首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In the present investigation, the binding of roscovitine (100, 500 and 1500 ng/mL) to plasma proteins was studied at 25 and 37 degrees C by ultrafiltration and equilibrium dialysis methods. Drug stability in plasma was assessed during a 48 h at 4, 25 and 37 degrees C. The effect of thawing and freezing on drug stability was studied. The pKa of roscovitine was measured using capillary electrophoresis coupled with mass spectrometry. Roscovitine was quantified utilizing liquid chromatography and tandem mass spectrometry. Roscovitine is highly bound to plasma proteins (90%). Binding of roscovitine to human serum albumin was constant (about 90%) within concentration range studied while the binding to alpha1-acid glycoprotein decreased with increasing drug concentration indicating that albumin is more important in clinical settings. However, alpha1-acid glycoprotein might be important when plasma proteins change with disease. Protein binding was higher at 25 degrees C compared to 37 degrees C. The results obtained by equilibrium dialysis were in good agreement with those obtained by ultrafiltration. Roscovitine was stable at all temperatures studied during 48 h. Roscovitine has a pKa of 4.4 showing that the drug mainly acts like a weak mono-base. The results obtained in our studies are important prior to clinical trials and to perform pharmacokinetic studies.  相似文献   

2.
3.
Roscovitine, a cyclin-dependent kinase (Cdk) inhibitor, inhibited kinase activity and the axenic growth of Dictyostelium discoideum at micromolar concentrations. Growth was almost fully rescued in 50 μM and ≈ 50% rescued in 100 μM roscovitine-treated cultures by the over-expression of Cdk5-GFP. This supports the importance of Cdk5 function during cell proliferation in Dictyostelium and indicates that Cdk5 is a primary target of the drug. Roscovitine did not affect the expression of Cdk5 protein during axenic growth but did inhibit its nuclear translocation. This novel result suggests that the effects of roscovitine could be due in part to altering Cdk5 translocation in other systems as well. Kinase activity was inhibited by roscovitine in assays using AX3 whole cell lysates, but not in assays using lysates from Cdk5-GFP over-expressing cells. At higher concentrations, roscovitine impaired slug and fruiting body formation. Fruiting bodies that did form were small and produced relatively fewer spores many of which were round. However, roscovitine did not affect stalk cell differentiation. Together with previous findings, these data reveal that roscovitine inhibits Cdk5 during growth and as yet undefined Cdks during mid-late development.  相似文献   

4.
BackgroundTherapeutic applications of Fuzi (lateral root of Aconitum carmichaeli Debx) are seriously concerned with its toxic effects. Strategies and approaches to reducing toxicity are of great interest.PurposeWe aimed to characterize the diurnal rhythm of Fuzi toxicity, and to determine the role of metabolism and pharmacokinetics in generating toxicity rhythmicity.MethodsToxicity was determined based on assessment of heart injury and animal survival after dosing mice with Fuzi decoction at different circadian time points. Circadian clock control of pharmacokinetics and toxicity was investigated using Bmal1-deficient (Bmal1−/−) mice.ResultsFuzi exhibited a diurnal rhythmicity in cardiotoxicity (reflected by plasma CK-MB and LDH levels). The highest level of toxicity was observed at ZT10 (5 PM), while the lowest level of toxicity occurred at ZT22 (5 AM). Also, a higher mortality rate was observed at ZT10 and lower mortality rates at other times of the day. ZT10 dosing of Fuzi generated higher systemic exposures of three toxic alkaloid ingredients aconitine (AC), hypaconitine (HA) and mesaconitine (MA) compared to ZT22. This was accompanied by reduced the formation of the metabolites (N-deethyl-AC, didemethyl-HA and 2‑hydroxyl‑MA) at ZT10. Bmal1 ablation resulted in an increased level of Fuzi toxicity at ZT22, while having no influences when drug was dosed at ZT10. As a consequence, circadian time-dependent toxicity of Fuzi was lost in Bmal1-deficient mice. In addition, Bmal1 ablation increased the plasma concentrations of AC, HA and MA in mice after oral gavage of Fuzi, and reduced formation of their metabolites (N-deethyl-AC, didemethyl-HA and 2‑hydroxyl‑MA). Moreover, Fuzi metabolism in wild-type liver microsomes was more extensive at ZT22 than at ZT10. Bmal1 ablation abrogated circadian time-dependency of hepatic Fuzi metabolism.ConclusionsFuzi chronotoxicity in mice was attributed to time-varying hepatic metabolism and systemic exposure regulated by circadian clock. The findings may have implications in reducing Fuzi toxicity with a chronotherapeutic approach.  相似文献   

5.
The circadian timing system determines the optimal timing and waveform of drug tolerability, yet treatment itself can alter this system. Gemcitabine is an antimetabolite agent that is active against lung and pancreatic cancers. Tolerability for this drug is best following dosing at ZT 11 in mice. The authors investigated the effects of gemcitabine on the circadian rhythms in body temperature and rest activity as physiological markers of the circadian timing system. Healthy unrestrained B6D2F(1) mice implanted with radiotelemetry transmitters were kept in LD 12:12 prior to receiving a single intravenous dose of gemcitabine (200, 400, or 600 mg/kg) at ZT 11 or 23. Gemcitabine (400 mg/kg) transiently suppressed the body temperature rhythm in 50% of the mice dosed at ZT 23, as compared to none of the mice treated at ZT 11 within the 2 days following drug dosing (Fisher 's exact test p = 0.04). The rest-activity circadian rhythm was suppressed in 40% (ZT 11) and 50% (ZT 23) of the mice, respectively. In the mice with persistent circadian rhythms, gemcitabine delivery at ZT 23 resulted in more prominent decreases and slower recovery of circadian mesor and amplitude of both rhythms as compared to mice treated at ZT 11. Gemcitabine also induced a transient internal desynchronization between temperature and activity rhythms following dosing at ZT 23 but not at ZT 11. The delivery of a single therapeutic dose of gemcitabine near its time of least toxicity produced least alterations in circadian physiological outputs, a finding that suggests that the extent of circadian disruption contributes to toxicokinetic processes.  相似文献   

6.
Roscovitine, a potent inhibitor of M-phase promoting factor kinase activity, was used to maintain calf oocytes at the germinal vesicle stage for a 24h culture period. Cumulus-oocyte complexes were first prematured for 24h in the presence of different levels of roscovitine (12.5, 25, 50 and 100 microM). Roscovitine was shown to block germinal vesicle breakdown in calf oocytes in a concentration dependent manner. Significantly greater inhibitory effect was observed at 50 and 100 microM with 64.6% and 63.2% oocytes being blocked in the germinal vesicle stage when compared to the control (0.0%) and the 12.5 microM (2.9%) and 25 microM (18.8%) groups. However, this inhibitory effect of roscovitine was fully reversible since a substantial number of the oocytes resumed meiosis and reached the metaphase II stage after a further 24h of culture in a permissive medium. Cleavage rates and blastocyst yields were not significantly different for oocytes cultured under 50 microM roscovitine inhibition compared to oocytes not subjected to prematuration culture (rates of 76.7% cleavage and 8.7% blastocysts for control oocytes compared to 69.8% and 6.3%, respectively, for oocytes pretreated with 50 microM roscovitine). The morphology of the meiotic spindle was typical of metaphase II in 75.8% and 82.1% of the oocytes reaching the metaphase II stage after pretreatment with 50 microM roscovitine compared to control, respectively. A normal distribution of actin filaments was observed in 97.0% and 98.2% of oocytes exposed to 50 microM roscovitine compared to control, respectively. These results demonstrate the feasibility of maintaining calf oocytes in artificial meiotic arrest without compromising their subsequent developmental competence.  相似文献   

7.
The developmental competence of cat oocytes matured in vitro is relatively poor when compared with that of in vivo oocytes. The study aimed to investigate the effect of roscovitine on the developmental competence of cat Felis catus oocytes matured in vitro. Cumulus-oocyte complexes (COCs) were classified as Grade I and II to III. Groups of COCs were cultured in 0, 12.5, 25, 50, 100, and 200 μM roscovitine for 24 h and were either fixed to assess the stages of nuclear maturation (Experiment 1) or additionally matured in vitro for 24 h before fixation (Experiment 2). In Experiment 3, cumulus cells from the COCs treated with roscovitine were examined for apoptosis. Experiment 4 examined the developmental competence of cat oocytes after roscovitine treatment and in vitro fertilization in terms of cleavage and morula and blastocyst formation rates. Roscovitine reversibly arrested cat oocytes at an immature stage in a dose-dependent manner. Roscovitine at 12.5 and 25 μM demonstrated less efficiency compared with that of other doses. However, higher doses of roscovitine induced cumulus cell apoptosis and resulted in a high number of degenerated oocytes after in vitro maturation. Roscovitine at 12.5 and 25 μM were therefore used to evaluate their effect on embryo development. Pretreatment with 12.5 and 25 μM roscovitine prior to in vitro maturation decreased the developmental competence of cat oocytes compared with that of non-roscovitine-treated controls. In conclusion, roscovitine reversibly maintained cat oocytes at the germinal vesicle stage without detrimental effect on nuclear maturation. However, it negatively affected cumulus cell viability and developmental competence.  相似文献   

8.
Roscovitine, a potent inhibitor of M-phase Promoting Factor (MPF) kinase activity, was used to maintain cattle oocytes at the germinal vesicle stage for a 24-hr culture period. A concentration of 25 microM of roscovitine was sufficient to reach the maximum level of meiotic resumption inhibition with 83 +/- 6% of the oocytes remaining at the germinal vesicle stage after the 24 hr of culture. The histone H1 kinase activity was maintained at a basal level after culture under roscovitine inhibition at any of the concentrations tested (12.5, 25, 50, and 100 microM). This inhibitory effect of roscovitine was fully reversible since 89 +/- 4% of the oocytes cultured for 24 hr in the presence of 25 microM of roscovitine reached the metaphase II stage after a further culture of 24 hr in permissive medium (TCM199 supplemented with 10 ng/ml EGF). The cleavage rate as well as the development to the blastocyst stage was not different for oocytes cultured for 24 hr under roscovitine (25 microM) inhibition and then matured for 24 hr in the presence of EGF as compared to oocytes not submitted to prematuration culture (82 +/- 8% cleavage and 41 +/- 4% blastocysts at 8 days post insemination for control oocytes compared to 90 +/- 7% and 36 +/- 7% respectively for roscovitine-treated oocytes). Roscovitine meiotic inhibition was also effective in the presence of EGF, and the final developmental potential as well as the kinetics of blastocyst formation were not affected after such prematuration treatment. The EGF induced cumulus expansion was also inhibited by roscovitine. These results indicate for the first time the feasibility of culturing cattle oocytes under meiotic inhibition without decreasing their resulting developmental potential.  相似文献   

9.
Circadian disruption accelerates malignant growth; thus, it should be avoided in anticancer therapy. The circadian disruptive effects of irinotecan, a topoisomerase I inhibitor, was investigated according to dosing time and sex. In previous work, irinotecan achieved best tolerability following dosing at zeitgeber time (ZT) 11 in male and ZT15 in female mice, whereas worst toxicity corresponded to treatment at ZT23 and ZT3 in male and female mice, respectively. Here, irinotecan (50 mg/kg intravenous [i.v.]) was delivered at the sex-specific optimal or worst circadian timing in male and female B6D2F1 mice. Circadian disruption was assessed with rest-activity, body temperature, plasma corticosterone, and liver mRNA expressions of clock genes Rev-erbα, Per2, and Bmal1. Baseline circadian rhythms in rest-activity, body temperature, and plasma corticosterone were more prominent in females as compared to males. Severe circadian disruption was documented for all physiology and molecular clock endpoints in female mice treated at the ZT of worst tolerability. Conversely, irinotecan administration at the ZT of best tolerability induced slight alteration of circadian physiology and clock-gene expression patterns in female mice. In male mice, irinotecan produced moderate alterations of circadian physiology and clock-gene expression patterns, irrespective of treatment ZT. However, the average expression of Rev-erbα, Per2, and Bmal1 were down-regulated 2- to 10-fold with irinotecan at the worst ZT, while being minimally or unaffected at the best ZT, irrespective of sex. Corticosterone secretion increased acutely within 2?h with a sex-specific response pattern, resulting in a ZT-dependent phase-advance or -delay in both sex. The mRNA expressions of irinotecan clock-controlled metabolism genes Ce2, Ugt1a1, and Top1 were unchanged or down-regulated according to irinotecan timing and sex. This study shows that the circadian timing system represents an important toxicity target of irinotecan in female mice, where circadian disruption persists after wrongly timed treatment. As a result, the mechanisms underling cancer chronotherapeutics are expectedly more susceptible to disruption in females as compared to males. Thus, the optimal circadian timing of chemotherapy requires precise determination according to sex, and should involve the noninvasive monitoring of circadian biomarkers.  相似文献   

10.
Although the developmental programs of plants and animals differ, key regulatory components of their cell cycle have been conserved. Particular attention has been paid to the role of the complexes between highly conserved cyclin and cyclin-dependent kinases in regulating progression through the cell cycle. The recent demonstration that roscovitine is a potent and selective inhibitor of the animal cyclin-dependent kinases cdc2 (CDK1), CDK2 and CDK5 prompted an investigation into its effects on progression through the plant cell cycle. Roscovitine induced arrests both in late G1 and late G2 phase in BY-2 tobacco cell suspensions. Both blocks were fully reversible when roscovitine was used at concentrations similar to those used in the animal system. Stationary-phase cells subcultured in the presence of roscovitine were arrested at a 2C DNA content. This arrest was more efficient without exogenous addition of plant growth regulator. Roscovitine induced a block in G1 earlier than that induced by aphidicolin. S-phase synchronized cells treated with roscovitine were arrested at a 4C DNA content at the G2/ M transition. The expression analysis of a mitotic cyclin (NTCYC1) indicated that the roscovitine-induced G2 block probably occurs in late G2. Finally, cells in metaphase were insensitive to roscovitine. The purified CDK/cyclin kinase activities of late G1 and early M arrested cells were inhibited in vitro by roscovitine. The implications of these experimental observations for the requirement for CDK activity during progression through the plant cell cycle are discussed.  相似文献   

11.
12.
Circadian disruption accelerates malignant growth; thus, it should be avoided in anticancer therapy. The circadian disruptive effects of irinotecan, a topoisomerase I inhibitor, was investigated according to dosing time and sex. In previous work, irinotecan achieved best tolerability following dosing at zeitgeber time (ZT) 11 in male and ZT15 in female mice, whereas worst toxicity corresponded to treatment at ZT23 and ZT3 in male and female mice, respectively. Here, irinotecan (50?mg/kg intravenous [i.v.]) was delivered at the sex-specific optimal or worst circadian timing in male and female B6D2F1 mice. Circadian disruption was assessed with rest-activity, body temperature, plasma corticosterone, and liver mRNA expressions of clock genes Rev-erbα, Per2, and Bmal1. Baseline circadian rhythms in rest-activity, body temperature, and plasma corticosterone were more prominent in females as compared to males. Severe circadian disruption was documented for all physiology and molecular clock endpoints in female mice treated at the ZT of worst tolerability. Conversely, irinotecan administration at the ZT of best tolerability induced slight alteration of circadian physiology and clock-gene expression patterns in female mice. In male mice, irinotecan produced moderate alterations of circadian physiology and clock-gene expression patterns, irrespective of treatment ZT. However, the average expression of Rev-erbα, Per2, and Bmal1 were down-regulated 2- to 10-fold with irinotecan at the worst ZT, while being minimally or unaffected at the best ZT, irrespective of sex. Corticosterone secretion increased acutely within 2?h with a sex-specific response pattern, resulting in a ZT-dependent phase-advance or -delay in both sex. The mRNA expressions of irinotecan clock-controlled metabolism genes Ce2, Ugt1a1, and Top1 were unchanged or down-regulated according to irinotecan timing and sex. This study shows that the circadian timing system represents an important toxicity target of irinotecan in female mice, where circadian disruption persists after wrongly timed treatment. As a result, the mechanisms underling cancer chronotherapeutics are expectedly more susceptible to disruption in females as compared to males. Thus, the optimal circadian timing of chemotherapy requires precise determination according to sex, and should involve the noninvasive monitoring of circadian biomarkers. (Author correspondence: )  相似文献   

13.
Summary The aim of the present study was to determine oocyte activation and change in M-phase promoting factor (MPF) activity induced by treatment with calcium ionophore and roscovitine in comparison with those induced by treatment with roscovitine alone and treatment with calcium ionophore and puromycin in mice. Freshly ovulated oocytes obtained from 6-8-week-old mice were divided into five groups (no activation treatment; 5 μM calcium ionophore A23187; 50 μM roscovitine; 5 μM calcium ionophore and 10 μg/ml puromycin; and 5 μM calcium ionophore and 50 μM roscovitine) and were incubated for 6 h. Oocyte activation, assessed by morphological changes, and changes in MPF activity in the five groups at 0, 2, 4 and 6 h of incubation were examined. Activated oocytes were defined as oocytes with at least one pronucleus. Oocytes treated with roscovitine alone were not activated during the 6-h incubation period. All of the oocytes in the calcium ionophore with puromycin group and in the calcium ionophore with roscovitine group were activated. The percentage activity of MPF in oocytes treated with roscovitine alone was decreased after 2 h and increased after 4 h of incubation. The percentage activity of MPF in oocytes treated with calcium ionophore and roscovitine was significantly decreased with suppression of MPF activity being maintained for 6 h, and this change was similar to that in oocytes treated with calcium ionophore and puromycin. Roscovitine with calcium ionophore is effective for induction of oocyte activation through suppression of MPF activity in mice.  相似文献   

14.
Glucocorticoids (GCs) are a group of steroid hormones secreted by the adrenal glands in circadian cycles, and the dysregulation of GC signaling has been suggested to cause metabolic syndrome. Even though prolonged GC exposure is associated with serious side effects such as metabolic syndrome and central nervous system disorders, the use of GCs in anti-inflammatory and immunosuppressive therapies has been continuously rising. Meanwhile, the exact mechanisms by which GCs can influence the lipid metabolism as well as behavior and how they are affected by time remain unknown. In this study, the effects of two different long-term GC dosing regimens on lipid metabolism and behavior were investigated. Male Wistar rats received daily administrations of the GC dexamethasone sodium phosphate (DEX, 0.5 mg/kg body weight) at either ZT0 (Dex0) or ZT12 (Dex12). After 6 weeks of treatment, DEX-treated rats, especially those treated at ZT0, had higher hepatic lipid accumulation and serum triglyceride levels and less locomotor activity than did control rats. In addition, serum levels of corticosterone, 5-hydroxy tryptamine and norepinephrine were decreased in the Dex0 group but not in the Dex12 group compared to the control group. Furthermore, quantitative real-time polymerase chain reaction analysis indicated that the chronic administration of GCs at ZT0 upregulated genes related to glycolysis and lipid synthesis and downregulated genes related to fatty acid β-oxidation in the liver more remarkably than administration at ZT12. Both DEX-treated groups displayed severely altered expression patterns of the core clock genes Bmal1 and Per2 in the liver and in fat. In addition, the expression of glutamate aspartate transporter, glial fibrillary acidic protein and glutamate transporter-1, astrocyte-related genes important for maintaining nervous system functions, was drastically decreased in the hippocampus of DEX-treated rats, especially when DEX was given at ZT0. In conclusion, our findings confirm that the severity of side effects, indicated by altered lipid metabolism and behavioral activity, depends on the timing of GC administration and is associated with the degree of glucocorticoid receptor dysfunction after dosing at disparate time points.  相似文献   

15.
Roscovitine, a specific inhibitor of MPF kinase activity, has been shown to block efficiently and reversibly the meiotic resumption of oocytes from different species, including cattle. In view to verify that oocytes maintain germinal vesicle like molecular activities under roscovitine treatment, we compared in the present study the M-phase Promoting Factor (MPF) and Mitogen Activated Protein (MAP) kinase activities; protein synthesis and phosphorylation patterns in oocytes and cumulus cells; and CDK1 and Cyclin B messengers storage under control culture and under roscovitine inhibition. We observed that roscovitine induced a full and reversible inhibition of MPF kinase activity and of the activating phosphorylation of both ERK1/2 MAPK. During in vivo maturation, there was a highly significant increase in the relative mRNA level of both cyclin B1 and CDK1 whereas during in vitro culture, the relative amount of CDK1 messenger was reduced. These messengers may be used as markers for the optimization of in vitro maturation treatment. Roscovitine reversibly prevented this drop in relative quantities of CDK1 messenger. Oocytes cultured in the presence of roscovitine maintained a GV like profile of protein synthesis except that two proteins of 48 and 64 kDa specific of matured oocytes also appeared under roscovitine treatment. However, roscovitine did not prevent most of the modifications of protein phosphorylation pattern observed during maturation. In conclusion, results of this study revealed that the use of roscovitine did not prevent all the events related to maturation of bovine oocytes.  相似文献   

16.
The effect of roscovitine exposure prior to IVM was studied on cumulus expansion, on changes of cumulus-oocyte contacts and on nuclear and cytoplasmic maturation of sow oocytes. It was hypothesized that delayed nuclear maturation and prolonged contact with cumulus cells allows prolonged cytoplasmic differentiation and therefore improves oocyte developmental potential. Cumulus-oocyte complexes (COCs) were exposed for 22 h or 44 h to 0, 25 or 50 microM of roscovitine and subsequently cultured for 22, 29 or 44 h without roscovitine. COCs were examined for cumulus expansion and oocytes for nuclear status and dynamics of transzonal microfilaments. Oocyte developmental potential was assessed by blastocyst formation after IVF. Fifty muM of roscovitine inhibited cumulus expansion for the first 22 h of culture, and maintained oocytes in meiotic arrest for 44 h. Roscovitine treatment during 22 h prior to culture for 44 h without roscovitine did not increase embryo development, but oocytes cultured for 66 h without roscovitine had reduced blastocyst formation. Oocytes cultured for 29 h after roscovitine exposure showed reduced blastocyst rates compared with their counterparts cultured for 44 h. Roscovitine treatment during 44 h prior to culture for 22 h or 44 h without roscovitine reduced embryo development. Transzonal microfilaments were reduced after culture with roscovitine, and disappeared during culture without roscovitine. It is concluded that prolonged contact with cumulus cells does not improve oocyte developmental potential. Furthermore, it is suggested that nuclear and cytoplasmic maturation in vitro cannot be seen as two independent processes.  相似文献   

17.
Fertilization-induced Ca(2+) oscillations in mouse eggs cease at the time of pronuclear formation when maturation-promoting factor (MPF) is inactivated, but the Ca(2+) oscillations are ceaseless if eggs are arrested at metaphase by colcemid, which maintains the activity of MPF. To determine the possible role of MPF in regulation of cytoplasmic Ca(2+) excitability, roscovitine, a specific inhibitor of p34(cdc2)/cyclin B kinase, was used to inactivate MPF, and its effect on fertilization-induced Ca(2+) oscillations was investigated. Our results showed that roscovitine at >/= 50 microM suppressed fertilization-induced Ca(2+) oscillations in normal and colcemid-treated metaphase II (MII) eggs after the first 1-2 Ca(2+) spikes. Roscovitine inhibition of fertilization-induced Ca(2+) oscillations could be reversed by extensive washing of the eggs. Histone H1 kinase activity in colcemid-treated MII eggs was similarly inhibited by roscovitine, which suggested that the cessation of fertilization-induced Ca(2+) oscillations is due to the inactivation of MPF. Thimerosal-induced Ca(2+) oscillations in Ca(2+)-, Mg(2+)-free medium was also suppressed by roscovitine, suggesting a general inhibitory effect of roscovitine on Ca(2+) oscillations. The inhibition may be achieved by disruption of Ca(2+) release and refilling of the calcium store. Thapsigargin, an inhibitor of the endoplasmic reticulum Ca-ATPase, induced significantly less Ca(2+) release in roscovitine-treated eggs than in the non-drug-treated eggs. Taken together, our results suggest that MPF plays an important role in regulation of the cytoplasmic Ca(2+) excitability in mouse eggs.  相似文献   

18.
In the present study the effects of roscovitine on the in vitro nuclear maturation of porcine oocytes were investigated. Roscovitine, a specific inhibitor of cyclin-dependent protein kinases, prevented chromatin condensation in a concentration-dependent manner. This inhibition was reversible and was accompanied by non-activation of p34cdc2/histone H1 kinase. It also decreased enzyme activity of MAP kinase, suggesting a correlation between histone H1 kinase activation and the onset of chromatin condensation. The addition of roscovitine (50 microM) to extracts of metaphase II oocytes revealed that the MAP kinase activity was not directly affected by roscovitine, which indicates a possible link between histone H1 and MAP kinase. Chromatin condensation occurred between 20 and 28 h of culture of cumulus-oocyte complexes (COCs) in inhibitor-free medium (germinal vesicle stage I, GV1: 74.6% and 13.7%, respectively). Nearly the same proportion of chromatin condensation was detected in COCs incubated initially in inhibitor-free medium for 20-28 h and subsequently in roscovitine-supplemented medium (50 microM) for a further 2-10 h (GV I: 76.2% and 18.8%, respectively). This observation indicates that roscovitine prevents chromatin condensation even after an initial inhibitor-free cultivation for 20 h. Extending this initial incubation period to > or = 22 h led to an activation of histone H1 and MAP kinase and increasing proportions of oocytes exhibiting chromatin condensation in the presence of roscovitine. It is concluded that histone H1 kinase is involved in the induction of chromatin condensation during in vitro maturation of porcine oocytes.  相似文献   

19.
The aims of this study were to assess the effectiveness of roscovitine, a potent inhibitor of cell cyclin kinases, to prevent meiotic resumption in porcine oocytes, and to test the subsequent fertilisability and developmental competence of these oocytes. Roscovitine blocked porcine oocytes at the GV stage during 22-44 hr of culture. This effect was dose-dependent, and a concentration of 25 microM was sufficient to prevent meiotic resumption in 92+/-5% of the oocytes after 22 hr in the presence of EGF and FSH. Cumulus expansion was also inhibited under these conditions. The histone H1 kinase activity in oocytes was inhibited in a dose-dependent way, and maintained at a basal level with 25 microM of roscovitine. Synthesis of proteins of 29, 47 and 79 kDa, normally synthesized during maturation, was inhibited too. All these effects were fully reversible. However, the kinetics of maturation were accelerated after roscovitine removal, and the acceleration was more pronounced after 44 hr of inhibition than after 22 hr. Fertilization of oocytes blocked for 22 hr before a 44 hr maturation was decreased compared to control, but was not different from that of oocytes matured for 66 hr. The developmental competence was decreased for the oocytes cultured for 66 hr, including or not an inhibition period, but it was less reduced for oocytes maintained under inhibition for 22 hr. Roscovitine may thus protect oocytes against the aging mechanisms responsible for developmental competence loss, but not against loss of fertilisability. In conclusion, roscovitine provides a useful tool to study the morphological and biochemical basis of porcine oocyte terminal differentiation.  相似文献   

20.
The circadian timing system controls many biological functions in mammals including xenobiotic metabolism, detoxification, cell proliferation, apoptosis and immune functions. Everolimus is a mammalian target of rapamycin inhibitor, whose immunosuppressant properties are both desired in transplant patients and unwanted in cancer patients, where it is indicated for its antiproliferative efficacy. Here we sought whether everolimus circadian timing would predictably modify its immunosuppressive effects so as to optimize this drug through timing. C57BL/6J mice were synchronized with light-dark 12h:12h, with L onset at Zeitgeber Time (ZT) 0. Everolimus was administered orally to male (5 mg/kg/day) and female mice (15 mg/kg/day) at ZT1, during early rest span or at ZT13, during early activity span for 4 weeks. Body weight loss, as well as hematological, immunological and biochemical toxicities, were determined. Spleen and thymus were examined histologically. Everolimus toxicity was less severe following dosing at ZT13, as compared to ZT1, as shown with least body weight inhibition in both genders; least reductions in thymus weight both in males (p < 0.01) and females (p < 0.001), least reduction in female spleen weight (p < 0.05), and less severe thymic medullar atrophy both in males (p < 0.001) and females (p < 0.001). The mean circulating counts in total leukocytes, total lymphocytes, T-helper and B lymphocytes displayed minor and non-significant changes following dosing at ZT13, while they were decreased by 56.9% (p < 0.01), 45.5% (p < 0.01), 43.1% (p < 0.05) and 48.7% (p < 0.01) after everolimus at ZT1, respectively, in only male mice. Chronotherapy of everolimus is an effective way to increase the general tolerability and decrease toxicity on the immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号