon esculentum Mill.). The storage tissues of all these oil seeds except castor bean contained only alkaline lipase activity which increased drastically during germination. The pattern of acid and alkaline lipases in castor bean does not seem to be common in other oil seeds. The alkaline lipase of peanut cotyledons was chosen for further study. On sucrose gradient centrifugation of cotyledon homogenate from 3-d-old seedlings, about 60% of the activity of the enzyme was found to be associated with the glyoxysomes, 15% with the mitochondria, and 25% with a membrane fraction at a density of 1.12 g cm-3. The glyoxysomal lipase was associated with the organelle membrane, and hydrolyzed only monoglyceride whereas the mitochondrial and membrane-fraction enzymes degraded mono-, di- and triglycerides equally well. Thus, although the lipase in the glyoxysomes had the highest activity, it had to cooperate with lipases in other cellular compartments for the complete hydrolysis of reserve triglycerides.  相似文献   

5.
Abstract

Porcine pancreatic lipase (PPL), Candida rugosa lipase (CRL), and Castor bean lipase (CBL) were immobilized on celite by deposition from aqueous solution by the addition of hexane. Lipolytic performance of free and immobilized lipases were compared and optimizations of lipolytic enzymatic reactions conditions were performed by free and immobilized derivatives using olive oil as substrate. Afterwards, the influence on lipolysis of castor oil of free lipases and immobilized lipase derivatives have been studied in the case of production of ricinoleic acid. All of the lipases performances were compared and enzyme derivative was selected to be very effective on the production of ricinoleic acid by lipolysis reaction. Various reaction parameters affecting the production of ricinoleic acid were investigated with selected the enzyme derivative.

The maximum ricinoleic acid yield was observed at pH 7–8, 50°C, for 3 hours of reaction period with immobilized 1,3-specific PPL on celite. The kinetic constants Km and Vmax were calculated as 1.6 × 10?4 mM and 22.2 mM from a Lineweaver–Burk plot with the same enzyme derivative. To investigate the operational stability of the lipase, the three step lipolysis process was repeated by transferring the immobilized lipase to a substrate mixture. As a result, the percentange of conversion after usage decreased markedly.  相似文献   

6.
Immobilization of enzymes on some solid supports has been used to stabilize enzymes in organic solvents. In this study, we evaluated applications of genetically immobilized Rhizopus oryzae lipase displayed on the cell surface of Saccharomyces cerevisiae in organic solvents and measured the catalytic activity of the displayed enzyme as a fusion protein with alpha-agglutinin. Compared to the activity of a commercial preparation of this lipase, the activity of the new preparation was 4.4 x 10(4)-fold higher in a hydrolysis reaction using p-nitrophenyl palmitate and 3.8 x 10(4)-fold higher in an esterification reaction with palmitic acid and n-pentanol (0.2% H2O). Increased enzyme activity may occur because the lipase displayed on the yeast cell surface is stabilized by the cell wall. We used a combination of error-prone PCR and cell surface display to increase lipase activity. Of 7,000 colonies in a library of mutated lipases, 13 formed a clear halo on plates containing 0.2% methyl palmitate. In organic solvents, the catalytic activity of 5/13 mutants was three- to sixfold higher than that of the original construct. Thus, yeast cells displaying the lipase can be used in organic solvents, and the lipase activity may be increased by a combination of protein engineering and display techniques. Thus, this immobilized lipase, which is more easily prepared and has higher activity than commercially available free and immobilized lipases, may be a practical alternative for the production of esters derived from fatty acids.  相似文献   

7.
Summary Lipase fromCandida rugosa was immobilized by adsorption on three supports which could contain water available for the hydrolysis of olive oil in a reverse phase system. To select the most suitable solvent for this system, the effect of organic solvents on the stability and catalytic activity of immobilized lipase for the hydrolysis reaction has been examined. The results revealed that isooctane was superior to any other solvents tested in this study for enzymatic fat splitting in a reverse phase system. Also the effect of the solvent polarity on the hydrolysis of olive oil has been examined in detail using various organic solvents mixed with an equivolume of isooctane. It was found that the hydrolysis of olive oil by immobilized lipase was markedly affected by the polarity of reaction solvents.  相似文献   

8.
Candida rugosa lipase immobilized by adsorption on swollen Sephadex LH-20 could almost completely hydrolyze 60% (v/v) olive oil in isooctane. Kinetic analysis of the lipase-catalyzed hydrolysis reaction was found to be possible in this system. Amount of fatty acids produced was linearly proportional to the enzyme concentration of 720 mug/g wet gel. The specific enzyme activity was 217 units/mg protein at 60% (v/v) olive oil concentration. When the initial rate is plotted versus concentration of olive oil, this system did not follow Michaelis-Menten kinetics. Maximum activity was obtained at pH 7, but optimum temperature shifted towards higher one with the increase of olive oil concentration. Among the various chemical compounds tested, Hg(2+) and Fe(2+) inhibited the lipase seriously. As the concentration of olive oil increased, the rate of the hydrolysis also increased, but degree of the hydrolysis was observed to decrease. The supply of water from the inside of the gel to the surface of the gel was the main factor for the control of the rate of hydrolysis in batch hydrolysis. The immobilized lipase was used to hydrolyze olive oil two times. Achievement of chemical equilibrium took a longer time with the addition of water and the degree of hydrolysis decreased in the second consecutive trial. After the second hydrolysis trial, the gels were regenerated in a packed column first by eluting out both residual fatty acids around the gel particles and the accumulated glycerol with ethanol and then with 0.05M phosphate buffer, pH 7. The immobilized lipase on the regenerated gel showed the same hydrolysis activity as the original one.  相似文献   

9.
游离脂肪酶与固定化脂肪酶相比具有成本低、反应速率快等优势,是油脂化工中新的研究方向。前期研究表明,游离脂肪酶NS81006能高效催化多种油脂水解,进一步研究其对含独特羟基的绿色石油材料蓖麻油的水解过程,对于促进游离脂肪酶在新能源领域的应用具有重要意义。本文对影响游离脂肪酶NS81006催化蓖麻油水解过程的主要因素,温度、酶用量、水用量和搅拌速率进行了研究和优化,在优化后的条件下48 h水解率可达94.8%,且发现通过离心分离可有效实现NS81006的重复使用,连续回用5个批次,游离脂肪酶仍能有效催化水解反应。而对比高温高压法水解蓖麻油,发现游离脂肪酶NS81006具有明显优势。  相似文献   

10.
Immobilization of enzymes on some solid supports has been used to stabilize enzymes in organic solvents. In this study, we evaluated applications of genetically immobilized Rhizopus oryzae lipase displayed on the cell surface of Saccharomyces cerevisiae in organic solvents and measured the catalytic activity of the displayed enzyme as a fusion protein with α-agglutinin. Compared to the activity of a commercial preparation of this lipase, the activity of the new preparation was 4.4 × 104-fold higher in a hydrolysis reaction using p-nitrophenyl palmitate and 3.8 × 104-fold higher in an esterification reaction with palmitic acid and n-pentanol (0.2% H2O). Increased enzyme activity may occur because the lipase displayed on the yeast cell surface is stabilized by the cell wall. We used a combination of error-prone PCR and cell surface display to increase lipase activity. Of 7,000 colonies in a library of mutated lipases, 13 formed a clear halo on plates containing 0.2% methyl palmitate. In organic solvents, the catalytic activity of 5/13 mutants was three- to sixfold higher than that of the original construct. Thus, yeast cells displaying the lipase can be used in organic solvents, and the lipase activity may be increased by a combination of protein engineering and display techniques. Thus, this immobilized lipase, which is more easily prepared and has higher activity than commercially available free and immobilized lipases, may be a practical alternative for the production of esters derived from fatty acids.  相似文献   

11.
Candida rugosa lipase solubilized in organic solvents in the presence of both surfactant and water could catalyze the hydrolysis of triglycerides, and kinetic analysis of the lipase-catalyzed reaction was found to be possible in this system. Among eight organic solvents tested, isooctane was most effective for the hydrolysis of olive oil in reversed micelles. Temperature effect, pH profile, K(m,app) and V(max,app) were determined. Among various chemical compounds, Cu(2+), Hg(2+), and Fe(3+) inhibited lipase severely. But the enzyme activity was restorable partially by adding histidine or glycine to the system containing these metal ions. The enzyme activity was dependent on R (molar ratio of water to surfactant) and maximum activity was obtained at R = 10.5. Upon addition of glycerol to the reversed micelles, lipase activity was affected in a different fashion depending on the R values. Stability of the lipase in reversed micelles was also dependent on R, and it was most stable at R = 5.5.  相似文献   

12.
Immobilized lipases can be used in biodiesel production to overcome many disadvantages of the conventional base-catalyzed process. However, the glycerol by-product poses a potential problem for the biocatalytic process as it is known to inhibit immobilized lipases, most likely by clogging of the catalyst particles. In this paper, this negative effect was further investigated and confirmed in ethanolysis of rapeseed oil. A dyeing method was developed for in situ visualization of glycerol in order to study its partitioning and accumulation during the ethanolysis reaction. The method was used to illustrate the interaction of glycerol with immobilized lipases and thus provided an aid for screening supports for lipase immobilization according to their interaction with glycerol. Glycerol was found to have great affinity for silica, less for polystyrene and no affinity for supports made from polymethylmethacrylate and polypropylene. It was also found that the immobilization of enzyme on the support influenced the adsorption of glycerol to the surface of the enzyme carrier.  相似文献   

13.
Menhaden oil, a rich source of n-3 fatty acids, was interesterified with conjugated linoleic acid (CLA) in a reaction medium composed solely of substrates and either free or immobilized commercial lipase preparations. Of five lipases tested, an immobilized preparation from Mucor miehei provided the fastest rate of incorporation of CLA into fish oil acylglycerols; however, and as observed with most of the lipases utilized, a significant proportion of the n-3 fatty acid residues were liberated in the process. A soluble lipase from Candida rugosa converted free CLA to acylglycerol residues while leaving the n-3 fatty acid residues virtually untouched. Even though the reaction rate was slower for this enzyme than for the other four lipase preparations, the specificity of the free C. rugosa lipase gives it the greatest potential for commercial use in preparing fish oils enriched in CLA residues but still retaining their original n-3 fatty acid residues.  相似文献   

14.
Enzymatic synthesis of sn-1,3-diacylglycerols (sn-1,3-DAG) in two steps without isolation of the intermediates was investigated. Firstly ethanolysis of extra virgin olive oil (EVO) using immobilized non-regiospecific lipase from Candida antarctica (Novozym 435) was carried out to obtain glycerol (Gly) and fatty acid ethyl esters (FAEE). In the second step the ethanolysis products have been re-esterificated testing different sn-1,3-regiospecific lipases, both immobilized and non-immobilized, in different reaction media, that is in the presence of solvents or in a solvent-free system, for different times, at different temperatures (12, 25 and 40 °C). The lipase from Rhizomucor miehei (Lipozyme IM) has been the most effective among the sn-1,3-specific lipases screened.  相似文献   

15.
The hydrolysis of corn oil in the presence of a lipase from Pseudomonas sp. immobilized within the walls of a hollow-fiber reactor was studied at 30 degrees C. To assess the selectivity of this immobilized enzyme, the effluent concentrations of five different free fatty acids were measured using high-performance liquid chromatography (HPLC). Several rate expressions associated with a generic ping-pong bi-bi mechanism were used to fit the experimental data for this lipase-catalyzed reaction. A multiresponse nonlinear regression method was employed to determine the kinetic parameters associated with these rate expressions. Quasi-optimum operating conditions corresponded to 30 degrees C and a buffer pH value of 7.0. Under these conditions, the concentration of free linoleic acid (C18:2) (the fatty acid of primary interest) in the effluent oil stream for a fluid residence time of 6 h was approximately 0.5 M.  相似文献   

16.
Five microbial lipase preparations from several sources were immobilized by hydrophobic adsorption on small or large poly-hydroxybutyrate (PHB) beads and the effect of the support particle size on the biocatalyst activity was assessed in the hydrolysis of olive oil, esterification of butyric acid with butanol and transesterification of babassu oil (Orbignya sp.) with ethanol. The catalytic activity of the immobilized lipases in both olive oil hydrolysis and biodiesel synthesis was influenced by the particle size of PHB and lipase source. In the esterification reaction such influence was not observed. Geobacillus thermocatenulatus lipase (BTL2) was considered to be inadequate to catalyze biodiesel synthesis, but displayed high esterification activity. Butyl butyrate synthesis catalyzed by BTL2 immobilized on small PHB beads gave the highest yield (≈90 mmol L(-1)). In biodiesel synthesis, the catalytic activity of the immobilized lipases was significantly increased in comparison to the free lipases. Full conversion of babassu oil into ethyl esters was achieved at 72 h in the presence of Pseudozyma antarctica type B (CALB), Thermomyces lanuginosus lipase (Lipex(?) 100 L) immobilized on either small or large PHB beads and Pseudomonas fluorescens (PFL) immobilized on large PHB beads. The latter preparation presented the highest productivity (40.9 mg of ethyl esters mg(-1) immobilized protein h(-1)).  相似文献   

17.
In comparison with the biocatalyst engineering and medium engineering approaches, very few examples have been reported on using the substrate engineering approach such as substrate-assisted catalysis (SAC) for naturally occurring or engineered lipases and serine proteases to improve the enzyme activity and enantioselectivity. By employing lipase-catalyzed hydrolysis of (R,S)-naproxen esters in water-saturated isooctane as the model system, we demonstrate the proton shuttle device to the leaving alcohol of the substrate as a new means of SAC to effectively improve the lipase activity or enantioselectivity. The result cannot only provide a strong evidence for the rate-limiting proton transfer for the bond-breaking of tetrahedron intermediate of the acylation step, but also sheds light for performing the hydrolysis, transesterification or aminolysis in organic solvents for the ester substrate that originally lipases cannot catalyze, but now can after introducing the device.  相似文献   

18.
Yemul O  Imae T 《Biomacromolecules》2005,6(5):2809-2814
Covalent-bonded immobilization of lipase from burkholderia cepacia onto two poly(phenylene sulfide) (PPS) dendrimers with different generations (two and three) was achieved using carbodiimide as a coupling reagent. The hydrolysis activity of olive oil to fatty acid was studied on enzyme-immobilized PPS dendrimers. Enzyme activity was proportional to the enzyme loading, and highest recovered activity was obtained at the medium enzyme loading for both G2 and G3 dendrimers. The immobilization improved the optimum pH and caused the temperature range to widen. Immobilization of enzyme has enhanced the thermal stability of enzyme activity in comparison with free enzyme. The immobilized enzyme as a biocatalyst for batch hydrolysis of olive oil retained 80 approximately 90% activity even after 20 times of recycling. This retention of activity after recycle is very valuable and powerful in enzyme technology. The present noteworthy and vital availability on enzyme reaction of the covalently bonded immobilized lipase on dendrimer came from the structure of dendrimer with a large number of functional terminal groups, which are easily available for immobilization of many lipases at the situation keeping reactive enzymes on the surface of dendrimer.  相似文献   

19.
Nine isolates of Botryosphaeria spp. were screened for lipases when cultivated on eight different plant seed oils and glycerol, and all produced lipases. Botryosphaeria ribis EC-01 produced highest lipase titres on soybean oil and glycerol, while eight isolates of Botryosphaeria rhodina produced significantly lower enzyme titres. B. ribis EC-01 produced lipase when grown on different fatty acids, surfactants, carbohydrates and triacylglycerols, with highest enzyme titres produced on Triton X-100-emulsified stearic (316.7 U/mL), palmitic (283.5 U/mL) and oleic (247.4 U/mg) acids, and soybean oil (105.6 U/mL), as well as castor oil (191.2 U/mg); an enhancement of 9-fold over soybean oil-grown cultures. Glycerol was also a good substrate for lipase production. The crude lipase extract was optimally active at pH 8.0 and 55 °C, stable between 30 and 55 °C and pH 1–10, and tolerant to 50% (v/v) glycerol, methanol and ethanol. The crude lipase showed affinity for substrates of short, average and long-chain fatty acids (different esters of p-nitrophenol and triacylglycerols). Zymograms developed with 4-methylumbelliferyl-butyrate showed two bands of lipolytic activity at 45 and 15 kDa. This is the first report on the production of lipases by B. ribis grown on these different carbon sources.  相似文献   

20.
Water-insoluble compounds can be substrates for enzymatic reactions when lipases are immobilized properly and suitable organic solvents are used. In this review, three type of lipase immobilization method and their application to the asymmetric syntheses of complex molecules are described. Lipases immobilized with Celite or synthetic prepolymers such as urethane prepolymer and photo-crosslinkable resin prepolymer have been applied for the kinetic resolution of many kinds of water-insoluble substrate.

Phospholipid-lipase aggregates with ether linkages are novel and have been found to function effectively as immobilized lipases in asymmetric hydrolysis or esterification reactions in water-saturated organic solvent. The phospholipid-lipase aggregates are considered to have a stacked bilayer based on X-ray diffraction analysis structure of the lipid in the crystalline phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号